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attainment decreases the risk of stroke: 
a multivariable Mendelian randomization study
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Abstract 

Background:  The causal association between educational attainment (EA) and stroke remains unclear. Hence, a 
novel multivariable Mendelian randomization (MVMR) approach was applied to solve this issue.

Methods:  The single nucleotide polymorphisms (SNPs) from a recent genome-wide association study (GWAS) 
on years of schooling served as instruments. Univariable mendelian randomization (MR) and MVMR analyses were 
performed to detect the relationship between genetically predicted EA and the stroke risk. In the MVMR, cigarette 
consumption, alcohol consumption, body mass index (BMI), intelligence, and hypertension were adjusted. The sum-
mary statistics for stroke from the MEGASTROKE consortium included 446,696 participants (40,585 cases of stroke and 
34,217 cases of ischemic stroke), most of whom were of European descent.

Results:  In the univariable MR, genetically predicated EA could decrease the risks of total stroke (OR = 0.66, 95% CI 
0.61–0.72, P = 2.70 × 10–23), ischemic stroke (OR = 0.67, 95% CI 0.61–0.73, P = 2.58 × 10–18), large artery atheroscle-
rosis (OR = 0.51, 95% CI 0.40–0.64, P = 1.80 × 10–8), small vessel stroke (OR = 0.60, 95% CI 0.49–0.73, P = 5.59 × 10–7), 
and cardioembolic stroke (OR = 0.81, 95% CI 0.68–0.96, P = 1.46 × 10–2) using the inverse-variance weighted (IVW) 
estimator. Higher EA might be negatively correlated with the odds of total stroke (OR = 0.62, 95% CI 0.50–0.77, 
P = 1.44 × 10–5), ischemic stroke (OR = 0.63, 95% CI 0.50–0.80, P = 1.41 × 10–4), and cardioembolic stroke (OR = 0.59, 
95% CI 0.39–0.90, P = 0.01), but was not significant in large artery atherosclerosis (OR = 0.65, 95% CI 0.37–1.15, 
P = 0.14) and small vessel stroke (OR = 0.68, 95% CI 0.41–1.13, P = 0.14) after controlling other exposures.

Conclusions:  We found that genetically predicated higher EA decreased the risks of total stroke, ischemic stroke, and 
cardioembolic stroke, independent of smoking, alcohol consumption, BMI, intelligence, and hypertension.
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Background
The definition of stroke has been updated as an acute epi-
sode of focal dysfunction of the brain, retina, or spinal 
cord, persisting ≥ 24 h, according to the American Stroke 

Association [1]. If imaging examination or autopsy shows 
related focal infarction or hemorrhage, stroke duration 
exceeding 24 h is not a requisite condition [1]. Currently, 
stroke is prevalent globally and heavily burdens society. 
As summarized by the Global Burden of Disease (GBD) 
Stroke Experts Group, the absolute numbers of stroke 
patients, stroke survivors, related deaths, and disability-
adjusted life-years (DALYs) are excessive and still increas-
ing [2]. It is noteworthy that stroke has been the second 
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leading cause of death [3]. Interventions before the onset 
of stroke seem requisite and may reduce its growing inci-
dence and achieve a better prognosis.

Heterogeneous risk factors for stroke have been iden-
tified in previous publications. Cardiovascular factors 
(including hypertension, carotid stenosis, and atrial 
fibrillation), metabolic factors (comprising dyslipidemia, 
insulin resistance, and diabetes) and modifiable lifestyles 
(such as cigarette and alcohol consumption) have been 
found to increase stroke risks [3]. In addition, education 
is reported to be negatively associated with some stroke 
subtypes, which may protect the general population from 
a perspective of epidemiology. Wen et  al. reported that 
participants with higher educational attainment (EA) had 
lower risks of incident total stroke and ischemic stroke 
(IS) in a prospective cohort enrolling 11,509 participants. 
Nevertheless, the same findings were not found in hem-
orrhagic stroke [4]. For IS, the risk of recurrent stroke 
increased 2.82-fold for illiterate in a two-year follow-up 
duration [5]. However, in a follow-up study with 253,657 
participants conducted by Jackson CA et al., EA was not 
associated with the increased risks of stroke in a fully 
adjusted model [6]. These inconsistent findings may be 
attributed to the observational design, which cannot 
overcome the endogeneity and the biases from confound-
ing factors. A clear, unbiased estimate between EA and 
stroke using multivariable Mendelian randomization 
(MVMR) is needed.

