Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C. Evaluation and management of right-sided heart failure: a scientific statement from the american heart association. Circulation. 2018;137:e578–622. https://doi.org/10.1161/CIR.0000000000000560.
Article
PubMed
Google Scholar
Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur Respir J. 2012;40:766–82. https://doi.org/10.1183/09031936.00209911.
Article
CAS
PubMed
Google Scholar
Badesch DB, Champion HC, Gomez Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:S55–66. https://doi.org/10.1016/j.jacc.2009.04.011.
Article
PubMed
Google Scholar
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317.
Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34-41. https://doi.org/10.1016/j.jacc.2013.10.029.
Article
PubMed
Google Scholar
Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–32. https://doi.org/10.1152/ajplung.00217.2009.
Article
CAS
PubMed
Google Scholar
Jones PL, Cowan KN, Rabinovitch M. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol. 1997;150:1349–60.
CAS
PubMed
PubMed Central
Google Scholar
Meyrick B. Structure function correlates in the pulmonary vasculature during acute lung injury and chronic pulmonary hypertension. Toxicol Pathol. 1991;19:447–57. https://doi.org/10.1177/0192623391019004-113.
Article
CAS
PubMed
Google Scholar
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39. https://doi.org/10.1161/01.RES.0000070112.80711.3D.
Article
CAS
PubMed
Google Scholar
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73. https://doi.org/10.1016/j.cardiores.2005.12.002.
Article
CAS
PubMed
Google Scholar
Matsui K, Takano Y, Yu ZX, Hi JE, Stetler-Stevenson WG, Travis WD, Ferrans VJ. Immunohistochemical study of endothelin-1 and matrix metalloproteinases in plexogenic pulmonary arteriopathy. Pathol Res Pract. 2002;198:403–12. https://doi.org/10.1078/0344-0338-00273.
Article
CAS
PubMed
Google Scholar
Lepetit H, Eddahibi S, Fadel E, Frisdal E, Munaut C, Noel A, Humbert M, Adnot S, D’Ortho MP, Lafuma C. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J. 2005;25:834–42. https://doi.org/10.1183/09031936.05.00072504.
Article
CAS
PubMed
Google Scholar
Ricou B, Nicod L, Lacraz S, Welgus HG, Suter PM, Dayer JM. Matrix metalloproteinases and TIMP in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154:346–52. https://doi.org/10.1164/ajrccm.154.2.8756805.
Article
CAS
PubMed
Google Scholar
Tiede SL, Wassenberg M, Christ K, Schermuly RT, Seeger W, Grimminger F, Ghofrani HA, Gall H. Biomarkers of tissue remodeling predict survival in patients with pulmonary hypertension. Int J Cardiol. 2016;223:821–6. https://doi.org/10.1016/j.ijcard.2016.08.240.
Article
PubMed
Google Scholar
Schumann C, Lepper PM, Frank H, Schneiderbauer R, Wibmer T, Kropf C, Stoiber KM, Rüdiger S, Kruska L, Krahn T, Kramer F. Circulating biomarkers of tissue remodelling in pulmonary hypertension. Biomarkers. 2010;15:523–32. https://doi.org/10.3109/1354750X.2010.492431.
Article
CAS
PubMed
Google Scholar
Steeds RP, Garbi M, Cardim N, Kasprzak JD, Sade E, Nihoyannopoulos P, Popescu BA, Stefanidis A, Cosyns B, Monaghan M, Aakhus S, Edvardsen T, Flachskampf F, Galiuto L, Athanassopoulos G, Lancellotti P, Delgado V, Donal E, Galderisi M, Lombardi M, Muraru D, Haugaa K. EACVI appropriateness criteria for the use of transthoracic echocardiography in adults: a report of literature and current practice review. Eur Heart J Cardiovasc Imaging. 2017;18:1191–204. https://doi.org/10.1093/ehjci/jew333.
Article
PubMed
Google Scholar
Patel MI, Melrose J, Ghosh P, Appleberg M. Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms. J Vasc Surg. 1996;24:82–92. https://doi.org/10.1016/s0741-5214(96)70148-9.
Article
CAS
PubMed
Google Scholar
Kramer F, Sandner P, Klein M, Krahn T. Plasma concentrations of matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1 and osteopontin reflect severity of heart failure in DOCA-salt hypertensive rat. Biomarkers. 2008;13:270–81. https://doi.org/10.1080/13547500801903123.
Article
CAS
PubMed
Google Scholar
Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem. 1996;271:30375–80. https://doi.org/10.1074/jbc.271.48.30375.
Article
CAS
PubMed
Google Scholar
Luchner A, Stevens TL, Borgeson DD, Redfield M, Wei CM, Porter JG, Burnett JC. Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Physiol. 1998;274:H1684–9. https://doi.org/10.1152/ajpheart.1998.274.5.H1684.
Article
CAS
PubMed
Google Scholar
Luchner A, Muders F, Dietl O, Friedrich E, Blumberg F, Protter AA, Riegger GA, Elsner D. Differential expression of cardiac ANP and BNP in a rabbit model of progressive left ventricular dysfunction. Cardiovasc Res. 2001;51:601–7. https://doi.org/10.1016/s0008-6363(01)00316-9.
Article
CAS
PubMed
Google Scholar
Eimer MJ, Ekery DL, Rigolin VH, Bonow RO, Carnethon MR, Cotts WG. Elevated B-type natriuretic peptide in asymptomatic men with chronic aortic regurgitation and preserved left ventricular systolic function. Am J Cardiol. 2004;94:676–8. https://doi.org/10.1016/j.amjcard.2004.05.043.
