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Abstract 

Background:  The cardioprotective ability of n-3 polyunsaturated fatty acids (PUFAs) is controversial. Most studies 
suggest a specific role for PUFAs in cardioprotection from ischemic heart disease (IHD). However, few studies have 
used genetic biomarkers of n-3 PUFAs to examine their potential relationships with IHD. This study aimed to use Men-
delian randomization to evaluate whether genetically-predicted n-3 PUFAs affect IHD and cardiometabolic risk factors 
(CRFs).

Methods:  Genetic variants strongly (p < 5 × 10–8) and independently (r2 > 0.1) associated with n-3 PUFAs were 
derived from the CHARGE Consortium (including 8,866 subjects of European ancestry) and were used as instrumental 
variables (IVs) for evaluating the effect of n-3 PUFAs, including α-linolenic acid (ALA), docosapentaenoic acid (DPA), 
docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). Data on the associations between the IVs and IHD, 
myocardial infarction, and CRFs (including diabetes, lipids, blood pressure, body mass index, and waist-to-hip ratio 
(WHR)) were obtained from the UK Biobank SOFT CAD GWAS with the CARDIoGRAMplusC4D 1000 Genomes-based 
GWAS (113,937 IHD cases and 339,115 controls), the Myocardial Infarction Genetics and CARDIoGRAM Exome con-
sortia (42,335 MI cases and 78,240 controls), the DIAbetes Genetics Replication And Meta-analysis consortium (26,676 
diabetes mellitus cases and 132,532 controls), the Global Lipids Genetics Consortium (n = 196,475), the International 
Consortium for Blood Pressure (n = 69,395), and the meta-analysis of GWAS for body fat distribution in the UK Biobank 
and Genetic Investigation of Anthropometric Traits (n = 694,649).

Results:  Genetically-predicted higher ALA was associated with lower risk of IHD, type 2 diabetes (T2D), and lower 
serum lipids. The effect size per 0.05-unit increase (about 1 standard deviation) in plasma ALA level) was − 1.173 (95% 
confidence interval − 2.214 to − 0.133) for IHD. DPA and EPA had no association with IHD but were associated with a 
higher risk of T2D, higher levels of lipids or WHR. DHA had no association with IHD or CRFs.

Conclusions:  Our study suggests a benefit of ALA for IHD and its main risk factors. DHA, DPA, and EPA had no asso-
ciation with IHD but were partly associated with increasing cardiometabolic risk factors.
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Background
N-3 polyunsaturated fatty acids (PUFAs) include plant-
derived α-linolenic acid (ALA) and marine-derived doco-
sahexaenoic acid (DHA), docosapentaenoic acid (DPA), 
and eicosapentaenoic acid (EPA). DHA, DPA, and EPA 
are long-chain n-3 fatty acids. Evidence from observa-
tional, experimental studies, and randomized controlled 
trials (RCT) show that n-3 PUFAs from diet or supple-
ments confer protection against cardiovascular disease 
(CVD) and relevant risk factors, including cardiac death, 
ischemic heart disease (IHD), ischemic stroke, heart 
failure, and blood pressure [1, 2]. However, integrated 
analyses of these studies have found null, little, or incon-
sistent results, no matter whether in primary or in sec-
ondary prevention of CVD [3–5]. Recent evidence from 
high-quality large RCTs also suggests that n-3 PUFA 
intake probably makes little or no difference for coro-
nary heart mortality or events [6–9]. The nutrition rec-
ommendations for n-3 PUFA supplements or seafood 
for cardiovascular benefits have been debated in recent 
years, but without consensus being reached [10]. These 
controversies may be confounded by background dietary 
consumption of fish, health status, medical treatment of 
IHD, socioeconomic position, lifestyle, different study 
populations, and different definitions of CVD and study 
endpoints [1, 10].