Mendelian randomization (MR) is an epidemiological 
method that studies the causal association between and 
exposure (i.e., educational levels) with an outcome (i.e., 
stroke), using genetic variants as instruments to infer 
levels of the exposure. [7]. The genetic variants, closely 
related to the exposures and outcomes, are identified 
using the genome-wide association study (GWAS) and 
randomly assorted at conception, leading to a subsequent 
random distribution [8]. These randomly assorted vari-
ants avoid the reversed causation and confounding fac-
tors (i.e., smoking, diabetes, and alcohol), allowing for 
causal inference [9]. Therefore, a natural randomized 
control trial is simulated using the MR method. Moreo-
ver, MVMR is an extension that can produce the causal 
estimates of several exposures to one outcome, which is 
advantageous in the presence of several correlated risk 
factors, accounting for the measured pleiotropy [10].

In this study, MVMR was adopted to overcome the 
endogeneity and yield causal estimates between EA and 
stroke after controlling for smoking, alcohol consump-
tion, BMI, intelligence, and hypertension. Although simi-
lar MR exploring the causal effects of EA on stroke was 
done by Yuan et  al. in the past [11], the present study 
relies on the use of the MVMR design to test the effect 
of confounders in the association between EA and stroke. 

This study can help clarify the current inconsistent find-
ings between EA and stroke.

Methods
Genetic instrument selection for EA
The GWAS summary dataset for EA was extracted from 
Social Science Genetic Association Consortium (SSAGC) 
Data Portal (http://​thess​gac.​com). Using meta-analysis, 
GWAS combined 71 cohort studies, including 1,131,881 
samples of European ancestry. The survey collected the 
years of schooling of participants. Detailed information 
regarding phenotype and the process of quality control in 
SSAGC was reported in a previous paper [12]. The sum-
mary statistics without 23andMe were obtained from the 
SSAGC consortium.

We included autosomal biallelic SNPs with a 
P-value < 5 × 10–8 and conducted further quality control 
based on a minor frequency > 1%, leaving 30,389 unique 
SNPs. In addition, using the 1000G reference panel, link-
age disequilibrium (LD) clumping was performed. A 
total of 30,389 SNPs were clumped with LD r2 < 0.01 at a 
10,000 kb window to guarantee the independence of the 
selected genetic variants.

Finally, 481 independent SNPs were associated with 
EA. The proportion of variance explained (PVE) by each 
SNP was estimated using the R2 value. The instrumen-
tal strength of each SNP was assessed using F-statistics 
through the formula: F-statistics = (Beta/Se)2. We are 
reporting the mean F-statistic of the SNPs used as instru-
ments, while an F-statistic > 10 indicated a strong instru-
ment [13].

Genetic instrument selection for stroke
The summary statistics for stroke, IS and IS subtypes (e.g., 
large artery stroke, small vessel stroke, and cardioembolic 
stroke) were obtained from the MEGASTROKE con-
sortium [14]. The IS subtypes were 4,373 cases of large 
artery atherosclerosis, 5,386 cases of small vessel stroke, 
and 7,193 cases of cardioembolic stroke. In the study, 
40,585 stroke patients, 34,217 IS patients, and 406,111 
controls were selected all of European population.

