Collaborators GBDCoD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(100):1151–210.
Google Scholar
Hulzebos EH, Van Meeteren NL, De Bie RA, Dagnelie PC, Helders PJ. Prediction of postoperative pulmonary complications on the basis of preoperative risk factors in patients who had undergone coronary artery bypass graft surgery. Phys Ther. 2003;83(1):8–16.
Article
PubMed
Google Scholar
Kassie GM, Nguyen TA, Kalisch Ellett LM, Pratt NL, Roughead EE. Preoperative medication use and postoperative delirium: a systematic review. BMC Geriatr. 2017;17(1):298.
Article
PubMed
PubMed Central
Google Scholar
Weymann A, Popov AF, Sabashnikov A, et al. Baseline and postoperative levels of C-reactive protein and interleukins as inflammatory predictors of atrial fibrillation following cardiac surgery: a systematic review and meta-analysis. Kardiol Pol. 2018;76(2):440–51.
Article
PubMed
Google Scholar
Koster S, Hensens AG, Schuurmans MJ, van der Palen J. Consequences of delirium after cardiac operations. Ann Thorac Surg. 2012;93(3):705–11.
Article
PubMed
Google Scholar
Iribarne A, Chang H, Alexander JH, et al. Readmissions after cardiac surgery: experience of the National Institutes of Health/Canadian Institutes of Health research cardiothoracic surgical trials network. Ann Thorac Surg. 2014;98(4):1274–80.
Article
PubMed
PubMed Central
Google Scholar
Villareal RP, Hariharan R, Liu BC, et al. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J Am Coll Cardiol. 2004;43(5):742–8.
Article
PubMed
Google Scholar
Hashemzadeh K, Dehdilani M, Dehdilani M. Postoperative Atrial Fibrillation following Open Cardiac Surgery: Predisposing Factors and Complications. J Cardiovasc Thorac Res. 2013;5(3):101–7.
PubMed
PubMed Central
Google Scholar
Barili F, Pacini D, Rosato F, et al. In-hospital mortality risk assessment in elective and non-elective cardiac surgery: a comparison between EuroSCORE II and age, creatinine, ejection fraction score. Eur J Cardiothorac Surg. 2014;46(1):44–8.
Article
PubMed
Google Scholar
Saxena A, Dhurandhar V, Bannon PG, Newcomb AE. The Benefits and Pitfalls of the Use of Risk Stratification Tools in Cardiac Surgery. Heart Lung Circ. 2016;25(4):314–8.
Article
PubMed
Google Scholar
Olivero JJ, Olivero JJ, Nguyen PT, Kagan A. Acute kidney injury after cardiovascular surgery: an overview. Methodist Debakey Cardiovasc J. 2012;8(3):31–6.
Article
PubMed
PubMed Central
Google Scholar
Serraino GF, Provenzano M, Jiritano F, et al. Risk factors for acute kidney injury and mortality in high risk patients undergoing cardiac surgery. PLoS One. 2021;16(5):e0252209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817–31.
Article
CAS
PubMed
Google Scholar
Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14(8):2199–210.
Article
PubMed
Google Scholar
Wijeysundera DN, Karkouti K, Dupuis JY, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.
Article
CAS
PubMed
Google Scholar
Mehta RH, Grab JD, O’Brien SM, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16 quiz.
Article
PubMed
Google Scholar
Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.
Article
PubMed
Google Scholar
Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41(4):734–44 discussion 44-5.
Article
PubMed
Google Scholar
Jin R, Furnary AP, Fine SC, Blackstone EH, Grunkemeier GL. Using Society of Thoracic Surgeons risk models for risk-adjusting cardiac surgery results. Ann Thorac Surg. 2010;89(3):677–82.
Article
PubMed
Google Scholar
Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero G. Risk of assessing mortality risk in elective cardiac operations: age, creatinine, ejection fraction, and the law of parsimony. Circulation. 2009;119(24):3053–61.
