Lewington S, Lacey B, Clarke R, et al. The burden of hypertension and associated risk for cardiovascular mortality in China. JAMA Intern Med. 2016;176(4):524–32.
Article
Google Scholar
Zhao D, Liu J, Wang M, et al. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16(4):203–12.
Article
Google Scholar
Wang X, Bots ML, Yang F, et al. Prevalence of hypertension in China: a systematic review and meta-regression analysis of trends and regional differences. J Hypertens. 2014;32(10):1919–27.
Article
CAS
Google Scholar
Cao D, Zhou Z, Si Y, et al. Prevalence and income-related equity in hypertension in rural China from 1991 to 2011: differences between self-reported and tested measures. BMC Health Serv Res. 2019;19(1):437.
Article
PubMed Central
Google Scholar
Redfern A, Peters SAE, Luo R, et al. Sex differences in the awareness, treatment, and control of hypertension in China: a systematic review with meta-analyses. Hypertens Res. 2019;42(2):273–83.
Article
Google Scholar
Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380:601–10.
Article
PubMed Central
Google Scholar
Chehregosha H, Khamseh ME, Malek M, Hosseinpanah F, Ismail-Beigi F. A view beyond HbA1c: role of continuous glucose monitoring. Diabetes Ther. 2019;10(3):853–63.
Article
CAS
PubMed Central
Google Scholar
Wilson DM, Xing D, Cheng J, et al. Persistence of individual variations in glycated hemoglobin: analysis of data from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Randomized Trial. Diabetes Care. 2011;34:1315–7.
Article
PubMed Central
Google Scholar
Cohen RM, Smith EP. Frequency of HbA1c discordance in estimating blood glucose control. Curr Opin Clin Nutr Metab Care. 2008;11(4):512–7.
Article
CAS
Google Scholar
Soros AA, Chalew SA, McCarter RJ, et al. Hemoglobin glycation index: a robust measure of hemoglobin A1c bias in pediatric type 1 diabetes patients. Pediatr Diabetes. 2010;11(7):455–61.
Article
CAS
Google Scholar
Leslie RD, Cohen RM. Biologic variability in plasma glucose, hemoglobin A1c, and advanced glycation end products associated with diabetes complications. J Diabetes Sci Technol. 2009;3(4):635–43.
Article
PubMed Central
Google Scholar
van Steen SC, Woodward M, Chalmers J, et al. Haemoglobin glycation index and risk for diabetes-related complications in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia. 2018;61(4):780–9.
Article
CAS
PubMed Central
Google Scholar
Lee B, Heo YJ, Lee YA, et al. Association between hemoglobin glycation index and cardiometabolic risk factors in Korean pediatric nondiabetic population. Ann Pediatr Endocrinol Metab. 2018;23(4):196–203.
Article
PubMed Central
Google Scholar
Yu C, Zhao H, Pan L, et al. The additive interaction between body mass index and hypertension family history in han and yugur: the China National Health Survey (CNHS). Int J Hypertens. 2019;2019:8268573.
Article
PubMed Central
Google Scholar
Jian S, Su-Mei N, Xue C, et al. Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults. Clin Exp Hypertens. 2017;39(8):732–9.
Article
CAS
Google Scholar
National Health and Family Planning Commission of the People's Republic of China. Adult weight determination in the health industry standard of the People's Republic of China: WS/T428–2013. Beijing: Standard Press, 2013.
Revision Committee of the Guidelines for the Prevention and Treatment of Hypertension in China. The Guidelines for the Prevention and Treatment of Hypertension in China (Revision 2016) [M] Beijing: People Public Health Publishing Company, 2016.
Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. Chinese guidelines for the management of hypertension. Chine J Cardiol. 2010;2011(39):579–616.
Google Scholar
Andersson T, Alfredsson L, Kallberg H, et al. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20:575–9.
Article
Google Scholar
Knol MJ, VanderWeele TJ, Groenwold RH, et al. Estimating measures of interaction on an additive scale for preventive exposures. Eur J Epidemiol. 2011;26(6):433–8.
Article
PubMed Central
Google Scholar
Nayak AU, Singh BM, Dunmore SJ. Potential clinical error arising from use of HbA1c in diabetes: effects of the glycation gap. Endocr Rev. 2019;40(4):988–99.
Article
Google Scholar
Nayak AU, Holland MR, Macdonald DR, et al. Evidence for consistency of the glycation gap in diabetes. Diabetes Care. 2011;34(8):1712–6.
Article
PubMed Central
Google Scholar
Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes]. N Engl J Med. 2008, 358(24):2545–59.
Hempe JM, Liu S, Myers L, et al. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial. Diabetes Care. 2015;38(6):1067–74.
Article
CAS
PubMed Central
Google Scholar
Marini MA, Fiorentino TV, Succurro E, et al. Association between hemoglobin glycation index with insulin resistance and carotid atherosclerosis in non-diabetic individuals. PLoS ONE. 2017;12(4):e0175547.
Article
CAS
PubMed Central
Google Scholar
Kim MK, Jeong JS, Yun JS, et al. Hemoglobin glycation index predicts cardiovascular disease in people with type 2 diabetes mellitus: A 10-year longitudinal cohort study. J Diabetes Compl. 2018;32(10):906–10.
Article
Google Scholar
Hempe JM, Gomez R, McCarter RJ Jr, et al. High and low hemoglobin glycation phenotypes in type 1 diabetes: a challenge for interpretation of glycemic control. J Diabetes Compl. 2002;16(5):313–20.
