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Abstract 

Objective: To investigate the relationship between ST-segment resolution (STR) and myocardial scar thickness after 
percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI).

Methods: Forty-two STEMI patients with single-branch coronary artery stenosis or occlusion were enrolled. ST-
segment elevations were measured at emergency admission and at 24 h after PCI. Late gadolinium-enhanced cardiac 
magnetic resonance imaging (CMR-LGE) was performed 7 days after PCI to evaluate myocardial scars. Statistical analy-
ses were performed to assess the utility of STR to predict the development of transmural (> 75%) or non-transmural 
(< 75%) myocardial scars, according to previous study.

Results: The sensitivity and specificity of STR for predicting transmural scars were 96% and 88%, respectively, at an 
STR cut-off value of 40.15%. The area under the curve was 0.925. Multivariate logistic proportional hazards regression 
analysis disclosed that patients with STR < 40.15% had a 170.90-fold higher probability of developing transmural scars 
compared with patients with STR ≥ 40.15%. Pearson correlation and linear regression analyses showed STR percent-
age was significantly associated with myocardial scar thickness and size.

Conclusion: STR < 40.15% at 24 h after PCI may provide meaningful diagnostic information regarding the extent of 
myocardial scarification in STEMI patients.
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Introduction
Transmural myocardial scars of the left ventricle that 
complicate ST-segment elevation myocardial infarction 
(STEMI) predispose to heart failure and cardiac death. 
Therefore, early identification and analysis of myocar-
dial scars are particularly important [1]. The size and 
tissue heterogeneity of healing scars identified by late 

gadolinium-enhanced cardiac magnetic resonance imag-
ing (CMR-LGE) are independent predictors of arrhyth-
mia and sudden cardiac death [2–7]. CMR-LGE is the 
gold standard for the diagnosis of myocardial scar and 
assessment of myocardial salvage [8–11], but is expen-
sive, time-consuming, unfit for wide population studies, 
and generally contraindicated in patients with cardiac 
implants. These disadvantages have restricted its clinical 
application.

Delayed ST-segment resolution (STR) is prevalent dur-
ing major adverse cardiovascular events, and is predictive 
of arrhythmia, heart failure, and 30-day mortality [12]. 
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We hypothesized that analysis of STR could represent a 
convenient, widely accessible, and inexpensive diagnos-
tic method for patients who cannot tolerate CMR-LGE. 
Consequently, the aim of our study was to establish 
whether poor STR, as well as CMR-LGE findings, can 
detect myocardial scarification in the early post-infarc-
tion period in STEMI patients.

Methods
Study design and population
Forty-two consecutive patients with STEMI treated 
with coronary angiography and percutaneous coronary 
intervention (PCI) within 12 h of the onset of pain were 
enrolled between March 2017 and October 2017. Inclu-
sion criteria were (1) single-branch coronary artery 
stenosis or occlusion, and (2) restoration of coronary per-
fusion to TIMI flow grade 3 after PCI. Exclusion criteria 
were a prior history of the acute coronary syndrome; cor-
onary revascularization; severe chronic kidney disease; 
intracardiac pacing leads or other implants precluding 
CMR-LGE; hemodynamic instability; or known claustro-
phobia. The study was performed at the First Affiliated 
Hospital of Chongqing Medical University, China. Demo-
graphic and clinical characteristics including ECG STR 
24 h after PCI were recorded. CMR-LGE was performed 
7 days after PCI. This study was conducted in accordance 
with the Declaration of Helsinki. The research protocol 
was approved by the locally appointed Ethics Commit-
tee, and written informed consent was obtained from all 
study participants.