Article
PubMed
Google Scholar
Ranucci M, Castelvecchio S, Conte M, et al. The easier, the better: age, creatinine, ejection fraction score for operative mortality risk stratification in a series of 29,659 patients undergoing elective cardiac surgery. J Thorac Cardiovasc Surg. 2011;142(3):581–6.
Article
PubMed
Google Scholar
Ranucci M, Pistuddi V, Scolletta S, de Vincentiis C, Menicanti L. The ACEF II Risk Score for cardiac surgery: updated but still parsimonious. Eur Heart J. 2018;39(23):2183–9.
Article
PubMed
Google Scholar
Chen SW, Chang CH, Fan PC, et al. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study. BMJ Open. 2016;6(6):e010176.
Article
PubMed
PubMed Central
Google Scholar
Chang CH, Lee CC, Chen SW, et al. Predicting acute kidney injury following mitral valve repair. Int J Med Sci. 2016;13(1):19–24.
Article
PubMed
PubMed Central
Google Scholar
Singh N, Gimpel D, Parkinson G, et al. Assessment of the EuroSCORE II in a New Zealand Tertiary Centre. Heart Lung Circ. 2019;28(11):1670–6.
Article
PubMed
Google Scholar
Corey KM, Kashyap S, Lorenzi E, et al. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): a retrospective, single-site study. PLoS Med. 2018;15(11):e1002701.
Article
PubMed
PubMed Central
Google Scholar
2012 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Acute Kidney Injury (AKI). Kidney Intl Suppl. 2012;2(4):1-138.
Gibney N, Hoste E, Burdmann EA, et al. Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol. 2008;3(3):876–80.
Article
PubMed
Google Scholar
Janssen KJ, Donders AR, Harrell FE Jr, et al. Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol. 2010;63(7):721–7.
Article
PubMed
Google Scholar
Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol. 2009;9:57.
Article
PubMed
PubMed Central
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.
Article
CAS
PubMed
Google Scholar
Bove T, Calabro MG, Landoni G, et al. The incidence and risk of acute renal failure after cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18(4):442–5.
Article
PubMed
Google Scholar
Drosos G, Ampatzidou F, Sarafidis P, et al. Serum Creatinine and chronic kidney disease-epidemiology estimated glomerular filtration rate: independent predictors of renal replacement therapy following cardiac surgery. Am J Nephrol. 2018;48(2):108–17.
Article
CAS
PubMed
Google Scholar
Nicolini F, Agostinelli A, Vezzani A, et al. The evolution of cardiovascular surgery in elderly patient: a review of current options and outcomes. Biomed Res Int. 2014;2014:736298.
Article
PubMed
PubMed Central
Google Scholar
Jiang W, Xu J, Shen B, et al. Validation of Four Prediction Scores for Cardiac Surgery-Associated Acute Kidney Injury in Chinese Patients. Braz J Cardiovasc Surg. 2017;32(6):481–6.
PubMed
PubMed Central
Google Scholar
Wang X, Lin X, Xie B, et al. Early serum cystatin C-enhanced risk prediction for acute kidney injury post cardiac surgery: a prospective, observational, cohort study. Biomarkers. 2020;25(1):20–6.
Article
PubMed
Google Scholar
Hu J, Chen R, Liu S, et al. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–9.
Article
PubMed
Google Scholar
Head SJ, Osnabrugge RL, Howell NJ, et al. A systematic review of risk prediction in adult cardiac surgery: considerations for future model development. Eur J Cardiothorac Surg. 2013;43(5):e121–9.
Article
PubMed
Google Scholar
O’Neal JB, Shaw AD, Billings FTt. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187.
Article
PubMed
PubMed Central
Google Scholar
Axtell AL, Fiedler AG, Melnitchouk S, et al. Correlation of cardiopulmonary bypass duration with acute renal failure after cardiac surgery. J Thorac Cardiovasc Surg. 2019;S0022-5223(19):30286–7.
Google Scholar
Karkouti K, Wijeysundera DN, Yau TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119(4):495–502.
Article
PubMed
Google Scholar