Mendelian randomization (MR) studies use germline 
genetic variants as intermediate instrumental variables 
(IVs) to assess causal relationships in a non-experimental 
setting. As genetic variants are determined at concep-
tion, MR studies are less susceptible to confounders than 
observational studies and are not affected by disease sta-
tus, thereby avoiding reverse causation bias. MR studies 
can be regarded as “natural” RCTs and have been applied 
to examine genetic predisposition conferred by several 
genes on IHD [11]. In the present study, we conducted a 
two-sample MR study to assess the effect of genetically 
predicted n-3 PUFAs on IHD, using genetically instru-
mented n-3 PUFAs from previous studies and a very 
large case–control dataset of IHD from public consortia. 
In addition, cardiometabolic risk factors (CRFs) of IHD, 
including type 2 diabetes (T2D), hyperlipidemia, hyper-
tension, and abdominal obesity were similarly assessed.

Methods
Genetic instruments for n‑3 PUFAs
Genetic instruments for n-3 PUFAs were obtained from 
published genome-wide association studies (GWAS) 
conducted by the Cohorts for Heart and Aging Research 
in Genomic Epidemiology (CHARGE) consortium [12]. 
The CHARGE Consortium is a design of prospective 
meta-analyses of GWAS from five population-based 
cohorts comprising 8,866 subjects of European ancestry 

and can be used for proxy plasma levels of n-3 fatty 
acids. The different n-3 PUFAs share a common meta-
bolic pathway and single nucleotide polymorphisms 
(SNPs) known to influence one n-3 PUFA typically also 
have strong effects on the others [12]. All SNPs chosen as 
IVs were associated with the relevant n-3 PUFAs (ALA, 
DHA, DPA, and EPA) and reached genome-wide signifi-
cance (p < 5 × 10–8) (Additional file 1: Tables S1–S4). The 
linkage disequilibrium (LD) between instrumental SNPs 
was obtained using LDlink [13], a web-based LD analysis 
tool designed to easily query pair-wise LD between SNPs 
in specific population groups.

Genetic associations with IHD, T2D, lipids, blood pressure, 
body mass index (BMI), and waist‑to‑hip ratio (WHR)
Genetic associations with IHD were obtained from 
the published meta-analysis of UK Biobank SOFT 
CAD GWAS with the CARDIoGRAMplusC4D 1000 
Genomes-based GWAS and the Myocardial Infarction 
Genetics and CARDIoGRAM Exome, which is the most 
up-to-date GWAS of IHD applied to the UK Biobank 
and involved 113,937 IHD cases and 339,115 controls 
in total. The UK Biobank SOFT CAD GWAS comprised 
10,801 cases and 137,371 controls, and 94% of the par-
ticipants were of self-reported European ancestry [14]. 
SOFT CAD phenotypes in UK Biobank encompassed 
individuals with fatal or nonfatal myocardial infarction 
(MI), percutaneous transluminal coronary angioplasty 
(PTCA), or coronary artery bypass grafting (CABG), 
chronic IHD, and angina. Controls were those who were 
free from case status. The CARDIoGRAMplusC4D 1000 
Genomes-based GWAS consortium comprised 60,801 
cases and 123,504 controls and most of the participants 
(77%) were of European descent [15]. IHD status was 
determined from clinical diagnosis, medical records and 
self-reports of medication usage, procedures such as 
revascularization, and other evidence of stenosis such 
as from coronary angiography. The Myocardial Infarc-
tion Genetics and CARDIoGRAM Exome consortium 
comprised 42,335 cases and 78,240 controls and all of the 
participants were of European descent [16].

Genetic associations with diabetes were obtained from 
the DIAbetes Genetics Replication and Meta-analysis 
(DIAGRAM) consortium. The DIAGRAM consortium 
is a grouping of researchers with shared interests in per-
forming large-scale studies to characterize the genetic 
basis of T2D. The stage 1 analyses comprised a total of 
26,676 T2D cases and 132,532 control participants of 
European descent [17]. Genetic associations with lipids, 
including high-density lipoprotein (HDL) cholesterol, 
low-density lipoprotein (LDL) cholesterol, total choles-
terol (TC), and triglycerides (TG), were obtained from 
the Global Lipids Genetics Consortium (GLGC), which 
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included 188,577 European-ancestry individuals and 
7,898 non-European ancestry individuals [18]. Genetic 
associations with blood pressure, systolic and diastolic 
blood pressure (SBP and DBP), were obtained from the 
International Consortium for Blood Pressure (ICBP), 
which included 69,395 individuals of European ances-
try [19]. Genetic associations with BMI and WHR were 
obtained from the meta-analysis of GWAS for body fat 
distribution in UK Biobank and Genetic Investigation of 
Anthropometric Traits (GIANT) and included 694,649 
individuals of European ancestry [20].