Genetic instrument selection for other exposures
Other sources of GWAS are available from the IEU Open 
GWAS Project (http://​gwas.​mrcieu.​ac.​uk). Several expo-
sures associated with EA and stroke are included in the 
MR analysis, such as smoking, alcohol consumption, 
intelligence, body mass index (BMI), and hypertension. 
According to Davies G et al., intelligence is closely related 
to education [15]. In addition, hypertension, obesity, 
smoking, and alcohol consumption are widely accepted 
as modifiable risk factors for stroke [16]. We tested if 
exposure to these five risk factors affect the association 
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between EA and stroke using MVMR. The genetic data 
of intelligence, released by the Complex Trait Genetics 
(CTGlab), included 269,867 Europeans [17]. The genetic 
data on smoking and alcohol consumption were down-
loaded from the GWAS and Sequencing Consortium of 
Alcohol and Nicotine use (GSCAN), covering 335,394 
and 337,334 sample sizes for tobacco use and alcohol 
intake, respectively [18]. Summary-level GWAS data 
on BMI were published in the Genetic Investigation of 
Anthropometric Traits (GIANT), and data on hyper-
tension were summarized from the FinnGen biobank 
analysis round 5 (https://​www.​finng​en.​fi/​fi) (Code: finn-
b-I9_HYPTENSESS) [19, 20].

Statistical analysis
In this study, the inverse-variance weighted (IVW) 
method was used as the main method to estimate the 
causal association of EA on stroke, IS, and IS types. The 
MR-Egger, weighted median, simple mode, and weighted 
mode were supplementary methods. The MR Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) and MR-Egger 
intercept approaches were adopted to identify horizontal 
pleiotropy [21, 22]. The radial MR method was adopted 
to remove the potential outliers [23]. The Steiger-MR 
was used to examine SNPs that explained significantly 
more variance in exposure than the outcome and exclude 
those SNPs from the MR analyses to eliminate bias 
from reverse causation [24]. In this study, no inverse 
directionality was detected, and consequently, no SNPs 
were excluded in this step. The Bonferroni correction 
(P = 0.05/5 outcomes) was applied to adjust multiple test-
ing (P = 0.01) in univariable MR. For the MVMR model, 
results of the IVW estimation were shown.

Univariable MR and MVMR methods were adopted 
using the R package "TwoSampleMR", and the results 
were visualized by the R package "forestplot". The data 
cleaning, statistical analyses, and visualization were run 
in R software 4.1.2 (https://​www.r-​proje​ct.​org/).

All methods were performed following the strengthen 
the reporting of observational studies in the epidemiol-
ogy using Mendelian Randomization (STROBE-MR) 
statement. All the summary-level GWAS data used in 
MR analyses are publicly accessible from the IEU Open 
GWAS Project database (http://​gwas.​mrcieu.​au.​uk). 
Informed consent was obtained from all subjects in the 
original genome-wide association studies. All methods 
were performed following the relevant local guidelines 
and regulations.

Results
Results of univariable MR
As shown in Fig.  1, in the univariable MR stage, each 
additional genetically predicted year of schooling can 

decrease the risk of stroke using the IVW estimator 
(OR = 0.66, 95% CI 0.61–0.72, P = 2.70 × 10–23). Simi-
larly, MR-Egger and Weighted median yielded consist-
ent direction of estimation, and they might have better 
statistical power than the IVW estimator (MR-Egger: 
OR = 0.65, 95% CI 0.47–0.92, P = 1.39 × 10–2; weighted 
median: OR = 0.64, 95% CI 0.57–0.73, P = 4.07 × 10–13). 
Additionally, each additional genetically predicted year of 
schooling could reduce the odds of IS using the IVW esti-
mator (OR = 0.67, 95% CI 0.61–0.73, P = 2.58 × 10–18). 
Likewise, MR-Egger and Weighted median methods also 
reported similar results (MR-Egger: OR = 0.62, 95% CI 
0.43–0.89, P = 1.10 × 10–2; weighted median: OR = 0.67, 
95% CI 0.59–0.77, P = 5.69 × 10–9). For different IS types, 
each additional genetically predicted year of schooling 
was negatively associated with large artery atherosclero-
sis, small vessel stroke, and cardioembolic stroke (IVW: 
OR = 0.51, 95% CI 0.40–0.64, P = 1.80 × 10–8 for large 
artery atherosclerosis; OR = 0.60, 95% CI 0.49–0.73, 
P = 5.59 × 10–7 for small vessel stroke; OR = 0.81, 95% 
CI 0.68–0.96, P = 1.46 × 10–2 for cardioembolic stroke). 
The associations remain consistent in MR-Egger and 
weighted median. Figure 2 shows the scatter plots of uni-
variable MR.

