Ridker PM, Everett Brendan M, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.
Article
CAS
Google Scholar
Goldfine Allison B, Shoelson Steven E. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J Clin Invest. 2017;127:83–93.
Article
CAS
Google Scholar
Choi D-H, Kobayashi Y, Nishi T, et al. Combination of mean platelet volume and neutrophil to lymphocyte ratio predicts long-term major adverse cardiovascular events after percutaneous coronary intervention. Angiology. 2019;70:345–51.
Article
Google Scholar
Everett Brendan M, Pradhan Aruna D, Solomon Daniel H, et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166(199–207):e15.
Google Scholar
Libby P, Ridker PM, Hansson GK. In-flammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54:2129–38.
Article
CAS
Google Scholar
Jun W, LiJun LX, et al. Mean platelet volume and coronary plaque vulnerability: an optical coherence tomography study in patients with non-ST-elevation acute coronary syndrome. BMC Cardiovasc Disord. 2019;19:128.
Article
Google Scholar
Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.
Article
Google Scholar
Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, Wilson PW. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA.2003; 290: 891–897.
Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.
Article
CAS
Google Scholar
Rajagopal V, Gurm HS, Bhatt DL, et al. Relation of an elevated white blood cell count after percutaneous coronary intervention to long-term mortality. Am J Cardiol. 2004;94:190–2.
Article
Google Scholar
Barron H, Harr S, Radford M, et al. The association between white blood cell count and acute myocardial infarction mortality in patients > or = 65 years of age: Findings from the cooperative cardiovascular project. J Am Coll Cardiol. 2001;38(6):1654–61.
Article
CAS
Google Scholar
Zouridakis EG, Garcia-Moll X, Kaski JC. Usefulness of the blood lymphocyte count in predicting recurrent instability and death in patients with unstable angina pectoris. Am J Cardiol. 2000;86:449–51.
Article
CAS
Google Scholar
Liu JF, Ba L, Lv H, et al. Association between neutrophil-to-lymphocyte ratio and differentiated thyroid cancer: a meta-analysis. Sci Rep. 2016;6:38551.
Article
CAS
Google Scholar
Huankun S, Jiaqun Q, Yangpei P, et al. The neutrophil-lymphocyte ratio: a promising predictor of mortality in coronary care unit patients - a cohort study. Int Immunopharmacol. 2019;74:105692.
Article
Google Scholar
Na Xu, Xiao-Fang T, Yi Y, et al. Predictive value of neutrophil to lymphocyte ratio in long-term outcomes of left main and/or three-vessel disease in patients with acute myocardial infarction. Catheter Cardiovasc Interv. 2018;91:551–7.
Article
Google Scholar
Kaya A, Kurt M, Tanboga IH, et al. Relation of neutrophil to lymphocyte ratio with the presence and severity of stable coronary artery disease. Clin Appl Thromb Hemost. 2014;20:473–7.
Article
Google Scholar
Kurtul S, Sarli B, Baktir AO, et al. Neutrophil to lymphocyte ratio predicts SYNTAX score in patients with non-ST segment elevation myocardial infarction. Int Heart J. 2015;56:18–21.
Article
Google Scholar
Kaya H, Ertaş F, Soydinç MS. Association between neutrophil to lymphocyte ratio and severity of coronary artery disease. Clin Appl Thromb Hemost. 2014;20:221.
Article
Google Scholar
Mendis S, Thygesen K, Koulasmaa K, et a1. Wodd Health Organization definition of myocardial infarction: 2008–09 revision. Int J Epidemiol, 2011, 40(1): 139·146
Wang J, Zhang L, Wang F, Liu L, Wang H. China National Survey of Chronic Kidney Disease Working Group. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey. Am J Hypertens.2014;27:1355–61.
Olafsdottir E, Andersson DK, Dedorsson I, Stefey. Am J Hypertens.2014 fretinopathy in subjects with and without type 2 diabetes mellitus. Acta Ophthalmol. 2014;92(2):133–7.
Levey AS, Bosch JP, Lewis JB, et al; Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461–470.
Alpert JS. Universal definition of myocardial infarction. Eur Heart J. 2008;29(9):1209.
Google Scholar
Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.
Article
CAS
Google Scholar
Sinning C, Zengin E, Waldeyer C, et al. SYNTAX score-0 patients: risk stratification in nonobstructive coronary artery disease. Clin Res Cardiol. 2016;105:901–11.
Article
CAS
Google Scholar
Lozano R, Naghavi MK, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.
Article
Google Scholar
Potenza MA, Nacci C, De SMA, et al. Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res. 2017;120:226–41.
Article
CAS
Google Scholar
Sano T, Tanaka A, Namba M, et al. C-reactive protein and lesion morphology in patients with acute myocardial infarction. Circulation. 2003;108:282.
Article
CAS
Google Scholar
Wei P, Deliang Z, Canxiu Z, et al. Application of neutrophil/lymphocyte ratio in predicting coronary blood flow and mortality in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention. J Cardiol. 2015;66:9–14.
Article
Google Scholar
Kim S, Eliot M, Koestler Devin C, et al. Association of Neutrophil-to-Lymphocyte Ratio With Mortality and Cardiovascular Disease in the Jackson Heart Study and Modification by the Duffy Antigen Variant. JAMA Cardiol. 2018;3:455–62.
Article
Google Scholar
Jala VR, Haribabu B. Leukotrienes and atherosclerosis: new roles for old mediators. Trends Immunol 2004;25:315e22.
Fiarresga AJ, Ferreira RC, Feliciano J, et al. Prognostic value of neutrophil response in the era of acute myocardial infarction mechanical reperfusion. Rev Port Cardiol. 2004;23:1387–96.
PubMed
Google Scholar
Vakili H, Shirazi M, Charkhkar M, et al. Correlation of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio with thrombolysis in myocardial infarction frame count in ST-segment elevation myocardial infarction. Eur J Clin Invest. 2017;47:322–7.
Article
CAS
Google Scholar
Akpek M, Kaya MG, Lam YY, et al. Relation of neutrophil/lymphocyte ratio to coronary flow to in-hospital major adverse cardiac events in patients with STelevated myocardial infarction undergoing primary coronary intervention. Am J Cardiol. 2012;110:621–7.
Article
Google Scholar
Habib H, Sadegh PSM, Najmaldin S. Evaluation of complete blood count parameters in cardiovascular diseases: An early indicator of prognosis? Exp Mol Pathol. 2019;110:104267.
Article
Google Scholar
Komukai K, Kubo T, Kitabata H, et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol. 2014;64:2207–17.
Article
CAS
Google Scholar