Statistical analysis
In this study, we conducted a two-sample MR analysis 
using R version 4.0.3 (R Foundation for Statistical Com-
puting, Vienna, Austria) and the R package for Mende-
lian randomization (version 0.5.1). The main methods 
included inverse-variance weighted (IVW), Mendelian 
randomization-Egger (MR-Egger), MR-PRESSO (Men-
delian Randomization Pleiotropy Residual Sum and 
Outlier), and weighted median (WM) methods [21–23]. 
These methods have their advantages and can com-
plement each other, providing a more reliable causal 

inference for our study. The MR-PRESSO method can 
identify and exclude SNPs that most likely display pleio-
tropic effects [21]. All statistical tests were two-sided, and 
p < 0.05 was considered statistically significant.

As shown in Fig.  1, MR analysis relies on three strin-
gent assumptions [24]: (1) the genetic instruments 
(SNPs) used as IVs are strongly predictive of n-3 PUFA, 
(2) the association of genetic instruments with IHD is not 
confounded by measured or unmeasured factors, (3) the 
effect of the genetic instrument on IHD should be fully 
mediated via n-3 PUFAs and not through any alterna-
tive causal pathways. Pleiotropic genetic instruments 
violate the MR assumptions and may lead to false-posi-
tive results, interfering causal inference. We identified 
potential pleiotropic genetic instruments in the follow-
ing ways. First, we examined the latest representative 
GWAS results (the DIAGRAM consortium, the GLGC 
consortium, the ICBP consortium, the UK Biobank, and 
the GIANT) to identify associations between our genetic 
instruments and potential biological confounding fac-
tors, including diabetes, lipids, blood pressure, BMI, 
and WHR. Secondly, potential pleiotropic effects of the 
genetic instruments were investigated by searching the 

Instrumental variables
Plasma n-3 PUFA associated 
SNPs (n=26)

Exposure
Plasma n-3 PUFA levels

Outcome
Risk of IHD and 
cardiometabolic risk factors

Data sources
GWASs of 8866 individuals of European
ancestry for ALA, DHA, DPA and EPA
(PMID: 21829377)

Data sources
UK Biobank (n=111,986)
CARDIoGRAMplusC4D (n=184,305)
DIAGRAM (n=159,208)
GLGC (n=188,577)
ICBP (n=69,395)
GIANT (n=694,649)

Confounders

Assumption 2

Assumption 3

Assumption 1

Fig. 1  Assumptions of a Mendelian randomization analysis and data sources. Mendelian randomization analysis rests on 3 assumptions. First, the 
genetic instruments used as instrumental variables are strongly predictive of exposure (this study specifically refers to n-3 PUFAs, Assumption 1). 
Second, the association of genetic instruments with outcome (for example, IHD in this study) is not confounded by measured or unmeasured 
factors (Assumption 2). Third, the effect of the genetic instrument on outcome (IHD) should be fully mediated via exposure (n-3 PUFAs) and not 
through any direct or alternative causal pathways (Assumption 3). ALA α-linolenic acid, DHA docosahexaenoic acid, DIAGRAM DIAbetes Genetics 
Replication and Meta-analysis, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, GIANT Genetic Investigation of Anthropometric Traits, GLGC 
Global Lipids Genetics Consortium, GWAS genome-wide association studies, ICBP International Consortium for Blood Pressure, IHD ischemic heart 
disease, PUFAs polyunsaturated fatty acids, SNP single nucleotide polymorphism
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literature. Genetic instruments with potential pleiotropy 
were excluded.

