Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.
Article
PubMed
Google Scholar
Thomas AG, Michael JG. Harrison’s principles of internal medicine. Philadelphia: Elsevier Saunders; 2012.
Google Scholar
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.
Article
PubMed
Google Scholar
Lawes CM, Vander Hoorn S, Rodgers A. International Society of H: global burden of blood-pressure-related disease, 2001. Lancet. 2008;371(9623):1513–8.
Article
PubMed
Google Scholar
Ogah OS, Rayner BL. Recent advances in hypertension in sub-Saharan Africa. Heart. 2013;99(19):1390–7.
Article
PubMed
Google Scholar
Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22(3):176–84.
Article
PubMed
Google Scholar
Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blair SN, Goodyear NN, Gibbons LW, Cooper KH. Physical fitness and incidence of hypertension in healthy normotensive men and women. Jama. 1984;252(4):487–90.
Article
CAS
PubMed
Google Scholar
Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161(13):1581–6.
Article
CAS
PubMed
Google Scholar
Pausova Z, Tremblay J, Hamet P. Gene-environment interactions in hypertension. Curr Hypertens Rep. 1999;1(1):42–50.
Article
CAS
PubMed
Google Scholar
Wang Y, O'Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, Shi X, Pan L, Rampersaud E, Shen H, et al. From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106(1):226–31.
Article
CAS
PubMed
Google Scholar
Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.
Article
CAS
PubMed
Google Scholar
Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, Hwang SY, Lee SH, Park HK, Cho YS, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24(6):367–72.
Article
CAS
PubMed
Google Scholar
Xi B, Chen M, Chandak GR, Shen Y, Yan L, He J, Mou SH. STK39 polymorphism is associated with essential hypertension: a systematic review and meta-analysis. PLoS One. 2013;8(3):e59584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Qian HX, Hu SP, Liu LY, Zhou M, Feng M, Su J, Ji LD. Gender-specific association of ATP2B1 variants with susceptibility to essential hypertension in the Han Chinese population. Biomed Res Int. 2016:1910565.
Persu A, Evenepoel L, Jin Y, Mendola A, Ngueta G, Yang WY, Gruson D, Horman S, Staessen JA, Vikkula M. STK39 and WNK1 are potential hypertension susceptibility genes in the BELHYPGEN cohort. Medicine (Baltimore). 2016;95(15):e2968.
Article
CAS
Google Scholar
Tchelougou D, Kologo JK, Karou SD, Yameogo VN, Bisseye C, Djigma FW, Ouermi D, Compaore TR, Assih M, Pietra V, et al. Renin-angiotensin system genes polymorphisms and essential hypertension in Burkina Faso, West Africa. Int J Hypertens. 2015;2015:979631.
Article
PubMed
PubMed Central
Google Scholar
Chalmers J, MacMahon S, Mancia G, Whitworth J, Beilin L, Hansson L, Neal B, Rodgers A, Ni Mhurchu C, Clark T: 1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committee of the World Health Organization. Clin Exp Hypertens 1999, 21(5–6):1009–1060.
Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–67.
Article
PubMed
Google Scholar
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic Association. 1998;15(7):539–53.
Article
CAS
Google Scholar
Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D'Agostino RB, Levy D. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham heart study. Jama. 2002;287(8):1003–10.
Article
PubMed
Google Scholar
Barrett-Connor E, Khaw KT. Is hypertension more benign when associated with obesity? Circulation. 1985;72(1):53–60.
Article
CAS
PubMed
Google Scholar
Laaksonen DE, Niskanen L, Nyyssonen K, Lakka TA, Laukkanen JA, Salonen JT. Dyslipidaemia as a predictor of hypertension in middle-aged men. Eur Heart J. 2008;29(20):2561–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takatori S, Zamami Y, Hashikawa-Hobara N, Kawasaki H. Insulin resistance-induced hypertension and a role of perivascular CGRPergic nerves. Curr Protein Pept Sci. 2013;14(4):275–81.