CMR‑LGE protocols
Patients were examined in the supine position using a 
1.5-T imaging unit (Signa Infinity Twinspeed, General 
Electric Healthcare, USA) equipped with master gra-
dients (30 mT/m peak gradients; 150 mT/m/ms slew 
rate) and a 5-element cardiac phased-array receiver coil. 
Images were obtained using electrocardiographic gating 
and expiratory breath holds. A dose of 0.2  mmol/kg of 
body weight of gadopentetate dimeglumine (Magnevist; 
Bayer Schering Health Care, Cambridge, UK) was admin-
istered intravenously at a rate of 5  ml/s with a power 
injector. Ten minutes after contrast agent injection, a 
Look-Locker sequence was performed to obtain the most 
appropriate inversion time to nullify the signal intensity 
of normal myocardium. The left ventricular short-axis 
imaging layer was 8 mm thick and 0 mm apart. The left 
ventricular 2-chamber and 4-chamber scanning imaging 
layers were 5 mm thick and 0 mm apart. This was imme-
diately followed by the acquisition of LGE images, with an 
inversion recovery prepared T1-weighted gradient-echo 
sequence (4.9/1.9; flip angle, 15 degrees; turbo field-echo 

factor, 30; spatial resolution, 1.35 × 1.35 × 10  mm). Late 
gadolinium enhancement was interpreted as present or 
absent by the consensus of two CMR-trained physicians, 
and was considered present only if confirmed on both 
short-axis and matching long-axis myocardial locations.

First, we marked the segments of the myocardial scar 
with the bull’s eye segmental comparison (17-segment 
model) and compared them with the results of coronary 
angiography. Second, we searched for the thickest myo-
cardial scar layer-by-layer on the short axis imaging and 
calculated the percentage of the thickness of the myo-
cardial scar, which was defined as a transmural myocar-
dial scar when the percentage was > 75%, according to 
previous study [13]. Beek et  al. demonstrated that the 
transmural extent is relevant in predicting myocardial 
functional recovery: The likelihood of complete func-
tional recovery of segments without LGE was 3.8, 11.1, 
and 50 times higher than that of segments with 26–50%, 
51–75%, and > 75% LGE, respectively (P < 0.001) [13]. 
Finally, we recorded the area of myocardial scar and cal-
culated the percentage of myocardial scar volume by seg-
ment software.

ECG protocols
Standard 18-lead ECGs were obtained at emergency 
admission and 24 h after coronary angiography and PCI. 
The TP segment was used as the isoelectric line in the 
ST-segment measurement. The ST segment was meas-
ured 20  ms after the J point. The summed ST-segment 
elevation was measured by adding the ST amplitude in 
all leads with ST-elevation at emergency admission and 
24 h after PCI [14–16]. STR percentage was calculated as 
the initial sum of ST-segment elevation minus the sum of 
ST-segment elevation on the second ECG, divided by the 
initial sum of ST-segment elevation.

Statistical analysis
Basic descriptive statistics were used. CMR-LGE loca-
tion data were described on a patient-by-patient basis. 
Statistical analyses were performed to assess the clinical 
utility of using of STR to predict myocardial scarifica-
tion. Myocardial scars were assessed using two measures: 
(1) scar thickness and (2) scar size. Receiver operating 
characteristic (ROC) curve analysis, logistic regression 
analysis, and multivariate logistic proportional-hazards 
regression estimated transmural myocardial scar. Pear-
son correlation and linear regression analyses were used 
to investigate the coefficients of STR percentage with 
myocardial scar thickness and size. Myocardial scar 
thickness and size difference between two ST-segment 
resolution groups were analyzed by t-test. All statistical 
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analyses were performed using SPSS v.22.0 (IBM, 
Armonk, NY, USA). P value < 0.05 was considered statis-
tically significant.