Results
Genetic instruments for n‑3 PUFAs
After removing SNPs in linkage disequilibrium with 
the other SNPs (r2 > 0.1), 31 genome-wide significant 
(p < 5 × 10–8) n-3 PUFA-associated SNPs were retained 
for subsequent analysis (Additional file  1: Table  S5). 
According to these 31 instrumental SNPs, genetic asso-
ciations with IHD and CRFs were found from the cor-
responding GWAS database (Additional file  1: Tables 
S6–S16). Then, we examined the GWAS database to 
identify potential pleiotropic SNPs and found SNPs that 
were associated with potential confounders. Three SNPs 
were associated with HDL (rs174547, rs7942717, and 
rs174538, Additional file 1: Table S10), three SNPs were 
associated with TC (rs174547, rs780094, and rs174538, 

Additional file  1: Table  S11), four SNPs were associated 
with TG (rs174547, rs7942717, rs780094, and rs174538, 
Additional file  1: Table  S12), and one SNP was associ-
ated with BMI (rs780094, Additional file  1: Table  S16). 
As pleiotropic SNPs are likely to violate the assumptions 
underlying MR, these SNPs were excluded from the set 
of IVs. No additional pleiotropic SNPs were further iden-
tified by other methods. Finally, 26 n-3 PUFA-associated 
SNPs were retained for IVs. These SNPs explained 0.940% 
(0.148–3.502%) of the variance in plasma n-3 PUFA lev-
els (Table 1).

The strength of the genetic instruments was evaluated 
by the F-statistic. According to methods of a previous 
study [25, 26], summary statistics from a previous n-3 
PUFA GWAS [12, 27] were used to calculate the F-statis-
tic. Our results showed the F-statistic of all instrumental 
SNPs was > 10 (mean 85, from 13 to 322) (Table 1), indi-
cating strong genetic instruments for n-3 PUFAs [28].

Table 1  Characteristics of the SNPs associated with plasma levels of n-3 polyunsaturated fatty acids (PUFAs)

ALA α-linolenic acid, Chr. chromosome, DHA docosahexaenoic acid, DPA docosapentaenoic acid, EA effect allele, EAF effect allele frequency, EPA eicosapentaenoic acid, 
F F-statistic, NEA non-effect allele, PUFAs polyunsaturated fatty acids, SE standard error, SNP single nucleotide polymorphism, VE variation explained

VE (%) = (2 × Effect2 × EAF × (1 − EAF)/var (n-3 PUFAs)) × 100, var (n-3 PUFA) is the variance of n-3 PUFA and was deduced based on literature data (PMID: 27490808). 
F-statistic is a measure of the strength of the genetic instrument and is calculated as follows: F = (R2 × (n − 1 − k))/((1 − R2) × k), where R2 = VE (%), n = sample size, 
k = number of instrumental variables

