Skip to main content
  • Research article
  • Open access
  • Published:

Prevalence of first-degree atrioventricular block and the associated risk factors: a cross-sectional study in rural Northeast China

Abstract

Background

First-degree atrioventricular block (AVB) has traditionally been regarded as a benign condition but recent studies have challenged this conception. Prevalence of 1–2% have been reported in developed countries in Asia. However, no epidemiologic studies have established the prevalence of first-degree AVB in developing countries. The aim of the study was to investigate the prevalence of first-degree AVB in rural northeast China and identify the associated risk factors.

Methods

This cross-sectional study was undertaken from September 2017 to May 2018 in rural areas of Liaoning Province. It involved 10,926 participants aged ≥40 years (85.3% of those who were eligible). First-degree AVB was confirmed by at least two independent cardiologists. Risk factors were evaluated using stepwise logistic regression.

Results

The prevalence of first-degree AVB was 3.4% (95% confidence interval [CI]: 3.0–3.8%). Males had a higher prevalence than females (5.1% vs. 2.2%, p < 0.001). The regression model involving all participants showed that age (odds ratio [OR]: 1.32; p <0.001), male sex (OR: 1.72; p = 0.001), height (OR: 1.25; p = 0.008), systolic blood pressure (SBP) (OR: 1.15; p = 0.003), triglycerides (TG) (OR: 1.10; p < 0.001), high-density lipoprotein cholesterol (HDL-C) (OR: 0.73; p < 0.001), heart rate (OR: 0.78; p < 0.001), and exercising regularly (OR: 0.73; p = 0.030) were independent risk factors.

Conclusions

First-degree AVB is highly prevalent in rural areas of northeast China. The associated independent risk factors include being male, older, and taller, higher SBP and TG, lower HDL-C and heart rate, and lack of exercise.

Peer Review reports

Background

First-degree atrioventricular block (AVB) is defined as abnormal prolongation of the PR interval (> 0.20 s), which is frequently encountered in clinical practice [1]. Several studies suggest that first-degree AVB appears to be a benign condition, although these studies overwhelmingly focus on young and healthy males [2,3,4]. However, a growing body of literature has challenged the established conceptions regarding the apparently “benign” echocardiogram (ECG) finding. Schnabel et al. and Cheng et al. have reported that PR interval prolongation in the Framingham cohort is predictive of atrial fibrillation (AF) development, pacemaker implantation, and all-cause mortality [5, 6]. A recent meta-analysis of 14 observational studies involving 400,750 individuals further suggests an association between PR interval prolongation (meeting the criteria for first-degree AVB) and significant increases in AF, heart failure, and death [7]. Furthermore, genome-wide association studies show that the genetic determinants of PR interval prolongation overlap with those of many cardiovascular diseases, [8, 9] which explains the abovementioned associations from a genetic perspective. Therefore, identifying up-to-date prevalence trends and determinants is important given the potential effects of first-degree AVB and its associated health complications.

The prevalence of first-degree AVB, which is 1–2% among the general population in developed countries [4, 5, 10,11,12], is associated with race [13]. In Asia, the prevalence of first-degree AVB has only been reported for Japan (PR interval ≥ 0.22 s) [11] and Korea (only in patients with hypertension) [14]. No epidemiologic studies have established the prevalence of first-degree AVB in developing countries in Asia. China, the most populous developing country, has distinct geographical features, climate features, and lifestyles that differ from those in other countries and, more specifically, so does the rural northeast region of China. For example, most people in rural northeast China are physical laborers engaged in heavy manual work. The purpose of this study was to identify the prevalence of first-degree AVB and the contributing risk factors in the population of rural areas in northeast China.

Methods

This cross-sectional study was conducted in rural areas of Liaoning Province from September 2017 to May 2018. The design and enrolment process of the study has been previously described [15, 16]. Briefly, using a multistage, stratified, cluster randomized sampling strategy, four different counties were randomly selected distributed across the eastern, central and western regions of Liaoning Province, namely Liaoyang, Chaoyang, Lingyuan, and Donggang, and then nineteen rural villages in the four counties were randomly selected for inclusion in the study. All permanent residents aged at least 40 years old from the chosen villages (n = 12,808) were invited to participate, but subjects who were pregnant or had mental disorders were excluded, and 10,926 participants (response rate 85.3%) completed the investigation. We further excluded participants (n = 695) for the following reasons: missing or unreadable ECGs or inadequate ECGs for measurement of the PR interval (n = 550), AF or high-degree AVB (n = 116), lack of blood samples (n = 25), and abnormal laboratory data (n = 4). Eventually, data from a total of 10,231 (93.6%) subjects (4050 men and 6181 women) were analyzed (Fig. 1).

