CVD is the primary cause of death worldwide [3]. In developing countries, the prevalence of deaths related to CVD is expected to increase from 28.9% in 1990 to 36.3% by 2020 [22]. CVD is an increasing health concern, especially in the Middle East and the Gulf Council Countries [23, 24], which includes the KSA [12]. The ACE Saudi Arabia study reported a considerable increase in the prevalence of cardiovascular risk factors [12] and a significant increase in the proportion of patients with poor overall control of modifiable risk factors [25]. The urban population of KSA has increased significantly during recent decades, and it is expected to double in the next few years due to lifestyle changes [26, 27]. Within our study population, there was high mean waste circumference; unhealthy diet and a high-level of inactivity; a significantly higher prevalence of key risk factors in women compared with men; and an association between dyslipidemia and other risk factors. We also found that, although our study subjects were selected because they were at high risk of CVD, many did not perceive themselves to be at elevated risk.
Initial prevention, early detection, and robust health-promotion strategies have all been successful in lowering the global burden of CVD [6, 28]. The WHO has identified nine major contributing risk factors for CVD (tobacco smoking, saturated lipids, self-reported hypertension and diabetes, obesity, diet, physical activity, excessive alcohol consumption, and psychosocial factors such as stress), which, in combination, account for 90.4% of the population-attributable risk of an acute myocardial infarction [29]. The present study of 250 patients attending a General Practice clinic in King Abdul-Aziz University Hospital, Jeddah, KSA, focused on the prevalence of six cardiovascular risk factors. In this sample, we determined a current tobacco smoking prevalence of only 6.8%. The majority of the sample (88%) had never smoked tobacco, which suggests that as a risk factor for development of CVD, smoking is less of an issue in KSA than in other parts of the world [30].
A high prevalence of dyslipidemia (61.2%) and hypertension (72%) was notable in this sample. In contrast, the prevalence of dyslipidemia (71.1%) was found to be higher than that of hypertension (43.9%) in a Nigerian study [22]; the level of obesity was also high. Ahmed et al. reported that almost 50% of all patients in their study in the KSA had three or more modifiable risk factors for CVD (diabetes, hypertension, smoking, dyslipidemia, obesity [BMI ≥30 kg/m2], or abdominal obesity) [12]. The main risk factors in that sample were dyslipidemia (68.8%), followed by hypertension (41.8%), and diabetes (25.0%) [12]. Similar results were reported in the study by Alsheikh-Ali et al., in which the prevalence rates of dyslipidemia (70%) and abdominal obesity (68%) were higher than those of hypertension (43%) and diabetes (25%) [31]. The majority of outpatients (92%) had at least one modifiable cardiovascular risk factor, 74% had more than one risk factor, and over half (53%) had three or more risk factors [31]. However, in our study, hypertension and diabetes mellitus were slightly more prevalent risk factors than dyslipidemia, affecting two-thirds of the patients.
In the present study, the mean waist circumference of the sample was 101.6 ± 14.1 cm. This is a significant cause for concern, since such large individuals are at very high risk of developing CVD, especially when they have several other risk factors present. The prevalence of obesity, as defined by waist circumference, was also high (68%) in the study by Alsheikh-Ali et al. [31]. Such findings might indicate patients’ unhealthy nutrition choices or lack of opportunities for exercise. Modifiable extrinsic risk factors for the development of all CVDs are to be found in unhealthy lifestyles, including unhealthy dietary habits, physical inactivity, smoking, and being overweight. These factors result in cardiometabolic risk factors, such as hyperglycemia, dyslipidemia and hypertension [32]. In the current study, 54.8% of the patients followed an unhealthy diet and 52.0% were physically inactive. A recent case-control study within KSA demonstrated that sedentary behavior was increasingly associated with risk of CHD [33]. Notably, however, data in Table 3 indicate that more than half of our study population did not believe that they had an increased propensity to CVD, despite the significant risk factors the study population displayed. This may suggest a need for more focused, intelligent and strong education in the KSA on the CVD-related outcomes of factors such as obesity, hypertension, poor diet, lack of exercise and diabetes.
Several studies have reported gender differences in acute coronary syndrome (ACS) with respect to its presentation, diagnosis, clinical management and outcomes. The results of some studies have found that women have higher mortality rates than men; however, gender was not found to be a factor related to the presentation or mortality of patients with ACS in other studies [3, 34]. Several studies have reported a relationship between ACS and gender among Middle Eastern patients [12, 35]. Studies by Mehio Sibai et al., DeNicola et al. and Alshaikh et al. reported high prevalence of obesity among women in oil-rich countries, with the latter two focusing on the KSA, resulting from increasing intake of calories, animal fat and protein, and limitations on physical activity [10, 36, 37]. Our sample was largely comprised of older women who had significantly higher likelihood of dyslipidemia (p = 0.007), unhealthy diet (p = 0.034), being overweight (p = 0.018), and high blood cholesterol (p = 0.007) compared with men in the sample. The majority of these women did relatively little exercise or were unable to do so. Gender-specific prevention programs in the KSA should be considered to more appropriately target at-risk individuals, in order to reduce preventable morbidity and mortality associated with CVDs. Interventions to reduce patient risk in our sample could include changes in drug treatment (including drug(s) used and dosages), education about lifestyle factors, improved diet, and exercise.
Our study does have several limitations. This was a relatively small, single-center cross-sectional study, which may be susceptible to recall bias. Furthermore, the inclusion criteria may not be broadly representative of those at risk of developing CHD. Finally, we did not collect data on socioeconomic status, which would potentially focus prevention efforts in areas where they are most needed.