There were no evidence of heterogeneity and pleiot-
ropy for EA with stroke, IS, large artery stroke, small ves-
sel stroke, and cardioembolic stroke (MR-PRESSO global 
test and MR-Egger intercept: P > 0.05) (Table 1).

Results of multivariable MR
As shown in Fig. 3, after controlling for smoking, alcohol 
consumption, intelligence, BMI and hypertension, each 
additional genetically predicted year of schooling was 
significantly associated with stroke, IS, and cardioem-
bolic stroke using the IVW estimator (OR = 0.62, 95% CI 
0.50–0.77, P = 1.44 × 10–5 for stroke; OR = 0.63, 95% CI 
0.50–0.80, P = 1.41 × 10–4 for IS; OR = 0.59, 95% CI 0.39–
0.90, P = 0.01 for cardioembolic stroke). The effects were 
not significant for large artery atherosclerosis (OR = 0.65, 
95% CI 0.37–1.15, P = 0.14) after multiple testing correc-
tion. Instead, each additional genetically predicted year 
of schooling was not casually correlated with small vessel 
stroke (OR = 0.68, 95% CI 0.41–1.13, P = 0.14).

Discussion
This MVMR study shows that higher EA causally 
decreases the risks of total stroke, IS, large artery ath-
erosclerosis, and cardioembolic stroke except for small 
vessel stroke, independent of smoking, alcohol consump-
tion, BMI, intelligence, and hypertension. These findings 
provide novel unbiased causal evidence supporting the 
protective role of education in stroke, which may help 
suppress the high stroke prevalence.

https://www.finngen.fi/fi
https://www.r-project.org/
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Many observational reports have mentioned the pro-
tective role of education in stroke [25, 26]. In a meta-
analysis enrolling 79 studies, McHutchison CA et  al. 
reported a 1.35-fold stroke risk in lower-education par-
ticipants [27]. As revealed by Gillum RF et al. [28], com-
pared with the participants with education years < 8, 
those with education years 8–11, 12, and > 12 had relative 
risks of 0.81, 0.57, and 0.60, respectively. Identical find-
ings were also found in a study by Wen et al. [4], where 
participants with higher EA had lower risks of total 
stroke and IS during a median follow-up of 25.3 years [4]. 
However, a protective effect was not detected in males in 
their subgroup analysis. The discrepancy between males 
and females may be partly explained by gender features 
[29]. Despite the slight difference, these studies support 
the conclusion that higher EA is negatively associated 
with the incidence of stroke.

However, a negative association between education 
levels and stroke was not observed in other studies. In a 
large prospective study in Australia with a mean follow-
up of 4.7  years, the fully adjusted hazard ratios of the 
lowest to highest education level in men and women 
were 1.10 (95% CI 0.94—1.30) and 1.21 (95% CI 0.97—
1.51), respectively, which did not support the increased 
stroke risks for the lower EA [6]. These inconsistent find-
ings may be attributed to the residual confounding fac-
tors, which can be limited by MR, such as alcohol and 
cigarette consumption. Our MVMR analysis can help 
clarify the unclear associations between education and 
stroke. Other MR studies also explored the causal associ-
ation between EA and stroke. Yuan S et al. reported that 
EA decreased the risk of stroke, independent of intelli-
gence, BMI, and smoking [11]. Their main findings were 
consistent with ours. However, in their study, two pivotal 

Fig. 1  Causal estimates of EA on stroke in univariate MR. IVW: inverse variance weighted method; OR: odds ratios; EA: educational attainment; MR: 
Mendelian randomization
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Fig. 2  Scatter plots of EA on stroke. A Scatter plot of the effect size of each SNP on total stroke. B Scatter plot of the effect size of each SNP on 
ischemic stroke. C Scatter plot of the effect size of each SNP on large artery atherosclerosis. D Scatter plot of the effect size of each SNP on small 
vessel stroke. E Scatter plot of the effect size of each SNP on cardioembolic stroke. EA: educational attainment; IVW: Inverse variance weighted 
method; SNP: single nucleotide polymorphism



Page 6 of 8Zhang et al. BMC Cardiovascular Disorders          (2022) 22:269 

factors, alcohol consumption and hypertension, were 
not adjusted in the MVMR analysis, which might be the 
reason why the causal association of EA between large 
artery atherosclerosis and small vessel stroke was signifi-
cant in Yuan S’s study but not in our study.