Results
Location, size, thickness of the myocardial scar determined 
by CMR‑LGE
Myocardial scars were diagnosed in 41 of 42 STEMI 
patients (96.7%) by using CMR-LGE. A patient-by-
patient visual analysis of scar tissue location in the 
STEMI group, with bull’s eye segmental comparison of 
CMR-LGE findings is shown in Additional file 1: Fig. S1. 
In all patients, the anatomic locations of scars defined 
by CMR-LGE corresponded to the distributions of the 
culprit vessels treated with primary angioplasty. For 
example, in a patient with angiographically proven left 
anterior descending coronary artery occlusion, CMR-
LGE indicated scarification of the basal and middle seg-
ments of the left anterior ventricular wall. In another 
patient with right coronary artery occlusion, CMR-LGE 
disclosed a scar that involved the entire inferior wall of 
the left ventricle and the middle and apical segments of 
the posterior interventricular septum (Additional file  1: 
Fig. S2). However, scar size and thickness were unrelated 
to the degree of coronary artery occlusion. Stenoses in 
all culprit arteries exceeded 90%; nonetheless, there were 
significant inter-patient differences in scar size and thick-
ness (P < 0.001).

Determination of STR cut‑off value
A transmural scar was defined as a myocardial lesion 
extending > 75% of the wall thickness. All myocardial 
scars were classified as either non-transmural (0–75%) 
or transmural (76–100%) according to CMR-LGE results. 
The relationship of the ST-segment resolution percent-
age to transmural scarification was identified by the ROC 
curve. The ROC curve analysis demonstrated a sensitiv-
ity of 96% and a specificity of 88% to predict transmural 
myocardial scarification following STEMI at an STR cut-
off value of 40.15%. The area under the curve was 0.925 
(Fig. 1).

The cut-off of ST-segment resolution of 40.15%. Area 
under curve (AUC) = 0.925.

Patient characteristics of STR groups
Patients were divided into two groups: STR < 40.15% 
(n = 16) and STR ≥ 40.15% (n = 26). Compared with 
patients with STR ≥ 40.15%, patients with STR < 40.15% 
had significantly longer pain-to-balloon time; higher 
aspartate aminotransferase (AST), peak troponin-I, and 
brain natriuretic peptide (BNP) levels; lower left ventric-
ular ejection fraction (LVEF); and a higher prevalence of 

diuretic therapy. Other characteristics such as age; gen-
der; body mass index; histories of smoking, hypertension, 
and diabetes; hyperlipidemia; culprit artery; leukocyte, 
erythrocyte, and platelet counts; hemoglobin, hemo-
globin A1(c), alanine aminotransferase (ALT), and creati-
nine levels; left ventricular diastolic diameter; the use of 
therapeutic drugs other than diuretics; and coronary care 
unit residence time were similar between the two groups 
(Table 1).

Diagnostic value of STR < 40.15% for transmural 
myocardial scar
In the logistic regression analysis, LVEF (OR = 0.520, 95% 
CI 0.341–0.792), and STR < 40.15% (OR = 15.0, 95% CI 
1.981–113.556) were significant risk factors for transmu-
ral scars (Table 2).

Multivariate logistic proportional hazards regression 
analyses were used to evaluate the independent predic-
tive value of STR < 40.15%. After adjusting for BNP, Peak 
Troponin-I, AST, the OR of STR < 40.15% for transmu-
ral scar was 170.90 (95% CI 2.26–12,953.74, P = 0.020). 
STR < 40.15% showed significance for predicting trans-
mural scar (Table 3).

Relationship between STR percentage and myocardial scar 
thickness and size
Pearson correlation analysis demonstrated negative 
correlations between STR percentage and both scar 
thickness (r = − 0.838, P < 0.001) and size (r = − 0.714, 
P < 0.001) (Fig. 2). Linear regression analysis with STR (%) 
as the independent variable and myocardial scar thick-
ness and size as dependent variables were performed. For 
every 1% decrease in STR, the myocardial scar thickness 
and size decreases by 0.718% (95% CI − 0.867 ~ − 0.568, 

Fig. 1 ST-segment resolution with transmural myocardial scar. 
ROC curve analysis demonstrated the sensitivity and specificity of 
ST-segment resolution for predicting transmural cardiac scarring after 
STEMI were 96% and 88%
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Table 1 Baseline patient characteristics of different degrees of ST-segment resolution

Data are data are presented as mean ± SD, median (interquartile ranges), or number (%)