Article
CAS
PubMed
Google Scholar
Loprinzi PD, Crespo CJ, Andersen RE, Smit E. Association of body mass index with cardiovascular disease biomarkers. Am J Prev Med. 2015;48(3):338–44.
Article
PubMed
Google Scholar
Borhani NO. Significance of physical activity for prevention and control of hypertension. J Hum Hypertens. 1996;10(Suppl 2):S7–11.
PubMed
Google Scholar
Hu G, Pekkarinen H, Hanninen O, Yu Z, Guo Z, Tian H. Commuting, leisure-time physical activity, and cardiovascular risk factors in China. Med Sci Sports Exerc. 2002;34(2):234–8.
Article
PubMed
Google Scholar
Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics. 1991;9(4):629–41.
Article
CAS
PubMed
Google Scholar
Holloway ET, Bohr DF. Reactivity of vascular smooth muscle in hypertensive rats. Circ Res. 1973;33(6):678–85.
Article
CAS
PubMed
Google Scholar
Monteith GR, Kable EP, Kuo TH, Roufogalis BD. Elevated plasma membrane and sarcoplasmic reticulum Ca2+ pump mRNA levels in cultured aortic smooth muscle cells from spontaneously hypertensive rats. Biochem Biophys Res Commun. 1997;230(2):344–6.
Article
CAS
PubMed
Google Scholar
Shin YB, Lim JE, Ji SM, Lee HJ, Park SY, Hong KW, Lim M, McCarthy MI, Lee YH, Oh B. Silencing of Atp2b1 increases blood pressure through vasoconstriction. J Hypertens. 2013;31(8):1575–83.
Article
CAS
PubMed
Google Scholar
Daily JW, Kim BC, Liu M, Park S. People with the major alleles of ATP2B1 rs17249754 increases the risk of hypertension in high ratio of sodium and potassium, and low calcium intakes. J Hum Hypertens. 2017;31(12):787–94.
Article
CAS
PubMed
Google Scholar
Okuyama Y, Hirawa N, Fujita M, Fujiwara A, Ehara Y, Yatsu K, Sumida K, Kagimoto M, Katsumata M, Kobayashi Y, et al. The effects of anti-hypertensive drugs and the mechanism of hypertension in vascular smooth muscle cell-specific ATP2B1 knockout mice. Hypertens Res. 2017;41:80.
Article
PubMed
PubMed Central
Google Scholar
Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, Ohkubo T, Hiura Y, Tajima A, Morisaki T, Miyata T, et al. Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese millennium genome project. Hypertension. 2010;56(5):973–80.
Article
CAS
PubMed
Google Scholar
Delpire E, Gagnon KB. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. The Biochemical journal. 2008;409(2):321–31.
Article
CAS
PubMed
Google Scholar
Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O'Shaughnessy KM, Alessi DR. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO molecular medicine. 2010;2(2):63–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LY, Zhao WH, Tian W, Guo J, Jiang F, Jin LJ, Sun YX, Chen KM, An LL, Li GD, et al. STK39 is an independent risk factor for male hypertension in Han Chinese. Int J Cardiol. 2012;154(2):122–7.
Article
PubMed
Google Scholar
Cunnington MS, Kay C, Avery PJ, Mayosi BM, Koref MS, Keavney B. STK39 polymorphisms and blood pressure: an association study in British Caucasians and assessment of cis-acting influences on gene expression. BMC medical genetics. 2009;10:135.
Article
PubMed
PubMed Central
Google Scholar
Xi B, Zhao X, Chandak GR, Shen Y, Cheng H, Hou D, Wang X, Mi J. Influence of obesity on association between genetic variants identified by genome-wide association studies and hypertension risk in Chinese children. Am J Hypertens. 2013;26(8):990–6.
Article
CAS
PubMed
Google Scholar