Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. https://doi.org/10.1038/s41572-019-0106-z.
Article
PubMed
Google Scholar
Brinkman GL. Ultrastructure of atherosclerosis in the human pulmonary artery. Am Rev Respir Dis. 1972;105(3):351–7. https://doi.org/10.1164/arrd.1972.105.3.351.
Article
CAS
PubMed
Google Scholar
Moore GW, Smith RR, Hutchins GM. Pulmonary artery atherosclerosis: correlation with systemic atherosclerosis and hypertensive pulmonary vascular disease. Arch Pathol Lab Med. 1982;106(8):378–80.
CAS
PubMed
Google Scholar
Miao R, Liu J, Wang J. Overview of mouse pulmonary embolism models. Drug Discovery Today Disease Models. 2010;7(3–4):77–82. https://doi.org/10.1016/j.ddmod.2011.03.006.
Article
CAS
Google Scholar
de Vries MR, Quax PHA. Inflammation in vein graft disease. Front Cardiovasc Med. 2018;24(5):3. https://doi.org/10.3389/fcvm.2018.00003.
Article
CAS
Google Scholar
Gao J, Liu Y, Li YM. Review of risk factors, treatment, and prevention of saphenous vein graft disease after coronary artery bypass grafting. J Int Med Res. 2018;46(12):4907–19. https://doi.org/10.1177/0300060518792445.
Article
PubMed
PubMed Central
Google Scholar
Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med. 2013;2(12):946–52. https://doi.org/10.5966/sctm.2013-0055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: The Rancho Bernardo Study. Circulation. 2011;123(19):2101–10. https://doi.org/10.1161/CIRCULATIONAHA.110.979740.
Article
PubMed
PubMed Central
Google Scholar
Eggers KM, Kempf T, Wallentin L, Wollert KC, Lind L. Change in growth differentiation factor 15 concentrations over time independently predicts mortality in community-dwelling elderly individuals. Clin Chem. 2013;59(7):1091–8. https://doi.org/10.1373/clinchem.2012.201210.
Article
CAS
PubMed
Google Scholar
Jenab Y, Pourjafari M, Sotoudeh M, Lotfi-Tokaldany M, Etesamifard N, Shirani S, Jalali A, Nozari Y, Poorhosseini HR. Comparing the effect of cardiac biomarkers on the outcome of normotensive patients with acute pulmonary embolism. Monaldi Arch Chest Dis. 2017;87(1):767. https://doi.org/10.4081/monaldi.2017.767.
Article
PubMed
Google Scholar
Strelau J, Böttner M, Lingor P, Suter-Crazzolara C, Galter D, Jaszai J, Sullivan A, Schober A, Krieglstein K, Unsicker K. GDF-15/MIC-1 a novel member of the TGF-beta superfamily. J Neural Transm Suppl. 2000;60:273–6. https://doi.org/10.1007/978-3-7091-6301-6_18.
Article
Google Scholar
Warboys CM, Amini N, de Luca A, Evans PC. The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Med Rep. 2011;3:5. https://doi.org/10.3410/M3-5.
Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A. 1997;94(21):11514–9. https://doi.org/10.1073/pnas.94.21.11514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN. MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol. 1999;65(1):2–5. https://doi.org/10.1002/jlb.65.1.2.
Article
CAS
PubMed
Google Scholar
Böttner M, Suter-Crazzolara C, Schober A, Unsicker K. Expression of a novel member of the TGF-beta superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell Tissue Res. 1999;297(1):103–10. https://doi.org/10.1007/s004410051337.
Article
PubMed
Google Scholar
Tamarappoo BK, Lin A, Commandeur F, McElhinney PA, Cadet S, Goeller M, Razipour A, Chen X, Gransar H, Cantu S, Miller RJ, Achenbach S, Friedman J, Hayes S, Thomson L, Wong ND, Rozanski A, Slomka PJ, Berman DS, Dey D. Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: a prospective study. Atherosclerosis. 2020;S0021–9150(20):31502–11. https://doi.org/10.1016/j.atherosclerosis.2020.11.008.
Article
CAS
Google Scholar
He X, Su J, Ma X, Lu W, Zhu W, Wang Y, Bao Y, Zhou J. The association between serum growth differentiation factor 15 levels and lower extremity atherosclerotic disease is independent of body mass index in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):40. https://doi.org/10.1186/s12933-020-01020-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schober A, Böttner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN, Unsicker K. Expression of growth differentiation factor-15/ macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol. 2001;439(1):32–45. https://doi.org/10.1002/cne.1333.