STEMI ST-segment elevation myocardial infarction, BMI body mass index, HP hypertension, DM diabetes mellitus, DES drug eluting stents, LAD left anterior descending 
coronary artery, LCC left circumflex coronary artery, RCA  right coronary artery, LVIDD left ventricular diastolic diameter, LVEF left ventricular ejection fraction, ACEI 
angiotensin converting enzyme inhibitors, ARB angiotensin receptor blocker, CCU  coronary heart disease care unit

*P < 0.05 comparing with ST-segment resolution ≥ 40% group

Variables All (n = 42) ST‑segment 
resolution ≥ 40.15%

ST‑segment 
resolution < 40.15%

P

(n = 26) (n = 16)

Male/female (n) 30/12 20/6 10/6 0.483

Age (years) 62.0 (54.5–70.0) 60.5 (52.8–70.3) 63.5 (59.5–69.5) 0.534

BMI (Kg/m2) 24.2 (23.0–25.6) 24.3 (23.4–25.8) 24.2 (21.9–24.7) 0.378

Smoking history (No, %) 27 (64.3%) 17 (65.4%) 10 (62.5%) 0.850

HP history (no, %) 27 (64.3%) 14 (53.8%) 13 (81.2%) 0.072

DM history (no, %) 16 (38.1%) 12 (46.2%) 4 (25.0%) 0.170

Hyperlipidemia (no, %) 21 (50.0%) 13 (50.0%) 8 (8.0%) 1.000

Pain to balloon time (h) 5.79 (3.67–7.60) 4.33 (3.50–6.23) 7.04 (5.81–8.40) * 0.001

Killip classification (no, %) 0.757

 Killip I 29 (74.4%) 19 (79.2%) 10 (66.67%)

 Killip II 10 (25.6%) 5 (20.8%) 5 (33.33%)

Number of DES (no, %) 0.142

 One 34 (87.2%) 22 (95.7%) 12 (75.0%)

 Two 3 (7.7%) 1 (4.3%) 2 (12.5%)

 Three 2 (5.1%) 0 (0.0%) 2 (12.5%)

Culprit artery, (No, %) 0.171

 LAD 18 (42.9%) 8 (30.8%) 10 (62.5%)

 LCC 11 (26.2%) 8 (30.8%) 3 (18.8%)

 RCA 13 (31.0%) 10 (38.5%) 3 (18.8%)

WBC count  (109/L) 9.85 (8.28–12.06) 10.09 (8.28–12.06) 9.72 (8.03–14.12) 0.875

RBC count  (1012/L) 4.44 (3.91–4.82) 4.44 (4.14–4.86) 4.45 (3.71–4.72) 0.449

Hb (g/L) 139.0 (125.0–151.0) 139.0 (128.0–151.0) 135.5 (113.3–150.8) 0.449

PLT  (109/L) 198.0 (163.0–238.0) 195.0 (160.0–213.0) 212.5 (175.0–282.3) 0.204

HbA1c (%) 6.0 (5.7–7.2) 6.1 (5.7–8.2) 5.9 (5.7–6.4) 0.188

ALT (U/L) 42.0 (35.0–56.0) 41.0 (35.0–56.0) 46.0 (36.0–53.5) 0.689

AST (U/L) 126.0 (52.0–209.0) 75.0 (35.0–153.0) 185.5 (101.1–237.3) 0.015

Cr (umol/L) 73.0 (60.0–81.0) 73.0 (59.0–81.0) 71.5 (60.3–83.3) 0.954

BNP (pg/ml) 57.9 (7.9–245.0) 11.7 (5.0–62.7) 227.5 (80.0–381.2) * < 0.001

Peak troponin-T (ng/ml) 11.6 (6.2–19.3) 7.0 (3.8–14.0) 18.6 (12.2–24.9) * < 0.001

