Gonzalez EA, Moore FA, Holcomb JB, Miller CC, Kozar RA, Todd SR, Cocanour CS, Balldin BC, McKinley BA. Fresh frozen plasma should be given earlier to patients requiring massive transfusion. Trauma Acute Care Surg. 2007;62(1):112–9.
Article
Google Scholar
Bonanno FG. Hemorrhagic shock: the “physiology approach.” J Emerg Trauma Shock. 2012;5(4):285.
Article
PubMed
PubMed Central
Google Scholar
Evans RG, Ventura S, Dampney RA, Ludbrook J. John Ludbrook APPS symposium neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol P. 2001;28(5–6):479–87.
Article
CAS
Google Scholar
Troy B, Heslop D, Bandler R, Keay K. Haemodynamic response to haemorrhage: distinct contributions of midbrain and forebrain structures. Auton Neurosci. 2003;108(1–2):1–11.
Article
CAS
PubMed
Google Scholar
Schadt JC, Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol Heart Circ Physiol. 1991;260(2):H305–18.
Article
CAS
Google Scholar
Shenkar R, Coulson WF, Abraham E. Hemorrhage and resuscitation induce alterations in cytokine expression and the development of acute lung injury. Am J Respir Cell Mol Biol. 1994;10(3):290–7.
Article
CAS
PubMed
Google Scholar
Colwell C, Moreira M, Grayzel J. Initial management of moderate to severe hemorrhage in the adult trauma patient. Waltham, MA: UpToDate Inc. 2017. https://www.uptodate.com/contents/initial-management-of-moderate-to-severe-hemorrhage-in-the-adult-traumapatient.
Rushing GD, Britt LD. Reperfusion injury after hemorrhage: a collective review. Ann Surg. 2008;247(6):929–37.
Article
CAS
PubMed
Google Scholar
Niu CY, Hou YL, Zhao ZG, Zhang YF, Ji JJ, Qiao HX, Zhang J, Yao YM. Role of intestinal lymphatic pathway in pathogenesis of intestine-derived bacteria/endotoxin translocation in rats in shock. Zhongguo wei zhong bing ji jiu yi xue = Chin Crit Care Med = Zhongguo weizhongbing jijiuyixue. 2007;19(5):266–9.
CAS
Google Scholar
Shah NS, Kelly E, Billiar TR, Marshall HM, Harbrecht BG, Udekwu AO, Peitzman AB. Utility of clinical parameters of tissue oxygenation in a quantitative model of irreversible hemorrhagic shock. Shock (Augusta, GA). 1998;10(5):343–6.
Article
CAS
Google Scholar
Paul R. Recognition, diagnostics, and management of pediatric severe sepsis and septic shock in the emergency department. Pediatr Clin. 2018;65(6):1107–18.
Google Scholar
Orlinsky M, Shoemaker W, Reis ED, Kerstein MD. Current controversies in shock and resuscitation. Surg Clin N Am. 2001;81(6):1217–62.
Article
CAS
PubMed
Google Scholar
Grässler J, Jezova D, Kvetnanský R, Scheuch D. Hormonal responses to hemorrhage and their relationship to individual hemorrhagic shock susceptibility. Endocrinol Exp. 1990;24(1–2):105–16.
PubMed
Google Scholar
McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med. 2015;4(1):46–61.
Article
PubMed
PubMed Central
Google Scholar
Aires R, Pimentel EB, Forechi L, Dantas EM, Mill JG. Time course of changes in heart rate and blood pressure variability in rats with myocardial infarction. Braz J Med Biol Res. 2017. https://doi.org/10.1590/1414-431x20165511.
Article
PubMed
PubMed Central
Google Scholar
Nogami Y, Takase B, Kinoshita M, Shono S, Kaneda S, Ishihara M, Kikuchi M, Maehara T. Characteristic changes in heart rate variability indices during hemorrhagic shock, and effect of liposome-encapsulated hemoglobin in rats. J Arrhythmia. 2010;26(3):189–98.
Article
Google Scholar
Khodadadi F, Bahaoddini A, Tavassoli A, Ketabchi F. Heart rate variability and pulmonary dysfunction in rats subjected to hemorrhagic shock. BMC Cardiovasc Disord. 2020;20(1):1–9.
Article
Google Scholar
Tonhajzerova I, Mokra D, Visnovcova Z. Vagal function indexed by respiratory sinus arrhythmia and cholinergic anti-inflammatory pathway. RESPNB. 2013;187(1):78–81.
CAS
Google Scholar
Herath KH, Cho J, Kim A, Kim HS, Han EJ, Kim HJ, Kim MS, Ahn G, Jeon YJ, Jee Y. Differential modulation of immune response and cytokine profiles of Sargassum horneri ethanol extract in murine spleen with or without Concanavalin. A stimulation. Biomed Pharmacother. 2019;110:930–42.
Article
CAS
PubMed
Google Scholar
Berthoud H-R, Powley TL. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst. 1993;42(2):153–69.
Article
CAS
PubMed
Google Scholar
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Investig. 2007;117(2):289–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vida G, Peña G, Kanashiro A, Thompson-Bonilla MDR, Palange D, Deitch EA, Ulloa L. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 2011;25(12):4476–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeifer R, Lichte P, Schreiber H, Sellei RM, Dienstknecht T, Sadeghi C, Pape HC, Kobbe P. Models of hemorrhagic shock: differences in the physiological and inflammatory response. Cytokine. 2013;61(2):585–90.