Article
CAS
PubMed
Google Scholar
Schlittenhardt D, Schmiedt W, Bonaterra GA, Metz J, Kinscherf R. Colocalization of oxidized low-density lipoprotein, caspase-3, cyclooxygenase-2, and macrophage migration inhibitory factor in arteriosclerotic human carotid arteries. Cell Tissue Res. 2005;322(3):425–35. https://doi.org/10.1007/s00441-005-0024-0.
Article
CAS
PubMed
Google Scholar
Bonaterra GA, Zügel S, Thogersen J, Walter SA, Haberkorn U, Strelau J, Kinscherf R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc. 2012;1(6):e002550. https://doi.org/10.1161/JAHA.112.002550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackermann K, Bonaterra GA, Kinscherf R, Schwarz A. Growth factor-15 regulates oxDL-induces lipid homeostasis and autophagy in human macrophages. Atherosclerosis. 2019;281:128–36. https://doi.org/10.1016/j.atherosclerosis.201812.009.
Article
CAS
PubMed
Google Scholar
Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock. 2005;23(6):543–8.
CAS
PubMed
Google Scholar
Zimmers TA, Jin X, Hsiao EC, Perez EA, Pierce RH, Chavin KD, Koniaris LG. Growth differentiation factor-15: induction in liver injury through p53 and tumor necrosis factor-independent mechanisms. J Surg Res. 2006;130(1):45–51. https://doi.org/10.1016/j.jss.2005.07.036.
Article
CAS
PubMed
Google Scholar
Bella AJ, Lin G, Lin CS, Hickling DR, Morash C, Lue TF. Nerve growth factor modulation of the cavernous nerve response to injury. J Sex Med. 2009;6(Suppl 3):347–52. https://doi.org/10.1111/j.1743-6109.2008.01194.x.
Article
PubMed
PubMed Central
Google Scholar
Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and growth control. Front Physiol. 2018;9:1712. https://doi.org/10.3389/fphys.2018.01712.
Article
PubMed
PubMed Central
Google Scholar
Martinez CH, Freeman CM, Nelson JD, Murray S, Wang X, Budoff MJ, Dransfield MT, Hokanson JE, Kazerooni EA, Kinney GL, Regan EA, Wells JM, Martinez FJ, Han MK, Curtis JL; COPDGene Investigators. GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respir Res. 2017;18(1):42. https://doi.org/10.1186/s12931-017-0521-1.
Hochholzer W, Morrow DA, Giugliano RP. Novel biomarkers in cardiovascular disease: update 2010. Am Heart J. 2010;160(4):583–94. https://doi.org/10.1016/j.ahj.2010.06.010.
Article
CAS
PubMed
Google Scholar
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg. 2013;58(1):219–30. https://doi.org/10.1016/j.jvs.2013.02.240.
Article
PubMed
Google Scholar
Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in pulmonary and critical care medicine. Am J Respir Cell Mol Biol. 2019;60(6):621–8. https://doi.org/10.1165/rcmb.2018-0379TR.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim M, Cha SI, Choi KJ, Shin KM, Lim JK, Yoo SS, Lee J, Lee SY, Kim CH, Park JY, Yang DH. Prognostic value of serum growth differentiation factor-15 in patients with chronic obstructive pulmonary disease exacerbation. Tuberc Respir Dis (Seoul). 2014;77(6):243–50. https://doi.org/10.4046/trd.2014.77.6.243.
Article
Google Scholar
Freeman CM, Martinez CH, Todt JC, Martinez FJ, Han MK, Thompson DL, McCloskey L, Curtis JL. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Respir Res. 2015;16(1):94. https://doi.org/10.1186/s12931-015-0251-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mutlu LC, Altintas N, Aydin M, Tulubas F, Oran M, Kucukyalin V, Kaplan G, Gurel A. Growth differentiation factor-15 Is a novel biomarker predicting acute exacerbation of chronic obstructive pulmonary disease. Inflammation. 2015;38(5):1805–13. https://doi.org/10.1007/s10753-015-0158-5.
Article
CAS
PubMed
Google Scholar
Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, Welte T, Hoeper MM, Golpon HA. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res. 2011;12(1):62. https://doi.org/10.1186/1465-9921-12-62 (PMID: 21548946).
