Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.
Article
CAS
Google Scholar
Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting Bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373(20).
Wykrzykowska JJ, Kraak RP, Hofma SH, et al. AIDA investigators. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376(24):2319–28.
Article
CAS
Google Scholar
Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis. Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors J Am Coll Cardiol. 2016;67(8):921–31.
PubMed
Google Scholar
Kugler C, Markovic S, Rottbauer W, et al. Bioresorbable scaffolds compared with everolimus-eluting stents for the treatment of chronic coronary total occlusion: clinical and angiographic results of a matched paired comparison. Coron Artery Dis. 2017;28(2):120–5.
Article
Google Scholar
Cortese B, Ielasi A, Moscarella E, et al. RAI investigators. Thirty-day outcomes after unrestricted implantation of Bioresorbable vascular scaffold (from the prospective RAI registry). Am J Cardiol. 2017;119(12):1924–30.
Article
CAS
Google Scholar
Díaz Fernández JF, Camacho Freire SJ, Fernández Guerrero JC, et al. Everolimus drug-eluting stent performance in patients with long coronary lesions: the multicenter Longprime registry. Catheter Cardiovasc Interv. 2018;92(7):E493–501. https://doi.org/10.1002/ccd.27657. Epub 2018 May 18.
Article
PubMed
Google Scholar
Lesiak M, Araszkiewicz A, Grajek S, et al. Long coronary lesions treated with thin strut Bioresorbable polymer drug eluting stent: experience from multicentre randomized CENTURY II study. J Interv Cardiol. 2016;29(1):47–56. https://doi.org/10.1111/joic.12262.
Article
PubMed
Google Scholar
Kang DY, Lee CH, Lee PH, et al. Comparison of resolute zotarolimus-eluting and Xience everolimus-eluting stents in patients with de novo long coronary artery lesions: a randomized LONG-DES VI trial. Coron Artery Dis. 2018. https://doi.org/10.1097/MCA.0000000000000680. [Epub ahead of print].
Patra S, Chakraborty RN, Pande A, et al. Zotarolimus-eluting Resolute Integrity versus everolimus-eluting Xience Xpedition stents in the management of very long (>30mm) de novo coronary artery stenosis. Cardiovasc Revasc Med. 2017;18(3):160–164. https://doi.org/10.1016/j.carrev.2016.12.007. Epub 2016 Dec 15.
Morino Y, Abe M, Morimoto T, et al. Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (multicenter CTO registry in Japan) score as a difficulty grading and time assessment tool. JACC Cardiovasc Interv. 2011;4(2):213–21.
Article
Google Scholar
Smith SC Jr, Dove JT, Jacobs AK, et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines) - executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guide-lines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the society for cardiac angiography and interventions. J Am Coll Cardiol. 2001;37(8):2215–39.
Article
Google Scholar
Farooq V, Serruys PW, Heo JH, et al. Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model the potential implications for clinical practice. JACC Cardiovasc Interv. 2013;6(5):523–32.
Article
Google Scholar
Cutlip DE, Windecker S, Mehran R, et al. Academic research consortium. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–51.
Article
Google Scholar
Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385(9962):43–54.
Article
CAS
Google Scholar
Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease. ABSORB China trial J Am Coll Cardiol. 2015;66(21):2298–309.
Article
CAS
Google Scholar
Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42.
Article
CAS
Google Scholar
Costa JR Jr, Abizaid A, Whitbourn R, ABSORB EXTEND investigators et al. three-year clinical outcomes of patients treated with everolimus-eluting bioresorbable vascular scaffolds: final results of the ABSORB EXTEND trial. Catheter Cardiovasc Interv 2018. https://doi.org/10.1002/ccd.27715. [Epub ahead of print].
Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention. 2015;10(10):1144–53.
Article
Google Scholar
Yamaji K, Räber L, Windecker S. What determines long-term outcomes using fully bioresorbable scaffolds - the device, the operator or the lesion? EuroIntervention. 2017;12(14):1684–7.
Article
Google Scholar
Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–44.
Article
CAS
Google Scholar
Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–89.
Article
CAS
Google Scholar
Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB Bioresorbable vascular scaffold. A Systematic Review and Meta-Analysis JACC Cardiovasc Interv. 2016;9(1):12–24.
Article
Google Scholar
Polimeni A, Weissner M, Schochlow K, et al. Incidence, clinical presentation, and predictors of clinical restenosis in coronary Bioresorbable scaffolds. JACC Cardiovasc Interv. 2017;10(18):1819–27. https://doi.org/10.1016/j.jcin.2017.07.034.
Article
PubMed
Google Scholar
Wöhrle J, Nef HM, Naber C, et al. For the GABI-R study group. Predictors of early scaffold thrombosis: results from the multicenter prospective German-Austrian ABSORB RegIstRy. Coron Artery Dis. 2018;29(5):389–96.