Fig. 1
figure 1

Study flow chart

The study was granted approval by the Central Ethics Committee at the China National Center for Cardiovascular Disease. Written informed consent from all study participants was obtained.

The relevant data were collected by a survey team, composed of dedicated cardiologists and neurologists and specialists from the Center for Disease Control and Prevention. Two survey modes -- self-administered questionnaire and face-to-face structured interview were examined during a single clinic visit. Furthermore, the surveyors were strictly trained before starting data collection and the inventory content, operative procedure and methods were standardized, and pilot interviews with volunteers were completed.

The demographic and clinical data, including age, gender, lifestyle (smoking, drinking, and physical activity), socioeconomic status (education, occupation, and annual household income), comorbidities (hypertension, diabetes and dyslipidemia), and other medical history (cerebrovascular disease and coronary artery disease) were recorded through the self-administered questionnaire. When a patient self-reported a specific medical history, the clinicians reviewed the patient’s medical records to confirm the report. Each enrolled individual if he or she had a history of a specific disease (such as diabetes) and then asked to answer the question “Have you ever been diagnosed with [specific disease] by a medical specialist? In order to data authenticity and reliability, double-check were executed to removed unqualified answer questionnaire and irrelevant information by trained staff. Participants were asked whether they regularly consumed alcohol, their average alcohol consumption per day, and the number of days per month that they consumed alcohol. They were divided into four categories: never drank, moderate drinkers, heavy drinkers, and former drinkers. One drink was defined as containing 15 g of ethanol [17]. Moderate drinking was defined as up to 1 drink/day for women and up to 2 drinks/day for men; heavy drinking was defined as > 1 drink/day for women and > 2 drinks/day for men [18]. The definition of regular exercise was moderate exercise, which amounts to 30 min of walking at least 3 times a week [19]. Lack of exercise was defined as failing to meet the conditions above for regular exercise.

Physical data, including height, weight (the nearest 0.1 kg), and waist circumference (the nearest 0.1 cm) were obtained during the visit to the clinic. The body mass index (BMI) was defined as the ratio weight (kg) and the square of the height (m2). To ensure data were got according to standardized protocols, a central steering committee with a subcommittee for quality control was established.

Blood samples were collected from participants who had fasted for at least 8 h. Samples were drawn from antecubital vein into BD Vacutainer tubes containing ethylenediaminetetraacetic acid (EDTA; Becton, Dickinson and Company, Franklin Lakes, NJ, USA), and centrifuged at 3000 rpm for 5 min. The supernatant was collected and stored at − 20 °C until use. Subsequently, biochemical parameters, including fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were assayed using an Abbott Diagnostics C800i auto-analyzer (Abbott Laboratories, Abbott Park, IL, USA) with commercial kits. These laboratory examinations were repeated three times at different laboratories. In order to ensure the accuracy of test results, 10% randomly selected samples in each laboratory was reexamined by National Center for Clinical Laboratory of the Ministry Health of China.

Twelve-lead ECGs (resting, 10 s) were obtained for each volunteer through a MAC 5500 System (GE Healthcare; Little Chalfont, UK). All ECGs were analyzed manually by at least two well-trained cardiologists with the assistance of magnifier and calipers. The PR interval was defined as the interval from the onset of the P wave (junction between the T–P isoelectric line and the beginning of the P wave deflection) to the end of the PR segment (junction with the QRS complex). A single lead (lead II) was used and the PR interval was determined as the mean measure from three consecutive beats or two consecutive beats at slower heart rates (< 50 beats per min). ECG-based diagnoses (including first-degree AVB and AF) were confirmed by at least two independent cardiologists. Heart rate and QRS interval data were also collected.

For each participant, blood pressure was measured using a standardized automatic electronic sphygmomanometer (J30; Omron, Kyoto, Japan) after at least 5 min of rest in a seated position, and a total of three times at 2-min intervals. In addition, participants were asked about whether corresponding medications for blood pressure, blood glucose, and blood lipids control had been taken in the last 2 weeks. If they responded “Yes”, they were asked to identify the name, dosage, and frequency of that drug if known, and those who were not entirely sure specific dose should clarify the number of tablets or pill taken. We cleaned and matched all the names of generic medicines in the China Pharmacopoeia 2015, with a 95% success rate.

