Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109(6):697–711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicoll R, Zhao Y, Wiklund U, Diederichsen A, Mickley H, Ovrehus K, et al. Diabetes and male sex are key risk factor correlates of the extent of coronary artery calcification: a Euro-CCAD study. J Diabetes Complicat. 2017;31(7):1096–102.
Article
Google Scholar
Goel M, Wong ND, Eisenberg H, Hagar J, Kelly K, Tobis JM. Risk factor correlates of coronary calcium as evaluated by ultrafast computed tomography. Am J Cardiol. 1992;70(11):977–80.
Article
CAS
PubMed
Google Scholar
Wong ND, Kouwabunpat D, Vo AN, Detrano RC, Eisenberg H, Goel M, et al. Coronary calcium and atherosclerosis by ultrafast computed tomography in asymptomatic men and women: relation to age and risk factors. Am Heart J. 1994;127(2):422–30.
Article
CAS
PubMed
Google Scholar
Yamamoto H, Imazu M, Hattori Y, Tadehara F, Yamakido M, Nakanishi T, et al. Predicting angiographic narrowing > or = 50% in diameter in each of the three major arteries by amounts of calcium detected by electron beam computed tomographic scanning in patients with chest pain. Am J Cardiol. 1998;81(6):778–80.
Article
CAS
PubMed
Google Scholar
Guedeney P, Claessen BE, Mehran R, Mintz GS, Liu M, Sorrentino S, et al. Coronary calcification and long-term outcomes according to drug-eluting stent generation. JACC Cardiovasc Interv. 2020;13(12):1417–28.
Article
PubMed
Google Scholar
Mitchell JD, Paisley R, Moon P, Novak E, Villines TC. Coronary artery calcium and long-term risk of death, myocardial infarction, and stroke: the Walter Reed Cohort Study. JACC Cardiovasc Imaging. 2018;11(12):1799–806.
Article
PubMed
Google Scholar
Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.
Article
CAS
PubMed
Google Scholar
Wang X, Matsumura M, Mintz GS, Lee T, Zhang W, Cao Y, et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography. JACC Cardiovasc Imaging. 2017;10(8):869–79.
Article
CAS
PubMed
Google Scholar
Ormseth MJ, Swift LL, Fazio S, Linton MF, Chung CP, Raggi P, et al. Free fatty acids are associated with insulin resistance but not coronary artery atherosclerosis in rheumatoid arthritis. Atherosclerosis. 2011;219(2):869–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study. Diabetes. 2011;60(1):306–14.
Article
CAS
PubMed
Google Scholar
Johnston LW, Harris SB, Retnakaran R, Giacca A, Liu Z, Bazinet RP, et al. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia. 2018;61(4):821–30.
Article
CAS
PubMed
Google Scholar
Stefan N, Haring HU. Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat Med. 2013;19(4):394–5.
Article
CAS
PubMed
Google Scholar
Zhang HW, Zhao X, Guo YL, Zhu CG, Wu NQ, Sun J, et al. Free fatty acids and cardiovascular outcome: a Chinese cohort study on stable coronary artery disease. Nutr Metab (Lond). 2017;14:41.
Article
CAS
Google Scholar
Breitling LP, Rothenbacher D, Grandi NC, Marz W, Brenner H. Prognostic usefulness of free fatty acids in patients with stable coronary heart disease. Am J Cardiol. 2011;108(4):508–13.
Article
CAS
PubMed
Google Scholar
Schrieks IC, Nozza A, Stahli BE, Buse JB, Henry RR, Malmberg K, et al. Adiponectin, free fatty acids, and cardiovascular outcomes in patients with type 2 diabetes and acute coronary syndrome. Diabetes Care. 2018;41(8):1792–800.
Article
CAS
PubMed
Google Scholar
Kan Y, Wang H, Lu J, Lin Z, Lin J, Gong P. Significance of plasma free fatty acid level for assessing and diagnosing acute myocardial infarction. Biomark Med. 2020;14(9):739–47.
Article
CAS
PubMed
Google Scholar
Degoricija V, Trbusic M, Potocnjak I, Radulovic B, Pregartner G, Berghold A, et al. Serum concentrations of free fatty acids are associated with 3-month mortality in acute heart failure patients. Clin Chem Lab Med. 2019;57(11):1799–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djousse L, Benkeser D, Arnold A, Kizer JR, Zieman SJ, Lemaitre RN, et al. Plasma free fatty acids and risk of heart failure: the Cardiovascular Health Study. Circ Heart Fail. 2013;6(5):964–9.