n-3 PUFA Nearest gene SNP Chr. position EA/NEA EAF Effect SE p-value VE (%) F

ALA FEN1 rs412334 11:61316837 t/c 0.16 − 0.0118 0.0016 9.72E−14 0.342 30

C11orf9 rs198464 11:61278197 a/g 0.50 − 0.0057 0.0009 2.48 E−11 0.148 13

C11orf10 rs740006 11:61314444 t/c 0.90 0.0163 0.0025 1.32 E−10 0.440 39

C11orf9 rs17762402 11:61309777 a/g 0.07 − 0.0186 0.0029 1.56 E−10 0.411 37

DHA ELOVL2 rs2236212 6:10995015 c/g 0.41 − 0.1132 0.0141 1.26 E−15 0.646 58

DPA ELOVL2 rs3734398 6:10982973 t/c 0.57 − 0.0404 0.0029 9.61 E−44 2.667 243

FEN1 rs412334 11:61560261 t/c 0.16 0.0554 0.0052 1.40 E−26 2.750 251

C11orf10 rs740006 11:61557868 t/c 0.9 − 0.0764 0.0079 4.50 E−22 3.502 322

FADS3 rs7394871 11:61652514 a/c 0.05 − 0.0637 0.0078 3.56 E−16 1.285 115

FADS2 rs498793 11:61624705 t/c 0.43 0.0307 0.0038 5.84 E−16 1.540 139

SYCP2L rs12199131 6:10932569 a/g 0.26 0.0267 0.0033 7.69 E−16 0.914 82

RAB3IL1 rs174472 11:61671956 a/g 0.58 0.0274 0.0037 5.74 E−14 1.219 109

C11orf9 rs17762402 11:61553201 a/g 0.06 0.0805 0.0109 1.42 E−13 2.437 221

SYCP2L rs6928281 6:10908917 t/g 0.72 0.0226 0.0032 8.04 E−13 0.686 61

C11orf9 rs198464 11:61521621 a/g 0.49 0.0191 0.0028 7.47 E−12 0.608 54

FADS2 rs17156442 11:61614023 t/c 0.05 − 0.0513 0.0077 2.09 E−11 0.833 74

BEST1 rs1109748 11:61722645 a/c 0.07 − 0.0400 0.0068 5.09 E−09 0.694 62

ELOVL2 rs6936315 6:11035972 t/c 0.84 0.0244 0.0043 1.34 E−08 0.533 48

FTH1 rs10792320 11:61746291 a/c 0.65 0.0160 0.0030 8.49 E−08 0.388 35

BEST1 rs2727266 11:61704334 a/g 0.93 0.0308 0.0058 8.86 E−08 0.412 37

EPA FADS3 rs7394871 11:61652514 a/c 0.05 − 0.0912 0.0128 1.13 E−12 0.494 44

ELOVL2 rs3798713 6:11008622 c/g 0.42 0.0350 0.0050 1.93 E−12 0.373 33

BEST1 rs1109748 11:61722645 a/c 0.07 − 0.0535 0.0092 5.46 E−09 0.233 21

FEN1 rs412334 11:61560261 t/c 0.16 0.0440 0.0081 4.59 E−08 0.325 29

FADS2 rs498793 11:61624705 t/c 0.43 0.0351 0.0064 5.11 E−08 0.377 34

MAT2B rs1145652 5:164764087 a/g 0.87 0.0356 0.0066 8.39 E−08 0.179 16
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Associations of n‑3 PUFAs with IHD
Figure 2 and Table S17 (Additional file 1) showed higher 
ALA was associated with lower IHD risk, based on IVW 
(p = 0.027) and WM (p = 0.006), but with inconsist-
ent results from MR-Egger (p > 0.05) and MR-PRESSO 
(p > 0.05). ALA was not associated with MI, with con-
sistent results, based on all 4 methods (IVW, WM, MR-
Egger, and MR-PRESSO) (all p > 0.05). DPA and EPA were 
not significantly associated with IHD or MI, with consist-
ent results from all 4 methods (all p > 0.05). MR-Egger 
intercepts p > 0.05 suggested little evidence of directional 
pleiotropy in all analyses. As WM, MR-Egger and MR-
PRESSO methods require a minimum of 3 IVs, the asso-
ciations of DHA with IHD, MI and CRFs were estimated 
by IVW only, and the results showed that DHA was not 
associated with IHD or MI (all p > 0.05).

Associations of n‑3 PUFAs with T2D, lipids, blood pressure, 
BMI, and WHR
We also tested the association of n-3 PUFAs with CRFs. 
As shown in Fig.  2 and Table  S17 (Additional file  1), 
ALA was associated with a lower risk of T2D (IVW, MR-
PRESSO) and lower HDL (IVW, WM, MR-PRESSO), 
LDL (IVW, WM), TG (IVW, WM), and TC (IVW, WM) 
levels (p < 0.05 or 0.001). ALA had no association with 
SBP, DBP, BMI, or WHR (all p > 0.05). There was little evi-
dence of directional pleiotropy based on the MR-Egger 
intercept (all p > 0.05).