On an ECG recording, First-degree AVB was defined as a PR interval > 0.2 s. Hypertension was defined as a mean systolic blood pressure (SBP) ≥140 mmHg and/or a mean diastolic blood pressure (DBP) ≥90 mmHg, and/or self-reported use of antihypertensive medication within 2 weeks [20]. Dyslipidemia was diagnosed if the individuals met one or more of the following criteria: (1) serum TC level ≥ 6.22 mmol/L; (2) serum TG level ≥ 2.27 mmol/L; (3) serum LDL-C level ≥ 4.14 mmol/L; (4) serum HDL-C level < 1.04 mmol/L; or (5) self-reported use of lipid-regulating medications over the previous 4 weeks. Elevated or decreased blood lipid status was determined according to the cut-off values mentioned above. Diabetes mellitus was diagnosed as an HbA1c ≥ 6.5% or FPG ≥ 7.0 mmol/L, and/or self-reported physician-confirmed diagnosis [21]. Cerebrovascular diseases (such as ischemic or hemorrhagic stroke) were diagnosed by a neurologist according to the World Health Organization recommendations and confirmed with computed tomography (CT) and/or magnetic resonance imaging (MRI) [22]. ECG-based left ventricular hypertrophy (ECG-LVH) diagnoses were made on the basis of ECG Rv1 + Sv5 or Rv1 + Sv6 values > 4.0 mV for males and > 3.5 mV for females. AF was diagnosed by any medical history of AF from referring physicians and/or current ECG findings.

Statistical methods

Descriptive statistics were calculated for all study variables. Continuous variables followed a normal distribution were presented as means and standard deviations. Otherwise, continuous variables are reported as medians and upper and lower quartiles. Student’s t test and the nonparametric Mann–Whitney U test were used, as appropriate, to compare differences in continuous variables between participants with and without first-degree AVB. Categorical variables are reported as frequencies and percentages in each subgroup. Chi square tests were used to compare differences in categorical variables between participants with and without first-degree AVB. The overall and age- and gender-specific prevalences of first-degree AVB were calculated.

Non-stratified and sex-stratified univariate and stepwise multivariate logistic regression analyses were performed to determine the associations between selected demographic and clinical characteristics and first-degree AVB. Potentially significant risk factors (according to the non-stratified univariate logistic regression analyses) were added to the non-stratified and sex-stratified stepwise multivariate regression equations, including age, sex, smoking and drinking status, regular exercise status, height, weight, SBP, DBP, TG, LDL-C, HDL-C, and heart rate. In a sensitivity analysis involving the male participants, we further adjusted for cerebrovascular disease. Odds ratios (ORs) and 95% confidence intervals (CIs) are presented for the logistic regression analyses.

Statistical analyses were performed using SPSS software version 22.0 (SPSS Inc., Chicago, IL, USA); p-values < 0.05 were considered statistically significant.

Results

Of the 10,231 subjects, 348 had first-degree AVB. The participants’ clinical characteristics by first-degree AVB status are shown in Table 1. Compared with the subjects without first-degree AVB, those with first-degree AVB were significantly older, taller, and heavier and had significantly higher SBP, DBP, TG, LDL-C, and QRS interval (all ps < 0.05). In contrast, the subjects with first-degree AVB had significantly lower HDL-C and heart rate (all ps < 0.05). In addition, the group with first-degree AVB had a significantly higher proportion of men, individuals with hypertension, dyslipidemia, smokers, drinkers, and individuals who exercised regularly (all ps < 0.05). However, there were no significant differences in other factors between subjects with and without first-degree AVB.

Table 1 Characteristics of the study sample

The overall prevalence of first-degree AVB was 3.4% (348/10231). There was a higher prevalence of first-degree AVB in men than in women (5.2% vs. 2.2%). The highest prevalence was in male participants aged ≥80 years and the lowest in female participants aged 40–49 years. Related details are shown in Table 2.

