Wagner H, Terkelsen CJ, Friberg H, Harnek J, Kern K, Lassen JF, Olivecrona GK. Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation. 2010;81:383–7. https://doi.org/10.1016/j.resuscitation.2009.11.006.
Article
PubMed
Google Scholar
Larsen AI, Hjørnevik AS, Ellingsen CL, Nilsen DW. Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation. 2007;75:454–9.
Article
Google Scholar
Larsen AI, Hjørnevik AS, Ellingsen CL, Nilsen DW. Coronary blood flow and perfusion pressure during coronary angiography in patients with ongoing mechanical chest compression: a report on 6 cases. Resuscitation. 2010;81:493–7. https://doi.org/10.1016/j.resuscitation.2010.02.002.
Article
PubMed
Google Scholar
Wagner H, Madsen-Hardig B, Rundgren M, Harnek J, Gotberg M, Olivecrona GK. Cerebral oximetry during prolonged cardiac arrest and percutaneous coronary intervention : a report on five cases. ICU Dir. 2013;4:22.
Article
Google Scholar
Wagner H, Hardig BM, Rundgren M, Zughaft D, Harnek J, Götberg M, Olivecrona GK. Mechanical chest compressions in the coronary catheterization laboratory to facilitate coronary intervention and survival in patients requiring prolonged resuscitation efforts. Scand J Trauma Resusc Emerg Med. 2016;24:4. https://doi.org/10.1186/s13049-016-0198-3.
Article
PubMed
PubMed Central
Google Scholar
Venturini JM, Retzer E, Estrada JR, Friant J, Beiser D, Edelson D, Paul J, Blair J, Nathan S, Shah AP. Mechanical chest compressions improve rate of return of spontaneous circulation and allow for initiation of percutaneous circulatory support during cardiac arrest in the cardiac catheterization laboratory. Resuscitation. 2017;115:56–60. https://doi.org/10.1016/j.resuscitation.2017.03.037.
Article
PubMed
Google Scholar
Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. 2002;55:285–99.
Article
Google Scholar
Redding JS. Abdominal compression in cardiopulmonary resuscitation. Anesth Analg. 1971;50:668–75.
Article
CAS
Google Scholar
Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106–13.
Article
CAS
Google Scholar
Jin X1, Weil MH, Tang W, Povoas H, Pernat A, Xie J, Bisera J. End-tidal carbon dioxide as a noninvasive indicator of cardiac index during circulatory shock. Crit Care Med. 2000;28:2415–9.
Article
CAS
Google Scholar
Grmec S, Klemen P. Does the end-tidal carbon dioxide (EtCO2) concentration have prognostic value during out-of-hospital cardiac arrest? Eur J Emerg Med. 2001;8(4):263–9.
Article
CAS
Google Scholar
Moon SW, Lee SW, Choi SH, Hong YS, Kim SJ, Kim NH. Arterial minus end-tidal CO2 as a prognostic factor of hospital survival in patients resuscitated from cardiac arrest. Resuscitation. 2007;72:219–25.
Article
Google Scholar
Griffin M, Cooney C. Pulse oximetry during cardiopulmonary resuscitation. Anaesthesia. 1995;50:1008.
Article
CAS
Google Scholar
Sutton RM, French B, Nishisaki A, Niles DE, Maltese MR, Boyle L, Stavland M, Eilevstjønn J, Arbogast KB, Berg RA, Nadkarni VM. American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest. Resuscitation. 2013;84:168–72. https://doi.org/10.1016/j.resuscitation.2012.08.335.
Article
PubMed
Google Scholar
Hamrick JL, et al. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support. J Am Heart Assoc. 2014;3(2):e000450. https://doi.org/10.1161/JAHA.113.000450.
Article
PubMed
PubMed Central
Google Scholar
Hamrick JL, Hamrick JT, Lee JK, Lee BH, Koehler RC, Shaffner DH. Physiologic monitoring of CPR quality during adult cardiac arrest: a propensity-matched cohort study. Resuscitation. 2016;106:76–82. https://doi.org/10.1016/j.resuscitation.2016.06.018.
Article
Google Scholar
Pokorná M, Necas E, Kratochvíl J, Skripský R, Andrlík M, Franek O. A sudden increase in partial pressure end-tidal carbon dioxide (P (ET)CO(2)) at the moment of return of spontaneous circulation. J Emerg Med. 2010;38:614–21. https://doi.org/10.1016/j.jemermed.2009.04.064.
Article
PubMed
Google Scholar
Eckstein M, Hatch L, Malleck J, McClung C, Henderson SO. End-tidal CO2 as a predictor of survival in out-of-hospital cardiac arrest. Prehosp Disaster Med. 2011;26(3):148–50. https://doi.org/10.1017/S1049023X11006376.
Article
PubMed
Google Scholar
Olasveengen TM, Sunde K, Brunborg C, Thowsen J, Steen PA, Wik L. Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA. 2009;302:2222–9. https://doi.org/10.1001/jama.2009.1729.
Article
PubMed
Google Scholar
Warren SA, Huszti E, Bradley SM, Chan PS, Bryson CL, Fitzpatrick AL, Nichol G. American Heart Association's get with the guidelines-resuscitation (National Registry of CPR) investigators. Adrenaline (epinephrine) dosing period and survival after in-hospital cardiac arrest: a retrospective review of prospectively collected data. Resuscitation. 2014;85:350–8. https://doi.org/10.1016/j.resuscitation.2013.10.004.
Article
CAS
PubMed
Google Scholar
Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, Regan S, Long J, Slowther A, Pocock H, JJM B, Moore F, Fothergill RT, Rees N, O'Shea L, Docherty M, Gunson I, Han K, Charlton K, Finn J, Petrou S, Stallard N, Gates S, Lall R. PARAMEDIC2 collaborators. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379:711–21. https://doi.org/10.1056/NEJMoa1806842.
Article
CAS
PubMed
Google Scholar
Lindner KH, Ahnefeld FW. Comparison of epinephrine and norepinephrine in the treatment of asphyxial or fibrillatory cardiac arrest in a porcine model. Crit Care Med. 1989;17:437–41.
Article
CAS
Google Scholar
Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.
Article
Google Scholar
Lamhaut L, Hutin A, Puymirat E, Jouan J, Raphalen JH, Jouffroy R, Jaffry M, Dagron C, An K, Dumas F, Marijon E, Bougouin W, Tourtier JP, Baud F, Jouven X, Danchin N, Spaulding C, Carli P. A pre-hospital extracorporeal cardio pulmonary resuscitation (ECPR) strategy for treatment of refractory out hospital cardiac arrest: An observational study and propensity analysis. Resuscitation. 2017;117:109–17. https://doi.org/10.1016/j.resuscitation.2017.04.014.
Article
PubMed
Google Scholar