The present study demonstrates that achieving long-term secondary prevention of AMI at 2 years is multifactorial and apparently involves several components that affect this outcome. Accordingly, because of this complexity, we were unable, at least partly, to identify any single determinant common to all six secondary prevention guideline goals.
The importance of smoking cessation in the secondary prevention of cardiovascular heart disease is well established [15], but quitting smoking is a major challenge. In our study many younger patients (≤ 65 years) were smokers. The reason for this can only be speculative. Poor socioeconomic status can be one reason as this has been previously shown to affect the frequency of smoking cessation [16].
Patients with diabetes mellitus were less likely to achieve optimal BMI, perhaps not unexpectedly given that elevated body weight is the predominant cause of type 2 diabetes and the prevalence of obesity and diabetes mellitus among patients with CVD is increasing [12], reflecting an unhealthy lifestyle. Achieving the prevention of CHD includes several lifestyle changes (e.g. a prudent diet and exercising regularly). Accordingly, it is not surprising that patients with mobile aids had difficulty reaching an ideal BMI.
In line with a study showing that heart failure patients with no partner were at higher risk of hospital readmission [17] our study showed a tendency towards significance (p-value 0.05), with living alone being an independent predictor of not achieving an optimal BMI. Although these two studies cannot be fully compared, it could be speculated that the support and motivation from a partner may help patients to accomplish recommended lifestyle changes and attain preventive goals. We also demonstrated that living alone was an independent predictor of achieving regular physical activity. Persons living alone may have more healthy, social outdoor activities, prompting them to be more active. Contradictory to the above finding, patients living alone did not reach optimal body weight control despite having increased physical activity. However, successful weight control requires, additional to regular exercise, fewer calorie intake [18].
Our data show that 79% of the overall cohort of patients born in Sweden, were less likely to achieve optimal LDL levels. The reason for this failure to attain optimal LDL levels is unknown and can only be speculative at this time. However, debate in Swedish media about the causal role of LDL cholesterol in coronary disease and the potential harms and ineffectiveness of statins may discourage patients to comply with this recommended medication. Furthermore, in recent years some diets (e.g. low carbohydrates high fat foods) have become popular in Sweden, resulting in a high daily intake of fat and a risk of elevated total cholesterol and LDL. Finally, guidelines for LDL levels have changed significantly over the years, resulting in a lower target level (from 2.5 mmol/L to 1.8 mmol/L).
Men were less likely to achieve optimal blood pressure control. It is well known that the male sex is a risk factor for IHD [19], but this may be more a question of compliance. Our finding is in contrast to other studies showing that men, in comparison with women, have better blood pressure control [20, 21]. However, this may also reflect the fact that optimal blood pressure control is generally very poor [6].
Patients with heart failure at admission with an ejection fraction ≤45% were more likely to achieve better blood pressure control, possibly due to the fact that the failing heart is often associated with lower blood pressure and heart failure medications are mainly neurohormonal inhibitors that all reduce blood pressure.
In Sweden, the national registry of secondary prevention after AMI (SEPHIA) reported that only 26% of patients with AMI fulfilled 4 predefined preventive goals after 1 year [22]. In our study only 10.5% achieved all six predefined secondary preventive goals and only 30% five of the preventive goals after 2 years. This shows that secondary prevention does not improve with time and healthcare efforts seem to be insufficient.
Limitations
This study has several limitations. First, the study includes a relatively small sample size and only patients from the Gothenburg catchment area were included and therefore may not representative of the general population. However, the patients were consecutively included with pre-specified inclusion and exclusion at our two University hospitals which are the only tertiary referral hospitals in Gothenburg. Second, as the nature of retrospective study there were missing in baseline data as they were obtained by medical records during index hospitalization due to AMI. However, the focus of the present work is to study how well the goals of secondary preventions were achieved 2 years after AMI and what potential underlying factors are. Therefore, the second part of this study was performed by a prospective structured interview at time point of 2-year after AMI in conjunction with blood sampling and physical examinations. This means that, despite some data missing at baseline, data from follow up were both complete and validated. Accordingly, data from baseline and follow-up were obtained by 2 different methodology and therefore not fully comparable.
Third, information from patients who died during the 2 years after the AMI event could not be added because our study was based on personal interview. It is plausible that patients who died within 2 years after their AMI might have had more co-morbidities and serious illnesses, which would result in a final study cohort of healthier patients. Nevertheless, the focus of this study is long-term secondary prevention that requires follow-up visits.
Finally, patients who did not speak fluent Swedish were excluded from the study. It might be assumed that patients living in Sweden who do not speak Swedish fluently have higher rates of unemployment and poorer socioeconomic status.
The strength of this study is our intention to study the goal achievement of long-term secondary prevention in a consecutive hospital cohort from real-world clinical practice, and moreover data were obtained by both personal interview and laboratory analysis as well as physical examination at the same occasion. The personal interview enabled us to capture more precise and detailed information than patient-reported questionnaires.