Table 2 Prevalence of first-degree AVB stratified by age and sex among the study participants

Table 3 shows the non-stratified and sex-stratified potential risk factors for first-degree AVB, as identified by the unadjusted regression models. As age increased by 10 years, in the non-stratified analysis, the risk of first-degree AVB increased by 32% (p < 0.05). The risk of first-degree AVB in male subjects was significantly higher than in female subjects (OR: 2.37, ps < 0.05). In addition, higher height, weight, waist circumference, TG, and LDL-C and hypertension, smoking, and drinking were significantly positively associated with first-degree AVB in the total population (all ps < 0.05). In contrast, regular exercise and high HDL-C and heart rate were significantly negatively associated with first-degree AVB (ps < 0.05).

Table 3 Risk factors for first-degree AVB in unadjusted logistic analyses

Table 4 displays the results of the stepwise multivariate logistic regression analysis, which showed that being male, older, and taller, higher SBP and TG, lower HDL-C and heart rate, and lack of regular exercise were significant independent risk factors for first-degree AVB (all ps < 0.05). Further, by performing a sex-stratified analysis, we found that there were different risk factors in males and females. All variables, with the exception of regular exercise, remained significant independent risk factors in males (all ps < 0.05). In females, height and SBP were additional variables that were not found to be significant factors (Table 4). We further adjusted for cerebrovascular disease in males, and the results remained unchanged.

Table 4 Stepwise multivariate logistic regression analysis of risk factors for first-degree AVB

Discussion

Here, we reported an overall first-degree AVB prevalence of 3.4% (95% CI: 3.0–3.8%) in the Chinese rural population aged ≥40 years. To our knowledge, no epidemiologic studies have reported the prevalence of first-degree AVB in general populations in developing countries. The overall prevalence of first-degree AVB was higher in our study than the published estimates of the overall prevalence of first-degree AVB in general populations in developed countries (1 to 2% ) [4, 5, 10,11,12].

The variation in the reported prevalences may mainly be due to differences in the subjects’ age range and the cut-off point used to define first-degree AVB. Regarding differences by age, adult participants from Tecumseh, Michigan, USA, [4] aged 40–49, 50–59, 60–69, 70–79, and ≥ 80 years had prevalences of 1.4, 1.2, 4.6, 7.3, and 14.5%, respectively, indicating that the prevalence increases with age, which is similar to our results. Additionally, our stepwise logistic regression results also indicated that age was an independent risk factor (OR: 1.32; p < 0.001). Participants in the Framingham Heart Study, [5] the Finnish Social Insurance Institution’s Coronary Heart Disease Study, [10] and the Busselton Heart study [12] were aged > 20 (mean: 47), 30–59 (mean: 44), and 25–84 (mean: 52) years, respectively, with prevalences of 1.6, 2.1, and 1.2%, respectively. However, the present mean age of the participants was 60 years, which may explain the higher prevalence. Further, the prevalence of first-degree AVB is affected by the definition used, and differences in race may also have an important impact [13]. Compared with the aforementioned published estimates (1 to 2%) (among Europeans and Americans with a mean age of about 50 years), the prevalence was similar, at 1.9%, in a Japanese population aged 30–95 years (mean: 50 years) [11]. However, first-degree AVB was defined as a PR interval ≥ 0.20 s in the former studies and ≥ 0.22 s in the Japanese study [11]. Both our population and the Japanese population belong to the Asian race, and our criterion was PR interval > 0.20 s; therefore, it seems reasonable for our AVB prevalence (3.4%) to be higher than those reported in the aforementioned studies. However, when we used a restrictive definition to define first-degree AVB (PR interval ≥ 0.22 s), the prevalence of first-degree AVB was 1.1% (114/10231), which is slightly lower than the prevalence of this ECG pattern in the Japanese population (Additional file 1: Table S1 and Table S2).

Lastly, the prevalence of certain diseases may also affect the prevalence of first-degree AVB. Participants in the Heart and Soul Study with stable coronary artery heart disease were reported to have a prevalence of first-degree AVB of 9.3% (PR internal ≥0.22 s) [23]. In Korean subjects aged > 18 years with hypertension, the prevalence of first-degree AVB was up to 14.3% [14]. In our sample of adults aged > 40 years, the prevalence of hypertension (60.4%) was much higher than that among Koreans aged > 40 years (40.0%) [24]. Thus, it is reasonable that our first-degree AVB prevalence is higher.

