Skip to main content

Table 2 Logistic regression model using BMI (continuous variable) as a predictor for hypercholesterolemia status (binary outcome), after adjusting for sociodemographic and other variables (n = 1019)

From: The prevalence of hypercholesterolemia and associated risk factors in Al-Kharj population, Saudi Arabia: a cross-sectional survey

Hypercholesterolemia status B SE of B P value Exp (B)/odds ratio 95% CI for odds ratio
Lower Upper
Body Mass Index (BMI) 2.039 0.015 0.008 1.640 1.610 1.671
Age 0.012 0.016 0.452 1.012 0.981 1.044
Sex (female)  − 0.288 0.258 0.029 0.760 0.452 1.248
Marital status (married)  − 0.926 0.263 0.0001 0.396 0.236 0.664
Education level 0.379 0.671 0.572 1.461 0.392 5.440
Job (not working) 1.383 0.681 0.042 3.988 2.051 5.139
Job (civilian) 1.219 0.345 0.0001 3.385 1.722 6.652
Diabetes (yes) 0.026 0.408 0.950 1.026 0.461 2.284
Smoking status (no)  − 0.170 0.311 0.584 0.843 0.459 1.551
Smoking status (ex-smoker) 0.188 0.521 0.719 1.207 0.434 3.352
  1. B = Beta Coefficient, SE of B = standard error of beta coefficient