Cohen-Solal A, Logeart D, Guiti C, Dahan M, Gourgon R. Cardiac and peripheral responses to exercise in patients with chronic heart failure. Eur Heart J. 1999;20:931–45.
Article
CAS
PubMed
Google Scholar
Hummel YM, Bugatti S, Damman K, Willemsen S, Hartog JWL, Metra M, et al. Functional and hemodynamic cardiac determinants of exercise capacity in patients with systolic heart failure. Am J Cardiol. 2012;110:1336–41.
Article
PubMed
Google Scholar
Sullivan MJ, Knight JD, Higginbotham MB, Cobb FR. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation. 1989;80:769–81.
Article
CAS
PubMed
Google Scholar
Okita K, Yonezawa K, Nishijima H, Hanada A, Ohtsubo M, Kohya T, et al. Skeletal Muscle Metabolism Limits Exercise Capacity in Patients With Chronic Heart Failure. Circulation. 1998;98:1886–91.
Article
CAS
PubMed
Google Scholar
Hopkinson NS, Dayer MJ, Antoine-Jonville S, Swallow EB, Porcher R, Vazir A, et al. Central and peripheral quadriceps fatigue in congestive heart failure. Int J Cardiol. 2013;167:2594–9.
Article
PubMed
PubMed Central
Google Scholar
Diederich ER, Behnke BJ, McDonough P, Kindig CA, Barstow TJ, Poole DC, et al. Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Cardiovasc Res. 2002;56:479–86.
Article
CAS
PubMed
Google Scholar
Wilson JR, Groves J, Rayos G. Circulatory status and response to cardiac rehabilitation in patients with heart failure. Circulation. 1996;94:1567–72.
Article
CAS
PubMed
Google Scholar
Chomsky DB, Lang CC, Rayos GH, Shyr Y, Yeoh TK, Pierson RN, et al. Hemodynamic exercise testing. A valuable tool in the selection of cardiac transplantation candidates. Circulation. 1996;94:3176–83.
Article
CAS
PubMed
Google Scholar
Critoph CH, Patel V, Mist B, Elliott PM. Cardiac output response and peripheral oxygen extraction during exercise among symptomatic hypertrophic cardiomyopathy patients with and without left ventricular outflow tract obstruction. Heart. 2014;100:639–46.
Article
PubMed
Google Scholar
Myers J, Wong M, Adhikarla C, Boga M, Challa S, Abella J, et al. Cardiopulmonary and noninvasive hemodynamic responses to exercise predict outcomes in heart failure. J Card Fail. 2013;19:101–7.
Article
PubMed
Google Scholar
Lang CC, Karlin P, Haythe J, Lim TK, Mancini DM. Peak cardiac power output, measured noninvasively, is a powerful predictor of outcome in chronic heart failure. Circ Heart Fail. 2009;2:33–8.
Article
PubMed
Google Scholar
Jonas MM, Tanser SJ. Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care. 2002;8:257–61.
Article
PubMed
Google Scholar
Kemps HMC, Thijssen EJM, Schep G, Sleutjes BTHM, De Vries WR, Hoogeveen AR, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol. 2008;105:1822–9.
Article
PubMed
Google Scholar
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St. John Sutton M, Stewart W: Recommendations for chamber quantification. Eur J Echocardiogr 2006;7:79–108.
Hamilton TT, Huber LM, Jessen ME. PulseCO: a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg. 2002;74:S1408–12.
Article
PubMed
Google Scholar
Linton NW, Linton RA. Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth. 2001;86:486–96.
Article
CAS
PubMed
Google Scholar
Lamarra N, Whipp B, Ward S, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62:2003–12.
Article
CAS
PubMed
Google Scholar
Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123:1010–20.
Article
PubMed
PubMed Central
Google Scholar
Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res. 1986;58:281–91.
Article
CAS
PubMed
Google Scholar
Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS. Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol. 2010;55:1945–54.
Article
PubMed
PubMed Central
Google Scholar
Shoemaker JK, Naylor HL, Hogeman CS, Sinoway LI. Blood Flow Dynamics in Heart Failure. Circulation. 1999;99:3002–8.
Article
CAS
PubMed
Google Scholar
Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation. 1986;73:1127–36.
Article
CAS
PubMed
Google Scholar
Toussaint JF, Koelling TM, Schmidt CJ, Kwong KK, LaRaia PJ, Kantor HL. Local relation between oxidative metabolism and perfusion in leg muscles of patients with heart failure studied by magnetic resonance imaging and spectroscopy. J Heart Lung Transplant. 1998;17:892–900.
CAS
PubMed
Google Scholar
Sperandio PA, Borghi-Silva A, Barroco A, Nery LE, Almeida DR, Neder JA. Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. Am J Physiol Heart Circ Physiol. 2009;297:H1720–8.
Article
CAS
PubMed
Google Scholar
Ceresa M, Capomolla S, Pinna GD, Febo O, Caporotondi A, Guazzotti GP, et al. Left atrial function: bridge to central and hormonal determinants of exercise capacity in patients with chronic heart failure. Monaldi Arch Chest Dis. 2002;58:87–94.
CAS
PubMed
Google Scholar
Metra M, Nardi M, Giubbini R, Dei Cas L. Effects of short- and long-term carvedilol administration on rest and exercise hemodynamic variables, exercise capacity and clinical conditions in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1994;24:1678–87.
Article
CAS
PubMed
Google Scholar
Eynon N, Sagiv M, Amir O, Ben-Sira D, Goldhammer E, Amir R. The effect of long-term beta-adrenergic receptor blockade on the oxygen delivery and extraction relationship in patients with coronary artery disease. J Cardiopulm Rehabil Prev, 2008;28:189–94.
Magrì D, Palermo P, Cauti FM, Contini M, Farina S, Cattadori G, et al. Chronotropic Incompentence and Functional Capacity in Chronic Heart Failure: No Role of β-Blockers and β-Blocker Dose. Cardiovasc Ther. 2012;30:100–8.
Article
PubMed
Google Scholar
Lancellotti P, Moonen M. Left ventricular dyssynchrony: a dynamic condition. Heart Fail Rev. 2012;17:747–53.
Article
PubMed
Google Scholar
Schlosshan D, Barker D, Pepper C, Williams G, Morley C, Tan LB. CRT improves the exercise capacity and functional reserve of the failing heart through enhancing the cardiac flow- and pressure-generating capacity. Eur J Heart Fail. 2006;8:515–21.
Article
CAS
PubMed
Google Scholar
Lapu-bula R, Robert A, Craeynest D Van, Dhondt A, Gerber BL, Pasquet A, Melin JA, Kock M De. Contribution of Exercise-Induced Mitral Regurgitation to Exercise Stroke Volume and Exercise Capacity in Patients. Circulation 2002;106(11):1342–8.