Article
CAS
PubMed
Google Scholar
Burke MA, Cotts WG. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail Rev. 2007;12:23–36. https://doi.org/10.1007/s10741-007-9002-9.
Article
CAS
PubMed
Google Scholar
Detaint D, Messika-Zeitoun D, Avierinos JF, Scott C, Chen H, Burnett JC, Enriquez-Sarano M. B-type natriuretic peptide in organic mitral regurgitation: determinants and impact on outcome. Circulation. 2005;111:2391–7. https://doi.org/10.1161/01.CIR.0000164269.80908.9D.
Article
CAS
PubMed
Google Scholar
Arat-Ozkan A, Kaya A, Yigit Z, Balci H, Okçün B, Yazicioglu N, Küçükoglu S. Serum N-terminal pro-BNP levels correlate with symptoms and echocardiographic findings in patients with mitral stenosis. Echocardiography. 2005;22:473–8. https://doi.org/10.1111/j.1540-8175.2005.04085.x.
Article
PubMed
Google Scholar
McCullough PA, Hollander JE, Nowak RM, Storrow AB, Duc P, Omland T, McCord J, Herrmann HC, Steg PG, Westheim A, Knudsen CW, Abraham WT, Lamba S, Wu AH, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel AS. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad Emerg Med. 2003;10:198–204. https://doi.org/10.1111/j.1553-2712.2003.tb01990.x.
Article
PubMed
Google Scholar
Koo HS, Kim KC, Hong YM. Gene expressions of nitric oxide synthase and matrix metalloproteinase-2 in monocrotaline-induced pulmonary hypertension in rats after bosentan treatment. Korean Circ J. 2011;41:83–90. https://doi.org/10.4070/kcj.2011.41.2.83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atlı Ö, Ilgın S, Ergun B, Burukoğlu D, Musmul A, Sırmagül B. Matrix metalloproteinases are possible targets in monocrotaline-induced pulmonary hypertension: investigation of anti-remodeling effects of alagebrium and everolimus. Anatol J Cardiol. 2017;17:8–17. https://doi.org/10.14744/AnatolJCardiol.2016.6891.
Article
PubMed
Google Scholar
Tayebjee MH, Nadar S, Blann AD, Gareth Beevers D, MacFadyen RJ, Lip GY. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens. 2004;17:764–9. https://doi.org/10.1016/j.amjhyper.2004.05.019.
Article
CAS
PubMed
Google Scholar
Mawatari E, Hongo M, Sakai A, Terasawa F, Takahashi M, Yazaki Y, Kinoshita O, Ikeda U. Amlodipine prevents monocrotaline-induced pulmonary arterial hypertension and prolongs survival in rats independent of blood pressure lowering. Clin Exp Pharmacol Physiol. 2007;34:594–600. https://doi.org/10.1111/j.1440-1681.2007.04618.x.
Article
CAS
PubMed
Google Scholar
Schäfer M, Ivy DD, Nguyen K, Boncella K, Frank BS, Morgan GJ, Miller-Reed K, Truong U, Colvin K, Yeager ME. Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2021;321:H242–52. https://doi.org/10.1152/ajpheart.00750.2020.
Article
CAS
PubMed
Google Scholar
Yap LB, Mukerjee D, Timms PM, Ashrafian H, Coghlan JG. Natriuretic peptides, respiratory disease, and the right heart. Chest. 2004;126:1330–6. https://doi.org/10.1378/chest.126.4.1330.
Article
CAS
PubMed
Google Scholar
Leuchte HH, Baumgartner RA, Nounou ME, Vogeser M, Neurohr C, Trautnitz M, Behr J. Brain natriuretic peptide is a prognostic parameter in chronic lung disease. Am J Respir Crit Care Med. 2006;173:744–50. https://doi.org/10.1164/rccm.200510-1545OC.
Article
CAS
PubMed
Google Scholar
Pieralli F, Olivotto I, Vanni S, Conti A, Camaiti A, Targioni G, Grifoni S, Berni G. Usefulness of bedside testing for brain natriuretic peptide to identify right ventricular dysfunction and outcome in normotensive patients with acute pulmonary embolism. Am J Cardiol. 2006;97:1386–90. https://doi.org/10.1016/j.amjcard.2005.11.075.
Article
CAS
PubMed
Google Scholar
Krüger S, Graf J, Merx MW, Koch KC, Kunz D, Hanrath P, Janssens U. Brain natriuretic peptide predicts right heart failure in patients with acute pulmonary embolism. Am Heart J. 2004;147:60–5. https://doi.org/10.1016/s0002-8703(03)00528-3.
Article
PubMed
Google Scholar
Nagaya N, Nishikimi T, Okano Y, Uematsu M, Satoh T, Kyotani S, Kuribayashi S, Hamada S, Kakishita M, Nakanishi N, Takamiya M, Kunieda T, Matsuo H, Kangawa K. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31:202–8. https://doi.org/10.1016/s0735-1097(97)00452-x.
Article
CAS
PubMed
Google Scholar
He J, Fang W, Lv B, He JG, Xiong CM, Liu ZH, He ZX. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun. 2012;33:459–63. https://doi.org/10.1097/MNM.0b013e32835085d9.
Article
PubMed
Google Scholar
Brugger N, Lichtblau M, Maeder MT, Müller H, Pellaton C, Yerly P. Two-dimensional transthoracic echocardiography at rest for the diagnosis, screening and management of pulmonary hypertension. Swiss Med Wkly. 2021;151: w20486. https://doi.org/10.4414/smw.2021.20486.
Article
PubMed
Google Scholar