Article
Google Scholar
Prasad K, Mishra MD. Advanced glycation end products and its receptor play a role in pathophysiology of hypertension? Int J Angiol. 2017;26(1):1–11.
Article
PubMed Central
Google Scholar
Vasdev S, Gill V, Singal P. Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys. 2007;49(1):48–63.
Article
CAS
Google Scholar
Felipe DL, Hempe JM, Liu S, et al. Skin intrinsic fluorescence is associated with hemoglobin A(1c) and hemoglobin glycation index but not mean blood glucose in children with type 1 diabetes. Diabetes Care. 2011;34(8):1816–20.
Article
PubMed Central
Google Scholar
Hirose A, Tanikawa T, Mori H, et al. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett. 2010;584(1):61–6.
Article
CAS
Google Scholar
Hofmann B, Adam AC, Jacobs K, et al. Advanced glycation end product associated skin autofluorescence: a mirror of vascular function? Exp Gerontol. 2013;48(1):38–44.
Article
CAS
Google Scholar
McNulty M, Mahmud A, Feely J. Advanced glycation end-products and arterial stiffness in hypertension. Am J Hypertens. 2007;20(3):242–7.
Article
CAS
Google Scholar
Vasdev S, Ford CA, Parai S, et al. Dietary alpha-lipoic acid supplementation lowers blood pressure in spontaneously hypertensive rats. J Hypertens. 2000;18:567–73.
Article
CAS
Google Scholar
Calvino J, Cigarran S, Gonzalez-Tabares L, et al. Advanced glycation end products (AGEs) estimated by skin autofluorescence are related with cardiovascular risk in renal transplant. PLoS ONE. 2018;13(8):e0201118.
Article
CAS
PubMed Central
Google Scholar
Sylvester MA, Brooks HL. Sex-Specific Mechanisms in Inflammation and Hypertension. Curr Hypertens Rep. 2019;21(7):53.
Article
PubMed Central
Google Scholar
Liu S, Hempe JM, McCarter RJ, et al. Association between inflammation and biological variation in hemoglobin A1c in US nondiabetic adults. J Clin Endocrinol Metab. 2015;100(6):2364–71.
Article
CAS
PubMed Central
Google Scholar
Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99(24):15596–601.
Article
CAS
PubMed Central
Google Scholar
Tahara N, Yamagishi S, Matsui T, et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc Ther. 2012;30(1):42–8.
Article
CAS
Google Scholar
Cai W, Ramdas M, Zhu L, et al. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci USA. 2012;109(39):15888–93.
Article
CAS
Google Scholar
Jiang SZ, Lu W, Zong XF, Ruan HY, Liu Y. Obesity and hypertension. Exp Ther Med. 2016;12(4):2395–9.
Article
PubMed Central
Google Scholar
Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity Indices for Predicting Incident Hypertension. High Blood Press Cardiovasc Prev. 2017;24(2):157–66.
Article
Google Scholar
Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond). 2017;131(14):1689–700.
Article
CAS
Google Scholar
Ahn CH, Min SH, Lee DH, et al. Hemoglobin glycation index is associated with cardiovascular diseases in people with impaired glucose metabolism. J Clin Endocrinol Metab. 2017;102(8):2905–13.
Article
PubMed Central
Google Scholar
Rhee EJ, Cho JH, Kwon H, et al. Association between coronary artery calcification and the hemoglobin glycation index: the kangbuk samsung health study. J Clin Endocrinol Metab. 2017;102(12):4634–41.
Article
Google Scholar
Cheng PC, Hsu SR, Cheng YC, et al. Relationship between hemoglobin glycation index and extent of coronary heart disease in individuals with type 2 diabetes mellitus: a cross-sectional study. PeerJ. 2017;5:e3875.
Article
CAS
PubMed Central
Google Scholar
Pan Y, Jing J, Wang Y, et al. Association of hemoglobin glycation index with outcomes of acute ischemic stroke in type 2 diabetic patients. Neurol Res. 2018;40(7):573–80.
Article
CAS
Google Scholar
Hu DS, Zhu SH, Li X, et al. Association between hemoglobin glycation index and NAFLD in Chinese nondiabetic individuals. Can J Gastroenterol Hepatol. 2019;2019:8748459.
PubMed Central
Google Scholar
Fiorentino TV, Marini MA, Succurro E, et al. Elevated hemoglobin glycation index identify non-diabetic individuals at increased risk of kidney dysfunction. Oncotarget. 2017a;8(45):79576–86.
Article
PubMed Central
Google Scholar
Fiorentino TV, Marini MA, Succurro E, et al. Association between hemoglobin glycation index and hepatic steatosis in non-diabetic individuals. Diabetes Res Clin Pract. 2017b;134:53–61.
Article
CAS
Google Scholar
Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1Cby race and ethnicity among patients with impaired glucose tolerance in the DiabetesPrevention Program. Diabetes Care. 2007;30:2453–7.
Article
CAS
PubMed Central
Google Scholar
Wolffenbuttel BH, Herman WH, Gross JL, Dharmalingam M, Jiang HH, Hardin DS. Ethnicdifferences in glycemic markers in patients with type 2 diabetes. Diabetes Care. 2013;36:2931–6.
Article
CAS
PubMed Central
Google Scholar