Article
CAS
PubMed
Google Scholar
Tsung YC, Chung CY, Wan HC, Chang YY, Shih PC, Hsu HS, Kao MC, Huang CJ. Dimethyl sulfoxide attenuates acute lung injury induced by hemorrhagic shock/resuscitation in rats. Inflammation. 2017;40(2):555–65. https://doi.org/10.1007/s10753-016-0502-4.
Article
CAS
PubMed
Google Scholar
Ciesla DJ, Moore EE, Johnson JL, Burch JM, Cothren CC, Sauaia A. The role of the lung in postinjury multiple organ failure. Surgery. 2005;138(4):749–58.
Article
PubMed
Google Scholar
Porter K, Ahlgren J, Stanley J, Hayward LF. Modulation of heart rate variability during severe hemorrhage at different rates in conscious rats. Auton Neurosci. 2009;150(1–2):53–61.
Article
PubMed
PubMed Central
Google Scholar
Millis RM, Austin RE, Hatcher MD, Bond V, Goring KL. Metabolic energy correlates of heart rate variability spectral power associated with a 900-calorie challenge. J Nutr Metab. 2011;2011:1–6.
Article
Google Scholar
Cooper TM, McKinley PS, Seeman TE, Choo T-H, Lee S, Sloan RP. Heart rate variability predicts levels of inflammatory markers: evidence for the vagal anti-inflammatory pathway. Brain Behav Immun. 2015;49:94–100.
Article
CAS
PubMed
Google Scholar
Payne SC, Furness JB, Burns O, Sedo A, Hyakumura T, Shepherd RK, Fallon JB. Anti-inflammatory effects of abdominal vagus nerve stimulation on experimental intestinal inflammation. Front Neurosci. 2019;13:418.
Article
PubMed
PubMed Central
Google Scholar
Antonino D, Teixeira AL, Maia-Lopes PM, Souza MC, Sabino-Carvalho JL, Murray AR, Deuchars J, Vianna LC. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 2017;10(5):875–81.
Article
PubMed
Google Scholar
Capalonga L, de Araujo CLP, Hentschke VS, Rossato DD, Quagliotto E, Becker T, Rigatto K, Ferraresi C, Parizotto NA, Dal Lago P. Neuromuscular electrical stimulation but not photobiomodulation therapy improves cardiovascular parameters of rats with heart failure. Can J Physiol Pharmacol. 2021;99(999):1–9.
Google Scholar
Smith GP, Jerome C, Norgren R. Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats. Am J Physiol Regul Integr Comp Physiol. 1985;249(5):R638–41.
Article
CAS
Google Scholar
Lee H, Blaufox M. Blood volume in the rat. J Nucl Med. 1985;26(1):72–6.
CAS
PubMed
Google Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.
Article
Google Scholar
Cerutti C, Barres C, Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol Heart Circ Physiol. 1994;266(5):H1993–2000.
Article
CAS
Google Scholar
Cerutti C, Gustin M, Paultre C, Lo M, Julien C, Vincent M, Sassard J. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol Heart Circ Physiol. 1991;261(4):H1292–9.
Article
CAS
Google Scholar
Claydon VE, Krassioukov AV. Clinical correlates of frequency analyses of cardiovascular control after spinal cord injury. Am J Physiol Heart Circ Physiol. 2008;294(2):H668–78.
Article
CAS
PubMed
Google Scholar
Lehrer PM. Biofeedback training to increase heart rate variability. Princ Pract Stress Manag. 2007;3:227–48.
Google Scholar
Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213.
Article
PubMed
PubMed Central
Google Scholar
Koch E, Lovett S, Nghiem T, Riggs RA, Rech MA. Shock index in the emergency department: utility and limitations. OAEM. 2019;11:179.
Article
PubMed
PubMed Central
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13(1):1–11.
Article
Google Scholar
Troy BP, Hopkins DA, Keay KA. The hemodynamic response to blood loss in the conscious rat: contributions of cardiac vagal and cardiac spinal signals. Shock. 2014;41(4):282–91.
Article
PubMed
Google Scholar
Yagi M, Morishita K, Ueno A, Nakamura H, Akabori H, Senda A, Kojima M, Aiboshi J, Costantini T, Coimbra R, Otomo Y. Electrical stimulation of the vagus nerve improves intestinal blood flow after trauma and hemorrhagic shock. Surg. 2020;167(3):638–45.
Article
Google Scholar
Mravec B, Ondicova K, Tillinger A, Pecenak J. Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci. 2015;190:20–5.
Article
CAS
PubMed
Google Scholar
Saul J, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol Heart Circ Physiol. 1990;258:H713–21. https://doi.org/10.1152/ajpheart.1990.258.3.H713.
Article
CAS
Google Scholar
Tripathi K. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria. Physiol Meas. 2011;32(6):717.
Article
CAS
PubMed
Google Scholar
Porges SW. The polyvagal theory: neurophysiological foundations of emotions, attachment, communication, and self-regulation (Norton Series on Interpersonal Neurobiology). New York, NY: WW Norton & Company; 2011.
Google Scholar
Fuentes JM, Hanly EJ, Aurora AR, De Maio A, Talamini MA. Anesthesia-specific protection from endotoxic shock is not mediated through the vagus nerve. Surgery. 2005;138:766–71.
Article
PubMed
Google Scholar
Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, et al. Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107:1189–94.
Article
PubMed
Google Scholar