DPA was associated with a higher risk of T2D (IVW, 
WM, MR-PRESSO) and higher HDL (IVW), LDL (IVW, 
WM, MR-PRESSO), TC (IVW, WM, MR-PRESSO), and 
WHR (IVW, WM, MR-PRESSO) (p < 0.05 or 0.001). 
DPA had no association with TG, SBP, DBP, or BMI (all 
p > 0.05), and there was little evidence of directional plei-
otropy based on the MR-Egger intercept (all p > 0.05). 
EPA was associated with higher LDL (IVW, WM), TC 
(IVW, WM), WHR (IVW), and lower SBP (MR-Egger), 
DBP (MR-Egger). As for TG, there were inconsistent 
results: WM indicated TG was a risk factor whereas 
MR-Egger indicated TG was a protective factor (both 
p < 0.05). EPA had no association with T2D, HDL, or BMI 
(all p > 0.05). Based on the MR-Egger intercept, there was 
potential pleiotropy between EPA and LDL (p = 0.021), 
TC (p = 0.044), TG (p = 0.003), SBP (p = 0.012), and DBP 

(p < 0.001). In this case, the MR-PRESSO results should 
prevail and we conclude that EPA had no association 
with LDL, TC, TG, SBP, or DBP (all p > 0.05). DHA had 
no association with CRFs.

Discussion
This MR study showed that a genetic predisposition 
toward higher plasma ALA level is associated with a 
lower risk of IHD, but not MI. The effect size (beta coeffi-
cient) per 0.05-unit increase (about 1 SD) in plasma ALA 
level was −  1.173 (95% confidence interval −  2.214 to 
− 0.133) for IHD. In contrast, genetically-predicted levels 
of marine-derived n-3 PUFAs (DHA, DPA, and EPA) had 
no association with IHD or MI.

On primary prevention of CVD, Abdelhamid et  al. 
[3] found increased ALA may slightly reduce the risk of 
cardiovascular events, coronary heart disease (CHD) 
mortality, and arrhythmia, and Pan et  al. [29] found 
dietary ALA is associated with a moderately lower risk 
of fatal CHD, with each 1 g/d increment of ALA intake 
being associated with a 10% lower risk of CHD death. 
By assessing the primary incidence of CHD in generally 
healthy, free-living populations around the world, Del 
Gobbo et al. [30] also found ALA to be associated with a 
9% lower risk of fatal CHD. From the data extracted from 
the UK Biobank SOFT CAD GWAS and the CARDIo-
GRAMplusC4D 1000 Genomes-based GWAS consortia, 
our results also demonstrate beneficial primary health 
outcomes for ALA. However, for secondary prevention 
of CVD, there is little or no effect of ALA, as previously 
suggested [31], or the evidence is scarce.

Our results, combined with previous findings, support 
the favorable effects of ALA specifically for the primary 
prevention of IHD. Mechanistically, these findings are 
supported by the effects of ALA on improving lipid pro-
file (TC, TG, LDL) [32] and cholesterol homeostasis [33], 
ameliorating sympathetic heart activity and denervation 
[34, 35], decreasing fasting free fatty acid and inhibiting 
inflammation and platelet activation [36]. A meta-analy-
sis of 18 observational studies in generally healthy popu-
lations found that ALA may be associated with modestly 
lower risk T2D [37]. Our results also show that geneti-
cally-predicted higher plasma ALA is associated with a 
lower risk of T2D and lower LDL, HDL, TG, and TC. It is 