LVIDd (mm) 49.0 ± 3.3 49.0 ± 3.3 49.5 ± 3.2 0.298

LVEF (%) 53.5 (48.0–58.25) 57.0 (53.5–61.0) 47.5 (44.3–50.0) * < 0.001

Scar thickness 70.0 (55.0–80.0) 59.0 (50.0–70.0) 81.0 (80.0–85.0) * < 0.001

Transmural myocardial scar (no, %) 17 (40.5%) 2 (7.7%) 15 (93.8%)* < 0.001

Scar size 17.35 (12.23–20.30) 12.90 (11.13–19.40) 20.00 (18.13–23.63) * 0.001

IIa/IIIb inhibitor (no, %) 17 (43.6%) 11 (47.8%) 6 (37.5%) 0.522

Aspirin (no, %) 39 (100.0%) 23 (100.0%) 16 (100.0%) 1.000

Ticagrelor/clopidogrel (no, %) 39 (100.0%) 23 (100.0%) 16 (100.0%) 1.000

Statins (no, %) 39 (100.0%) 23 (100.0%) 16 (100.0%) 1.000

β-blocker (no, %) 31 (79.5%) 17 (73.9%) 14 (87.5%) 0.432

ACEI/ARB 24 (61.5%) 14 (60.9%) 10 (62.5%) 0.918

Nitrates (no, %) 38 (97.4%) 22 (95.7%) 16 (100.0%) 1.000

Diuretics (no, %) 16 (41.0%) 6 (26.1%) 10 (62.5%) 0.023

CCU (hours) 48.0 (39.0–62.0) 47.0 (38.0–58.0) 52.5 (44.0–82.8) 0.123
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P < 0.001) and 0.214% (95% CI − 0.281 ~ − 0.147, 
P < 0.001), respectively (Table  4). In addition, com-
pared with patients with STR > 40.15%, patients with 
STR < 40.15% had significantly thicker and larger scars 
(Fig. 3).

Discussion
Our study showed that ECG, as a convenient and non-
invasive technique, can monitor the occurrence of 
transmural myocardial fibrosis after acute myocardial 
infarction. In our study, it is possible to detect myocardial 
scar by CMR-LGE at 7 days after PCI, even when PCI is 
performed within 12 h of the onset of pain. Many previ-
ous studies have focused on the correlation between STR 
in ECG and poor prognosis in patients with MI, but no 
cutoff value and clinical markers have been formed. Our 
study attempted to quantify the predictive value of STR 
for transmural myocardial scar after STEMI using a small 
sample.In our study population, there were no statisti-
cally significant differences in gender, age, BMI, smoking 
history, hypertension history, diabetes history, hyperlipi-
demia history, culprit artery, number of stent implanta-
tion, hemogram, HbA1c, ALT, CCU time and the use of 
drugs including IIa/IIIb inhibitor, Aspirin, Ticagrelor/
Clopidogrel, Statins, β-blocker, ACEI/ARB, Nitrates, 
Diuretics. However, compared with the STR ≥ 40.15% 
group, the incidence of transmural myocardial fibrosis 
was higher (P < 0.001) and the size of myocardial scar was 
larger (P = 0.001) in the STR < 40.15% group, the differ-
ence was statistically significant (Table 1).

Although many researchers believe the association of 
ST segment resolution and transmural myocardial scar, 
no one has really verified and quantified it. The associa-
tion between them may help diagnose myocardial fibrosis 
simply and quickly in the early clinical stage. Therefore, 
we use actual cases to verify and quantify the connection 
between ST segment resolution and transmural myocar-
dial scar. It is significant to quantify STR and apply such 
a convenient and non-invasive technique to the clinical 
monitoring of transmural fibrosis in myocardial infarc-
tion. Although CMR-LGE is the gold standard for the 
diagnosis of myocardial fibrosis, patients with cardiac 
scar often cannot tolerate CMR-LGE and other methods 

Table 2 Effects of various variables on transmural myocardial 
scar in logistic regression analysis