Article
Google Scholar
Tanaka A, Latib A, Kawamoto H, et al. Clinical outcomes of a real world cohort following bioresorbable vascular scaffold implantation utilising an optimized implantation strategy. EuroIntervention. 2017;12(14):1730–7.
Article
Google Scholar
Sotomi Y, Suwannasom P, Serruys PW, et al. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention. 2017;12(14):1747–56.
Article
Google Scholar
Biscaglia S, Erriquez A, Bernucci D, et al. BRS implantation in long lesions requiring device overlapping: myth or reality? J Thorac Dis. 2017;9(Suppl 9):S914–22. https://doi.org/10.21037/jtd.2017.06.35.
Article
PubMed
PubMed Central
Google Scholar
Polimeni A, Anadol R, Münzel T, et al. Predictors of bioresorbable scaffold failure in STEMI patients at 3 years follow-up. Int J Cardiol. 2018;268:68–74. https://doi.org/10.1016/j.ijcard.2018.04.081..
Article
PubMed
Google Scholar
Regazzoli D, Latib A, Ezhumalai B, et al. Long-term follow-up of BVS from a prospective multicenter registry: impact of a dedicated implantation technique on clinical outcomes. Int J Cardiol. 2018;270:113–7. https://doi.org/10.1016/j.ijcard.2018.06.094. Epub 2018 Jun 25.
Article
PubMed
Google Scholar
Anadol R, Schnitzler K, Lorenz L, et al. Three-years outcomes of diabetic patients treated with coronary bioresorbable scaffolds. BMC Cardiovasc Disord. 2018;18(1):92. https://doi.org/10.1186/s12872-018-0811-7.
Article
PubMed
PubMed Central
Google Scholar
Haddad K, Tanguay JF, Potter BJ, et al. Longer inflation duration and Predilation-sizing-Postdilation improve Bioresorbable scaffold outcomes in a long-term all-comers Canadian registry. Can J Cardiol. 2018;34(6):752–8. https://doi.org/10.1016/j.cjca.2018.02.030 Epub 2018 Mar 12.
Article
PubMed
Google Scholar
Gori T, Weissner M, Gönner S, et al. Characteristics, predictors, and mechanisms of thrombosis in coronary Bioresorbable scaffolds. Differences Between Early and Late Events JACC Cardiovasc Interv. 2017;10(23):2363–71. https://doi.org/10.1016/j.jcin.2017.08.020.
Article
PubMed
Google Scholar
Biscaglia S, Campo G. Bioresorbable Everolimus-eluting vascular scaffold for long coronary lesions: a subanalysis of the international, multicenter GHOST-EU (gauging coronary healing with bioresorbable scaffolding plaTforms in EUrope) registry. JACC Cardiovasc Interv. 2017;10(12):1274–5. https://doi.org/10.1016/j.jcin.2017.04.001.
Article
PubMed
Google Scholar
Anadol R, Lorenz L, Weissner M, et al. Characteristics and outcome of patients with complex coronary lesions treated with bioresorbable scaffolds: three-year follow-up in a cohort of consecutive patients. EuroIntervention. 2018;14(9):e1011–9. https://doi.org/10.4244/EIJ-D-17-00410.
Article
PubMed
Google Scholar
Sorrentino S, De Rosa S, Ambrosio G, et al. The duration of balloon inflation affects the luminal diameter of coronary segments after bioresorbable vascular scaffolds deployment. BMC Cardiovasc Disord. 2015;15:169. https://doi.org/10.1186/s12872-015-0163-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anadol R, Dimitriadis Z, Polimeni A, et al. Bioresorbable everolimus-eluting vascular scaffold for patients presenting with non STelevation-acute coronary syndrome: a three-years follow-up1. Clin Hemorheol Microcirc. 2018;69(1–2):3–8. https://doi.org/10.3233/CH-189101.
Article
CAS
PubMed
Google Scholar
Biscaglia S, Ugo F, Ielasi A, et al. Bioresorbable scaffold vs. second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol. 2016;208:40–5.
Article
Google Scholar
Wiebe J, Dörr O, Liebetrau C, et al. Outcome after long-segment stenting with Everolimus-eluting Bioresorbable scaffolds focusing on the concept of overlapping implantation. Rev Esp Cardiol (Engl Ed). 2016;69(12):1144–51. https://doi.org/10.1016/j.rec.2016.08.012. Epub 2016 Oct 27.
Article
Google Scholar
Geraci S, Kawamoto H, Caramanno G. Et a.. Bioresorbable Everolimus-eluting vascular scaffold for long coronary lesions: a subanalysis of the international, multicenter GHOST-EU registry. JACC Cardiovasc Interv. 2017;10(6):560–8. https://doi.org/10.1016/j.jcin.2016.12.013. Epub 2017 Mar 1.
Article
PubMed
Google Scholar