(See figure on next page.)
Fig. 2  Mendelian randomization (MR) analysis testing the effects of n-3 PUFAs on IHD and cardiometabolic risk factors. Results obtained using 4 
MR methods (IVW: inverse-variance weighted, WM: weighted median, MR-Egger: Mendelian randomization-Egger, and MR-PRESSO: Mendelian 
Randomization Pleiotropy Residual Sum and Outlier) are presented as a heat map representing causal estimates (CE). CE of SBP and DBP exceeded 
that of the others a lot. In order to show the others CE better, CE of SBP and DBP were not included in the heat map. ALA α-linolenic acid, BMI body 
mass index, DHA docosahexaenoic acid, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, HDL high-density lipoprotein, IHD ischemic heart 
disease, LDL low-density lipoprotein, MI myocardial infarction, T2D type 2 diabetes, TC total cholesterol, TG triglycerides, WHR waist-to-hip ratio. 
*Indicates p < 0.05 for a particular MR approach
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IVW WM MR-Egger MR-PRESSO

ALA

IHD * *
MI
T2D * *
HDL * * *
LDL * *
TC * *
TG * *
BMI
WHR

DPA

IHD
MI
T2D * * *
HDL *
LDL * * *
TC * * *
TG
BMI
WHR * * *

EPA

IHD
MI
T2D
HDL
LDL * *
TC * *
TG * *
BMI
WHR *

DHA

IHD / / /
MI / / /
T2D / / /
HDL / / /
LDL / / /
TC / / /
TG / / /
BMI / / /
WHR / / /

Causal estimate

Fig. 2  (See legend on previous page.)
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well known that LDL is the initiator of IHD [38], hyper-
triglyceridemia is the residual risk of IHD [39, 40], while 
diabetes could negatively affect clinical outcomes of IHD, 
in patients admitted for ST-elevation myocardial infarc-
tion (STEMI) [41–43], non-STEMI [44] or stable IHD 
[45, 46]. From this perspective, ALA can reduce the risk 
of IHD in many ways. N-3 PUFAs do not affect athero-
sclerotic progression, plaque stability, plaque rupture, or 
thrombosis [10]. This may be related to the ineffective-
ness of ALA on MI. Clinically, the phenotypes of MI are 
not equal to the presence of coronary atherosclerosis. 
Coronary atherosclerosis may progress as acute coronary 
thrombotic occlusion or MI, often due to the rupture of 
an unstable plaque [47–49], usually occurring in plaques 
with a thin, eroded fibrous cap, regardless of the degree 
of stenosis [47, 50]. Many patients live to advanced age 
with stable, significant IHD and never suffer an MI.

The clinical research on marine-derived n-3 PUFAs 
(DHA, DPA, and EPA) has been full of twists and turns. 
Before the use of statins, most of the studies on the car-
dioprotection of marine-derived n-3 PUFAs were posi-
tive [51]. However, after statins became widely used, most 
studies reported neutral effects [52, 53]. In recent years, 
the cardioprotective role of marine-derived n-3 PUFAs, 
especially EPA and DHA, has become increasingly dis-
puted [54, 55]. Dietary recommendations of EPA and DHA 
have also been downgraded from Class I to Class II [53], is 
the reason being that a large number of more recent RCTs 
[6, 7] and integration analyses have found little or no effect 
of EPA or DHA on cardioprotection [4, 5], particularly for 
primary prevention of CVD [3, 8, 9]. Even when there is an 
effect, the effect is only seen in studies with a moderate to 
high risk of bias [56]. Some researchers even think fish oil 
has disappointing therapeutic benefits [5].

In contrast, other researchers still have hope for 
marine-derived n-3 PUFAs, especially EPA. They 
acknowledge that, in over-the-counter formulations 
(EPA + DHA or fish oil) at common dosages, primary 
prevention of CVD by marine-derived n-3 PUFAs, is 
ineffective and that secondary prevention is controver-
sial [10]. They attribute the failure of the previous trials to 
the low dose and impure formulation of marine-derived 
n-3 PUFAs, short intervention duration, high back-
ground of fish intake, and inappropriate participants [51, 
52, 55]. With the large success of the REDUCE-IT trial 
[57], proponents put their hopes on highly purified EPA 
(icosapent ethyl), which will lower plasma TG levels, 
and have given some constructive suggestions for future 
clinical trials [55]. At this time, the AHA also has given 
more affirmative recommendations to support the use 
of marine-derived n-3 PUFAs for reducing the residual 
risk of CVD that remains after statin therapy [58]. How-
ever, as fibrates [59] and PCSK9 inhibitors [60] not only 

reduce TG, similar to EPA, but also increase HDL and 
reduce LDL, a new debate arises as to whether we should 
use fibrates instead of EPA or PCSK9 inhibitors instead 
of a statin/EPA combination [61]. So, it seems that the 
debate on the cardioprotection of marine-derived n-3 
PUFAs will continue.