We found that the prevalence of first-degree AVB increases with age, which is similar to a finding of a study of a healthy Chinese population that showed that the median PR interval increased with age [25]. In the elderly, electrical and structural remodeling (such as that which occurs in atrial fibrosis) together with calcification and fibrosis of the conduction system, may play an important role in PR interval prolongation [26]. Electrophysiological studies have also confirmed that increased atrial refractoriness and conduction times accompany aging [27, 28]. In addition, in our study, a gender difference in the prevalence of first-degree AVB was found in each age group, with a higher prevalence in males than in females (5.2% vs. 2.2%). The reason is not clear, but the results were consistent with the results of previous studies [4, 5, 10, 14, 23].

Researchers have often reported the characteristics of patients with first-degree AVB in cohort studies [4, 5, 10,11,12, 14, 23]. However, comprehensive studies on first-degree AVB and associated factors in the general population are limited, especially in China. Here, we compiled demographic and clinical data (including data on BMI, blood pressure, FBG, lipids, etc.) to evaluate the risk factors. Multivariate logistic regression analysis suggested that SBP was an independent risk factor for first-degree AVB. A reasonable explanation is that hypertension may promote elevated intracardiac pressures, causing structural remodeling and changes in atrial electrical function [14, 29]. Strangely, the association between SBP and this ECG pattern was not observed in females. However, the limited number of first-degree AVB patients in the female subgroup (N = 139) reduced the statistical power of the analysis. High TG and low HDL-C were also associated with first-degree AVB. This may be because dyslipidemia causes coronary atherosclerosis, which affects the cardiac blood supply, cardiac structure, and electrical conduction. However, as we know, first-degree AVB is associated with coronary artery disease, and dyslipidemia is also recognized as a risk factor for coronary heart disease. Therefore, further studies are needed to confirm whether dyslipidemia is an independent risk factor for first-degree AVB, or whether it is only an independent risk factor for coronary heart disease and therefore associated with first-degree AVB.

Surprisingly, contrary to previous research, which showed that short stature is a risk factor for cardiovascular disease, [30] we found that being tall was a potential risk factor for first-degree AVB. The reason was not clear, but it may be because taller individuals have larger cardiac atria [31]. Additional research is needed to confirm this conclusion. In addition, exercising regularly also showed a significant negative association with first-degree AVB. This may be because of the heightened vagal tone that accompanies physical conditioning (ss in athletes) [32]. Notably, the significant negative association between regular exercise and first-degree AVB was not observed in males or females after sex stratification. The limited number of first-degree AVB patients in the sex-stratified subgroups, especially in the female subgroup, may have affected the results by reducing the statistical power of the analyses.

This study had several limitations. First, the cross-sectional design of the study only allowed assessment of the associations between first-degree AVB and risk factors rather than causal links. Second, although our study included a large number of subjects, these participants were from northeast China and over 40 years old. This may reduce the applicability of our results to other populations. Third, the PR interval includes both the P wave and PR segment. Increased intra-atrial conduction time results in prolongation of the P wave at the expense of the PR segment. Unfortunately, this study did not conduct a detailed analysis on this issue. Lastly, large-sample prospective studies are needed to confirm the results of this study.

Conclusions

The prevalence of first-degree AVB in rural northeast China is high. The independent risk factors for first-degree AVB included being male, older, and tall, high SBP and TG, and low HDL-C and heart rate. These results provide important insights into first-degree AVB and the predisposing factors, enabling the development of appropriate prevention strategies and design of intensive population-based studies on the prognostic role of first-degree AVB.

Availability of data and materials

The datasets used and/or analysed during the current study are de-identified and available from the corresponding author on reasonable request.

Abbreviations

AF:

Atrial fibrillation

AVB:

Atrioventricular block

BMI:

Body mass index

CI:

Confidence interval

DBP:

Diastolic blood pressure

ECG:

Echocardiogram

FBG:

Fasting blood glucose

HbA1c:

Glycosylated hemoglobin

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

OR:

Odds ratio

SBP:

Systolic blood pressure

TC:

Total cholesterol

TG:

Triglyceride

References

  1. Epstein AE, JP DM, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS, Gillinov AM, Gregoratos G, Hammill SC, Hayes DL, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation. 2008;117(21):e350–408.

    PubMed  Google Scholar 

  2. Packard JM, Graettinger JS, Graybiel A. Analysis of the electrocardiograms obtained from 1000 young healthy aviators; ten year follow-up. Circulation. 1954;10(3):384–400.