Article
CAS
PubMed
PubMed Central
Google Scholar
Song H, Yin D, Liu Z. GDF-15 promotes angiogenesis through modulating p53/HIF-1α signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep. 2012;39(4):4017–22. https://doi.org/10.1007/s11033-011-1182-7.
Article
CAS
PubMed
Google Scholar
Lim CS, Gohel MS, Shepherd AC, Paleolog E, Davies AH. Venous hypoxia: a poorly studied etiological factor of varicose veins. J Vasc Res. 2011;48(3):185–94. https://doi.org/10.1159/000320624.
Article
CAS
PubMed
Google Scholar
Stevens T. Molecular and cellular determinants of lung endothelial cell heterogeneity. Chest. 2005;128(6 Suppl):558S-564S. https://doi.org/10.1378/chest.128.6_suppl.558S.
Article
CAS
PubMed
Google Scholar
Khan SQ, Ng K, Dhillon O, Kelly D, Quinn P, Squire IB, Davies JE, Ng LL. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30(9):1057–65. https://doi.org/10.1093/eurheartj/ehn600.
Article
CAS
PubMed
Google Scholar
Dinh W, Füth R, Lankisch M, Hess G, Zdunek D, Scheffold T, Kramer F, Klein RM, Barroso MC, Nickl W. Growth-differentiation factor-15: a novel biomarker in patients with diastolic dysfunction? Arq Bras Cardiol. 2011;97(1):65–75.
Article
CAS
Google Scholar
Hanatani S, Izumiya Y, Takashio S, Kojima S, Yamamuro M, Araki S, Rokutanda T, Tsujita K, Yamamoto E, Tanaka T, Tayama S, Kaikita K, Hokimoto S, Sugiyama S, Ogawa H. Growth differentiation factor 15 can distinguish between hypertrophic cardiomyopathy and hypertensive hearts. Heart Vessels. 2014;29(2):231–7. https://doi.org/10.1007/s00380-013-0337-y.
Article
PubMed
Google Scholar
Xu XY, Nie Y, Wang FF, Bai Y, Lv ZZ, Zhang YY, Li ZJ, Gao W. Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation. J Biol Chem. 2014;289(14):10084–94. https://doi.org/10.1074/jbc.M113.516278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nickel N, Kempf T, Tapken H, Tongers J, Laenger F, Lehmann U, Golpon H, Olsson K, Wilkins MR, Gibbs JS, Hoeper MM, Wollert KC. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(5):534–41. https://doi.org/10.1164/rccm.200802-235OC.
Article
CAS
PubMed
Google Scholar
Preusch MR, Baeuerle M, Albrecht C, Blessing E, Bischof M, Katus HA, Bea F. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res. 2013;18(1):19. https://doi.org/10.1186/2047-783X-18-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F, Altick AL, von Bartheld CS, Klein R, Sendtner M, Unsicker K. Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci. 2009;29(43):13640–8. https://doi.org/10.1523/JNEUROSCI.1133-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US); 2011.
Schlittenhardt D, Schober A, Strelau J, Bonaterra GA, Schmiedt W, Unsicker K, Metz J, Kinscherf R. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004;318(2):325–33. https://doi.org/10.1007/s00441-004-0986-3.
Article
CAS
PubMed
Google Scholar
Hartwig H, Silvestre-Roig C, Hendrikse J, Beckers L, Paulin N, Van der Heiden K, Braster Q, Drechsler M, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization in mice: a comparative study. PLoS ONE. 2015;10(10): e0141019. https://doi.org/10.1371/journal.pone.0141019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellegrin M, Miguet-Alfonsi C, Bouzourene K, Aubert JF, Deckert V, Berthelot A, Mazzolai L, Laurant P. Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med Sci Sports Exerc. 2009;41(12):2128–35. https://doi.org/10.1249/MSS.0b013e3181a8d530.
Article
CAS
PubMed
Google Scholar
Bea F, Blessing E, Bennett BJ, Kuo CC, Campbell LA, Kreuzer J, Rosenfeld ME. Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovasc Res. 2003;60(1):198–204. https://doi.org/10.1016/s0008-6363(03)00464-4.
Article
CAS
PubMed
Google Scholar
Kinscherf R, Wagner M, Kamencic H, Bonaterra GA, Hou D, Schiele RA, Deigner HP, Metz J. Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits. Atherosclerosis. 1999;144(1):33–9. https://doi.org/10.1016/s0021-9150(99)00037-4.