Our research explores the role of marine-derived n-3 
PUFAs from another perspective and finds individual 
marine-derived n-3 PUFAs have no association with IHD 
or MI in generally healthy populations. As for CRFs, DPA 
is associated with a higher risk of T2D and higher HDL, 
LDL, TC, and WHR; EPA is associated with higher WHR, 
and DHA does not affect CRFs. Most prior studies showed 
that, except for reducing TG [57, 61], marine-derived n-3 
PUFAs do not affect most CRFs or intermediate outcomes 
[3, 9], including high CAD risk factors, i.e. LDL and 
T2D [9, 37]. Only a few studies have shown that marine-
derived n-3 PUFAs significantly reduce blood pressure 
[62], with the greatest reductions in untreated hyperten-
sion. Some studies even suggest that marine-derived n-3 
PUFAs may increase LDL [52, 58], which may negate any 
cardiovascular benefits [61]. Recently, a large general-
practice RCT show that for patients with multiple cardio-
vascular risk factors (the criterion was defined as at least 
four of the following, or for patients with diabetes, at least 
one of the following: age of 65  years or older, male sex, 
hypertension, hypercholesterolemia, current smoker, obe-
sity, family history of premature cardiovascular disease), 
treatment with n-3 PUFAs (1 g DHA + EPA daily, with a 
median of 5 years of follow-up) did not reduce cardiovas-
cular mortality and morbidity [63].

There are some limitations to our study. First, in our 
study, both IVs and outcomes come from Europe. This 
avoids population stratification and conforms to the 
homogenous principle of an MR study [11]. However, 
as few n-3 PUFA GWAS are available for African Amer-
icans, Chinese, or other races, the potential effects of 
n-3 PUFAs by race remains to be explored. Similarly, 
as there are ethnic differences in the risk of cardiovas-
cular disease [64], we need to be cautious in applying 
our findings to other populations. Second, n-3 PUFAs 
can be detected in many components of the body (e.g., 
serum, plasma, phospholipids, cholesterol esters, and 
adipose tissue) and affect many CVD subtypes (e.g., 
sudden cardiac death, congestive heart failure, arrhyth-
mia, acute coronary syndrome, and stroke), but our 
study did not analyze this one by one. A comprehen-
sive analysis of n-3 PUFAs in different components 
and their association with different disease subtypes 
may help to reduce potential bias and provide a better 
understanding of the effect of n-3 PUFAs on cardio-
vascular health. Third, most instrumental SNPs explain 
a small proportion variance of n-3 PUFAs. This may 
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reduce the power to detect small effects of n-3 PUFAs 
on IHD risk in our MR framework. Fourth, the effect of 
n-3 PUFAs on IHD and CRFs found in this study rep-
resent a lifelong cumulative effect and are not directly 
comparable to those derived from conventional obser-
vational or clinical studies. Finally, we could not assess 
whether the effect of n-3 PUFAs on IHD and CRFs var-
ied by sex, age, or the baseline level of n-3 PUFAs as 
these data are not freely available.

Conclusions
In summary, this study indicates there are favorable 
effects of plant-derived ALA on IHD and CRFs, but 
there is no causal association between marine-derived 
n-3 PUFAs (DHA, DPA, EPA) and the risk of IHD. Com-
bined with the more affordable, globally accessible, and 
sustainable plant sources of ALA, compared to marine-
derived n-3 PUFAs, our study emphasizes the need to 
further explore the benefits of ALA on IHD. The benefits 
of marine-derived n-3 PUFAs supplements for cardio-
protection remain uncertain and require testing in rand-
omized clinical trials.
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