    Article  CAS  Google Scholar 

  3. Mymin D, Mathewson FA, Tate RB, Manfreda J. The natural history of primary first-degree atrioventricular heart block. N Engl J Med. 1986;315(19):1183–7.

    Article  CAS  Google Scholar 

  4. Perlman LV, Ostrander LD Jr, Keller JB, Chiang BN. An epidemiologic study of first degree atrioventricular block in Tecumseh, Michigan. Chest. 1971;59(1):40–6.

    Article  CAS  Google Scholar 

  5. Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, Benjamin EJ, Vasan RS, Wang TJ. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA. 2009;301(24):2571–7.

    Article  CAS  Google Scholar 

  6. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB Sr, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros TM, et al. Development of a risk score for atrial fibrillation (Framingham heart study): a community-based cohort study. Lancet. 2009;373(9665):739–45.

    Article  Google Scholar 

  7. Kwok CS, Rashid M, Beynon R, Barker D, Patwala A, Morley-Davies A, Satchithananda D, Nolan J, Myint PK, Buchan I, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102(9):672–80.

    Article  CAS  Google Scholar 

  8. Smith JG, Magnani JW, Palmer C, Meng YA, Soliman EZ, Musani SK, Kerr KF, Schnabel RB, Lubitz SA, Sotoodehnia N, et al. Genome-wide association studies of the PR interval in African Americans. PLoS Genet. 2011;7(2):e1001304.

    Article  Google Scholar 

  9. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Muller M, Sotoodehnia N, Sinner MF, et al. Genome-wide association study of PR interval. Nat Genet. 2010;42(2):153–9.

    Article  CAS  Google Scholar 

  10. Aro AL, Anttonen O, Kerola T, Junttila MJ, Tikkanen JT, Rissanen HA, Reunanen A, Huikuri HV. Prognostic significance of prolonged PR interval in the general population. Eur Heart J. 2014;35(2):123–9.

    Article  Google Scholar 

  11. Hisamatsu T, Miura K, Fujiyoshi A, Okamura T, Ohkubo T, Nagasawa SY, Horie M, Okayama A, Ueshima H, Group NDR. Long-term outcomes associated with prolonged PR interval in the general Japanese population. Int J Cardiol. 2015;184:291–3.

    Article  Google Scholar 

  12. Knuiman M, Briffa T, Divitini M, Chew D, Eikelboom J, McQuillan B, Hung J. A cohort study examination of established and emerging risk factors for atrial fibrillation: the Busselton health study. Eur J Epidemiol. 2014;29(3):181–90.

    Article  Google Scholar 

  13. Upshaw CB Jr. Comparison of the prevalence of first-degree atrioventricular block in African-American and in Caucasian patients: an electrocardiographic study III. J Natl Med Assoc. 2004;96(6):756–60.

    PubMed  PubMed Central  Google Scholar 

  14. Uhm JS, Shim J, Wi J, Mun HS, Park J, Park SH, Joung B, Pak HN, Lee MH. First-degree atrioventricular block is associated with advanced atrioventricular block, atrial fibrillation and left ventricular dysfunction in patients with hypertension. J Hypertens. 2014;32(5):1115–20 discussion 1120.

    Article  CAS  Google Scholar 

  15. Xing L, Jing L, Tian Y, Liu S, Lin M, Du Z, Ren G, Sun Q, Shi L, Dai D, et al. High prevalence of stroke and uncontrolled associated risk factors are major public health challenges in rural Northeast China: a population-based study. Int J Stroke. 2019;15:1747493019851280.

    Google Scholar 

  16. Yu S, Xing L, Du Z, Tian Y, Jing L, Yan H, Lin M, Zhang B, Liu S, Pan Y, et al. Prevalence of obesity and associated risk factors and Cardiometabolic comorbidities in rural Northeast China. Biomed Res Int. 2019;2019:6509083.

    PubMed  PubMed Central  Google Scholar 

  17. Qiao Y, Shi R, Hou B, Wu L, Zheng L, Ding L, Chen G, Zhang S, Yao Y. Impact of alcohol consumption on substrate remodeling and ablation outcome of paroxysmal atrial fibrillation. J Am Heart Assoc. 2015;4(11):e002349.

  18. Li Z, Guo X, Liu Y, Chang Y, Sun Y, Zhu G, Abraham MR. The Relation of Moderate Alcohol Consumption to Hyperuricemia in a Rural General Population. Int J Environ Res Public Health. 2016;13(7):e732.