Article
CAS
PubMed
Google Scholar
Masuda M, Ting TC, Levi M, Saunders SJ, Miyazaki-Anzai S, Miyazaki M. Activating transcription factor 4 regulates stearate-induced vascular calcification. J Lipid Res. 2012;53(8):1543–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiozaki Y, Okamura K, Kohno S, Keenan AL, Williams K, Zhao X, et al. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP. J Biol Chem. 2018;293(44):17008–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brodeur MR, Bouvet C, Barrette M, Moreau P. Palmitic acid increases medial calcification by inducing oxidative stress. J Vasc Res. 2013;50(5):430–41.
Article
CAS
PubMed
Google Scholar
Kageyama A, Matsui H, Ohta M, Sambuichi K, Kawano H, Notsu T, et al. Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-kappaB, novel targets of eicosapentaenoic acid. PLoS ONE. 2013;8(6):e68197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting TC, Miyazaki-Anzai S, Masuda M, Levi M, Demer LL, Tintut Y, et al. Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J Biol Chem. 2011;286(27):23938–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masuda M, Miyazaki-Anzai S, Keenan AL, Okamura K, Kendrick J, Chonchol M, et al. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity. J Clin Investig. 2015;125(12):4544–58.
Article
PubMed
PubMed Central
Google Scholar
Conway B, Evans RW, Fried L, Kelsey S, Edmundowicz D, Orchard TJ. Free fatty acids are associated with pulse pressure in women, but not men, with type 1 diabetes mellitus. Metabolism. 2009;58(9):1215–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Judkins MP. Selective coronary arteriography. I. A percutaneous transfemoral technic. Radiology. 1967;89(5):815–24.
Article
CAS
PubMed
Google Scholar
Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2014;35(37):2541–619.
Article
PubMed
Google Scholar
Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37(5):1478–92.
Article
CAS
Google Scholar
Monahan KD, Feehan RP, Blaha C, McLaughlin DJ. Effect of omega-3 polyunsaturated fatty acid supplementation on central arterial stiffness and arterial wave reflections in young and older healthy adults. Physiol Rep. 2015;3(6):e12438.
Article
PubMed
PubMed Central
Google Scholar
Heine-Broring RC, Brouwer IA, Proenca RV, van Rooij FJ, Hofman A, Oudkerk M, et al. Intake of fish and marine n-3 fatty acids in relation to coronary calcification: the Rotterdam Study. Am J Clin Nutr. 2010;91(5):1317–23.
Article
PubMed
Google Scholar
Friedrich GJ, Moes NY, Muhlberger VA, Gabl C, Mikuz G, Hausmann D, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J. 1994;128(3):435–41.
Article
CAS
PubMed
Google Scholar
Okabe T, Mintz GS, Weigold WG, Roswell R, Joshi S, Lee SY, et al. The predictive value of computed tomography calcium scores: a comparison with quantitative volumetric intravascular ultrasound. Cardiovasc Revasc Med. 2009;10(1):30–5.
Article
PubMed
Google Scholar
Yamazoe M, Hisamatsu T, Miura K, Kadowaki S, Zaid M, Kadota A, et al. Relationship of insulin resistance to prevalence and progression of coronary artery calcification beyond metabolic syndrome components: Shiga Epidemiological Study of subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(8):1703–8.
Article
CAS
PubMed
Google Scholar
Wu X, Geng YJ, Chen Z, Krishnam MS, Detrano R, Liu H, et al. Pulse pressure correlates with coronary artery calcification and risk for coronary heart disease: a study of elderly individuals in the rural region of Southwest China. Coron Artery Dis. 2019;30(4):297–302.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Fu S, Bai Y, Luo L, Ye P. Relationship between age, osteoporosis and coronary artery calcification detected by high-definition computerized tomography in Chinese elderly men. Arch Gerontol Geriatr. 2018;79:8–12.
Article
PubMed
Google Scholar
Garland JS, Holden RM, Groome PA, Lam M, Nolan RL, Morton AR, et al. Prevalence and associations of coronary artery calcification in patients with stages 3 to 5 CKD without cardiovascular disease. Am J Kidney Dis. 2008;52(5):849–58.
Article
CAS
PubMed
Google Scholar
Sigrist M, Bungay P, Taal MW, McIntyre CW. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant. 2006;21(3):707–14.
Article
PubMed
Google Scholar