Article
CAS
PubMed
Google Scholar
Endo S, Goldsmith HL, Karino T. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch Biorheology. 2014;51(4–5):239–55. https://doi.org/10.3233/BIR-14005.
Article
PubMed
Google Scholar
Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22(2):165–97. https://doi.org/10.1161/01.res.22.2.165.
Article
CAS
PubMed
Google Scholar
Texon M. The hemodynamic basis of atherosclerosis. Further observations: the linear lesion. Bull N Y Acad Med. 1986;62(9):875–80.
CAS
PubMed
PubMed Central
Google Scholar
Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66(4):1045–66. https://doi.org/10.1161/01.res.66.4.1045.
Article
CAS
PubMed
Google Scholar
Kivrak T, Bolayir HA, Kanar BG, et al. Prevelance of pulmonary atherosclerosis in patients with chronic thromboembolic pulmonary hypertension. J Cardiovas Thoracic Surg. 2017;2(4):1–4. https://doi.org/10.15226/2573-864X/2/4/00125.
Article
Google Scholar
Brenner O. Pathology of the vessels in the pulmonary circulation. Arch Intern Med. 1935;56:211–7.
Article
Google Scholar
Cicconi M, Bonsignore A, Orcioni GF, Ventura F. Primary pulmonary arteries atherosclerosis: discovering an unusual cause of death in forensic practice. Rom J Leg Med. 2012;20:177–80.
Article
Google Scholar
Zhang V, Borja AJ, Rojulpote C, Padmanabhan S, Patil S, Gonuguntla K, Revheim ME, Werner TJ, Høilund-Carlsen PF, Alavi A. Global quantification of pulmonary artery atherosclerosis using 18F-sodium fluoride PET/CT in at-risk subjects. Am J Nucl Med Mol Imaging. 2020;10(2):119–26.
PubMed
PubMed Central
Google Scholar
Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol. 2000;12:2587–92. https://doi.org/10.1161/01.atv.20.12.2587.
Article
Google Scholar
Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–8. https://doi.org/10.1016/j.atherosclerosis.2012.09.013.
Article
CAS
PubMed
Google Scholar
de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol. 2016;7:275. https://doi.org/10.3389/fimmu.2016.00275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G. Macrophage plasticity in experimental atherosclerosis. PLoS ONE. 2010;5(1): e8852. https://doi.org/10.1371/journal.pone.0008852.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peled M, Fisher EA. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol. 2014;5:579. https://doi.org/10.3389/fimmu.2014.00579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goch A, Banach M, Mikhailidis DP, Rysz J, Goch JH. Endothelial dysfunction in patients with noncomplicated and complicated hypertension. Clin Exp Hypertens. 2009;31(1):20–30. https://doi.org/10.1080/10641960802409846.
Article
CAS
PubMed
Google Scholar
Tang EH, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch. 2010;459(6):995–1004. https://doi.org/10.1007/s00424-010-0786-4.
Article
CAS
PubMed
Google Scholar
Poredos P, Poredos AV, Gregoric I. Endothelial dysfunction and its clinical implications. Angiology. 2021;72(7):604–15. https://doi.org/10.1177/0003319720987752.
Article
CAS
PubMed
Google Scholar
Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, Sin DD, Seidman MA, Leeper NJ, Francis GA. Smooth Muscle cells contribute the majority of foam cells in ApoE (Apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(5):876–87. https://doi.org/10.1161/ATVBAHA.119.312434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989;37(3):315–21. https://doi.org/10.1177/37.3.2918221.
Article
CAS
PubMed
Google Scholar
Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, Hamilton JA. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol. 2009;182(12):7974–81. https://doi.org/10.4049/jimmunol.0804216.
Article
CAS
PubMed
Google Scholar
Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, Cleutjens JP, van den Akker LH, Corvol P, Wouters BG, Daemen MJ, Bijnens AP. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008;51(13):1258–65. https://doi.org/10.1016/j.jacc.2007.12.025.
Article
CAS
PubMed
Google Scholar
Parathath S, Mick SL, Feig JE, Joaquin V, Grauer L, Habiel DM, Gassmann M, Gardner LB, Fisher EA. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res. 2011;109(10):1141–52. https://doi.org/10.1161/CIRCRESAHA.111.246363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bories GFP, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Lett. 2017;591(19):3042–60. https://doi.org/10.1002/1873-3468.12786.