    Article  Google Scholar 

  19. Zhang M, Chen X, Wang Z, Wang L, Jiang Y. Leisure-time physical exercise and sedentary behavior among Chinese elderly, in 2010. Zhonghua Liu Xing Bing Xue Za Zhi. 2014;35(3):242–5.

    CAS  PubMed  Google Scholar 

  20. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  CAS  Google Scholar 

  21. Chamberlain JJ, Rhinehart AS, Shaefer CF Jr, Neuman A. Diagnosis and Management of Diabetes: synopsis of the 2016 American Diabetes Association standards of medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–52.

    Article  Google Scholar 

  22. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976;54(5):541–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Crisel RK, Farzaneh-Far R, Na B, Whooley MA. First-degree atrioventricular block is associated with heart failure and death in persons with stable coronary artery disease: data from the heart and soul study. Eur Heart J. 2011;32(15):1875–80.

    Article  Google Scholar 

  24. Choi H, Kim H, Kang D. Sex differences in hypertension prevalence and control: analysis of the 2010-2014 Korea National Health and nutrition examination survey. PLoS One. 2017;12(5):e0178334.

    Article  Google Scholar 

  25. Wu J, Kors JA, Rijnbeek PR, van Herpen G, Lu Z, Xu C. Normal limits of the electrocardiogram in Chinese subjects. Int J Cardiol. 2003;87(1):37–51.

    Article  Google Scholar 

  26. Aro AL. First-degree atrioventricular block: risk marker or innocent finding? Heart. 2016;102(9):655–6.

    Article  CAS  Google Scholar 

  27. Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, Sparks PB, Kalman JM. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol. 2004;44(1):109–16.

    Article  Google Scholar 

  28. Kojodjojo P, Kanagaratnam P, Markides V, Davies DW, Peters N. Age-related changes in human left and right atrial conduction. J Cardiovasc Electrophysiol. 2006;17(2):120–7.

    Article  Google Scholar 

  29. Magnani JW, Wang N, Nelson KP, Connelly S, Deo R, Rodondi N, Schelbert EB, Garcia ME, Phillips CL, Shlipak MG, et al. Electrocardiographic PR interval and adverse outcomes in older adults: the health, aging, and body composition study. Circ Arrhythm Electrophysiol. 2013;6(1):84–90.

    Article  Google Scholar 

  30. Schmidt M, Botker HE, Pedersen L, Sorensen HT. Adult height and risk of ischemic heart disease, atrial fibrillation, stroke, venous thromboembolism, and premature death: a population based 36-year follow-up study. Eur J Epidemiol. 2014;29(2):111–8.

    Article  Google Scholar 

  31. Rosengren A, Hauptman PJ, Lappas G, Olsson L, Wilhelmsen L, Swedberg K. Big men and atrial fibrillation: effects of body size and weight gain on risk of atrial fibrillation in men. Eur Heart J. 2009;30(9):1113–20.

    Article  Google Scholar 

  32. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge assistance from the Centers for Disease Control and Prevention of Chaoyang, Lingyuan, Liaoyang, Dandong, and Donggang.

Funding

This study was supported by the National Key R&D Program of China (grant no. 2017YFC1307600). The funding body had no role in the study design; collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

YS provided funding and administrative support and recruited the participants. ZD took responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation and was a major contributor in writing the manuscript. LX, ML, and YT took responsibility for research design and data collection. LJ, HY, BZ, SL, and SY took responsibility for data collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yingxian Sun.

Ethics declarations

Ethics approval and consent to participate

The study was granted approval by the Central Ethics Committee at the China National Center for Cardiovascular Disease. Written informed consent from all participants was obtained.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1: Table S1.

Prevalence of first-degree AVB defined by a restrictive criterion (PR interval ≥ 0.22 s) stratified by age and sex among the study participants. Table S2. Stepwise multivariate logistic regression analysis of risk factors for first-degree AVB defined by a restrictive criterion (PR interval ≥ 0.22 s).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Xing, L., Lin, M. et al. Prevalence of first-degree atrioventricular block and the associated risk factors: a cross-sectional study in rural Northeast China. BMC Cardiovasc Disord 19, 214 (2019). https://doi.org/10.1186/s12872-019-1202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12872-019-1202-4

Keywords