Additionally, EA should be considered an intervention 
for the general population and especially stroke patients. 
A clear causal estimate between education and stroke 
helps ameliorate the current high stroke prevalence 
and poor prognosis after stroke. According to a follow-
up study enrolling 3,861 Chinese by Che et al. [5], after 
developing IS, the hazard ratios of the illiterate to col-
lege education were 2.79 for all-cause mortality, 3.68 for 
stroke-specific mortality, 2.82 for recurrent stroke, and 
3.46 for cardiovascular events.

The mechanisms linking EA to stroke remain unclear. 
And two possible ways may be involved in their causal 
association. First, the occurrence of stroke is not directly 
regulated by EA-associated genes, but was largely medi-
ated by modifiable risk factors like blood pressure, BMI, 
and cigarette consumption [30]. Higher EA is generally 
associated with a healthier lifestyle, subsequently lead-
ing to the decreased risk of stroke. But on the other hand, 
Carter A R et al. also reports that more than half of the 
protective effect of higher EA are not attributed to the 

modifiable risk factors and remains unexplained [31]. 
Therefore, it is postulated that higher EA may suppress 
the occurrence of stroke directly, rather than through 
modifiable risk factors. As indicated by previous stud-
ies, the EA-associated molecular alteration in pathways 
involving inflammatory cytokines may be mediated by 
gene methylation, gene silencing etc. [32, 33]. Hence, the 
two ways may jointly link EA to stroke, but still need fur-
ther confirmation in future studies.

There are some strengths and limitations in this 
study. The major merit lies in the MVMR design, which 
overcomes the endogeneity in observational studies 
and possible correlated risk factors in the univariable 
MR. However, genetic variants are identified in GWAS 
on participants of European descent, in order to avoid 
bias linked to ancestry, which limits the generalizability 
of our results. Further confirmation of other ancestries, 
such as Asian, should be performed. Additionally, plei-
otropy and heterogeneity are two main concerns in MR 
analysis. In the two-sample MR analysis regarding large 
artery atherosclerosis and EA, MR-PRESSO reported 
a significant result of pleiotropy, indicating that the 
genetic variants used in this study may be associated 
with other confounding factors and violate the basic 
assumptions of MR. However, the weighted median 

Table 1  Results of heterogeneity and pleiotropy tests

# Means no outliers were detected by the MR-PRESSO and radial MR methods; † means P > 0.05

Outcomes P values of MR-PRESSO MR-egger intercept Q-df value by IVW Q-df 
value by 
MR-egger

Stroke 0.054# 8.20E−05† 411† 410†

Ischemic stroke 0.892# 1.05E−03† 409† 408†

Large artery atherosclerosis 0.001# − 6.11E−03† 410† 409†

Small vessel stroke 0.712# − 3.12E−03† 407† 406†

Cardioembolic stroke 0.053# − 1.79E−04† 411† 410†

Fig. 3  Causal estimates of EA on stroke in multivariate MR. Cigarette consumption, alcohol consumption, BMI, intelligence, and Hypertension were 
adjusted in the multivariate MR analyses. EA: educational attainment; MR: Mendelian randomization
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method and multivariable MR results remain consist-
ent with those of the IVW approach. The weighted 
median approach can yield consistent estimates even if 
up to 50% of the genetic instruments are invalid [34]. 
Considering the non-significant results of the MR-
Egger regression, the bias may be minimal.

To conclude, this MVMR study provides new evi-
dence supporting the protective role of higher EA in 
stroke. Intervention strategies to improve EA may have 
beneficial effects in individuals at high risk for stroke..

Conclusions
Using MR, this study provides evidence of a causal 
association that higher EA decreases the risks of total 
stroke and IS subtypes except for small vessel stroke, 
independent of smoking, alcohol consumption, BMI, 
intelligence, and hypertension.
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