Article
CAS
PubMed
Google Scholar
Saitoh Y, Ouchida R, Miwa N. Bcl-2 prevents hypoxia/reoxygenation-induced cell death through suppressed generation of reactive oxygen species and upregulation of Bcl-2 proteins. J Cell Biochem. 2003;90(5):914–24. https://doi.org/10.1002/jcb.10723.
Article
CAS
PubMed
Google Scholar
Marsch E, Sluimer JC, Daemen MJ. Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol.;24(5):393–400. doi: https://doi.org/10.1097/MOL. 0b013e32836484a4.
Tazzyman S, Murdoch C, Yeomans J, Harrison J, Muthana M. Macrophage-mediated response to hypoxia in disease. Hypoxia (Auckl). 2014;2:185–96. https://doi.org/10.2147/HP.S49717.
Article
Google Scholar
Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, Chilvers ER. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 2005;201(1):105–15. https://doi.org/10.1084/jem.20040624.
Article
CAS
PubMed
PubMed Central
Google Scholar
Díaz-Bulnes P, Saiz ML, López-Larrea C, Rodríguez RM. Crosstalk between hypoxia and ER stress response: a key regulator of macrophage polarization. Front Immunol. 2020;10:2951. https://doi.org/10.3389/fimmu.2019.02951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351–60. https://doi.org/10.1161/01.RES.0000202805.73038.48.
Article
CAS
PubMed
Google Scholar
Potteaux S, Gautier EL, Hutchison SB, van Rooijen N, Rader DJ, Thomas MJ, Sorci-Thomas MG, Randolph GJ. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of ApoE-/- mice during dis-ease regression. J Clin Invest. 2011;121:2025–36. https://doi.org/10.1172/JCI43802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Park K, Xia Y, Matsumoto M, Qi W, Fu J, Yokomizo H, Khamaisi M, Wang X, Rask-Madsen C, King GL. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCδ isoform activation. Circ Res. 2017;121(10):1153–67. https://doi.org/10.1161/CIRCRESAHA.117.311606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvayre R, Auge N, Benoist H, Negre-Salvayre A. Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta. 2002;1585(2–3):213–21. https://doi.org/10.1016/s1388-1981(02)00343-8.
Article
CAS
PubMed
Google Scholar
Han KH, Chen Y, Chang MK, Han YC, Park JH, Green SR, Boullier A, Quehenberger O. LDL activates signaling pathways leading to an increase in cytosolic free calcium and stimulation of CD11b expression in monocytes. J Lipid Res. 2003;44(7):1332–40. https://doi.org/10.1194/jlr.M200427-JLR200.
Article
CAS
PubMed
Google Scholar
Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25(11):2255–64. https://doi.org/10.1161/01.ATV.0000184783.04864.9f.
Article
CAS
PubMed
Google Scholar
Liang W, Wei F, Yang C, Xie F, Shuai XX, Wang M, Yu M. GDF-15 is associated with thrombus burden in patients with deep venous thrombosis. Thromb Res. 2020;187:148–53. https://doi.org/10.1016/j.thromres.2020.01.022.
Article
CAS
PubMed
Google Scholar
Duran L, Kayhan S, Guzel A, Ince M, Kati C, Akdemir HU, Yavuz Y, Zengin H, Okuyucu A, Murat N. The prognostic values of GDF-15 in comparison with NT-proBNP in patients with normotensive acute pulmonary embolism. Clin Lab. 2014;60(8):1365–71. https://doi.org/10.7754/clin.lab.2013.130827.
Article
CAS
PubMed
Google Scholar
Hansen ES, Hindberg K, Latysheva N, Aukrust P, Ueland T, Hansen JB, Brækkan SK, Morelli VM; INVENT Consortium. Plasma levels of growth differentiation factor 15 are associated with future risk of venous thromboembolism. Blood. 2020;136(16):1863–1870. doi: https://doi.org/10.1182/blood.2019004572.
Verhamme FM, Seys LJM, De Smet EG, Provoost S, Janssens W, Elewaut D, Joos GF, Brusselle GG, Bracke KR. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol. 2017;10(6):1400–11. https://doi.org/10.1038/mi.2017.3.
Article
CAS
PubMed
Google Scholar