STEMI ST-segment elevation myocardial infarction, BMI body mass index, HP 
hypertension, DM diabetes mellitus, DES drug eluting stents, LAD left anterior 
descending coronary artery, LCC left circumflex coronary artery, RCA  right 
coronary artery, WBC white blood cell, RBC red blood cell, Hb haemoglobin, 
PLT platelet count, HbA1c hemoglobin A1c, ALT alanine aminotransferase, AST 
aspartate transaminase, Cr creatinine, BNP brain natriuretic peptide, LVIDD 
left ventricular diastolic diameter, LVEF left ventricular ejection fraction, ACEI 
angiotensin converting enzyme inhibitors, ARB angiotensin receptor blocker, 
CCU  coronary heart disease care unit

Characteristics OR (95%CI) P

Male, yes versus no 0.500 (0.234–1.068) 0.074

Age, per 1 years 0.994 (0.984–1.004) 0.238

BMI, per 1 kg/m2 0.984 (0.959–1.009) 0.206

Smoking history, yes versus no 0.588 (0.269–1.285) 0.183

HP history, yes versus no 1.077 (0.506–2.291) 0.847

DM history, yes versus no 0.333 (0.108–1.034) 0.057

Hyperlipidemia, yes versus no 0.615 (0.255–1.485) 0.280

Pain to balloon time, per 1 min 1.018 (0.928–1.118) 0.702

Killip classification, II versus I 1.500 (0.423–5.315) 0.530

Number of DES, two & three versus one 4.000 (0.447–35.788) 0.215

Culprit artery: RCD 1.00

Culprit artery: LAD 0.571 (0.167–1.952) 0.372

Culprit artery: LCC 0.444 (0.137–1.443) 0.177

WBC count, per 1 ×  109/L 0.971 (0.917–1.028) 0.317

RBC count, per 1 ×  1012/L 0.915 (0.792–1.058) 0.229

Hb, per 1 × g/L 0.997 (0.993–1.002) 0.241

PLT, per 1 ×  109/L 0.999 (0.996–1.002) 0.567

HbA1c, per 1% 0.936 (0.852–1.029) 0.172

ALT, per 1U/L 0.995 (0.984–1.007) 0.442

AST, per 1U/L 1.001 (0.998–1.004) 0.561

Cr, per 1 umol/L 0.995 (0.987–1.004) 0.283

BNP, per 1 pg/ml 1.003 (0.999–1.008) 0.120

Peak troponin-T, per 1 ng/ml 1.014 (0.975–1.054) 0.500

LVIDd, per 1 mm 0.993 (0.980–1.005) 0.255

LVEF, per 1% 0.520 (0.341–0.792) 0.002

ST-segment < 40.15%, yes versus no 15.0 (1.981–113.556) 0.009

Scar thickness 1.000 (0.991–1.009) 0.975

Scar size 0.993 (0.960–1.027) 0.685

IIa/IIIb inhibitor, yes versus no 0.545 (0.202–1.475) 0.232

β-blocker, yes versus no 0.824 (0.406–1.671) 0.591

ACEI/ARB, yes versus no 0.846 (0.379–1.889) 0.683

Nitrates, yes versus no 0.727 (0.382–1.385) 0.332

Diuretics, yes versus no 2.200 (0.764–6.332) 0.144

CCU, per 1 h 1.000 (0.989–1.011) 0.987

Table 3 Results of multivariate logistic proportional-hazards 
regression analyzing the effect of baseline variables on 
transmural myocardial scar

STEMI ST-segment elevation myocardial infarction, BNP brain natriuretic peptide, 
LVEF left ventricular ejection fraction, AST aspartate transaminase

Model OR (95%CI) P

Not adjusted ST-segment resolu-
tion < 40.15%, yes versus no

15.0 (1.98–113.56) 0.009

Model

 ST-segment resolution < 40.15%, 
yes versus no

170.90 (2.26–12,953.74) 0.020

 BNP, per 1 pg/ml 1.01 (0.99–1.02) 0.313

 Peak troponin-I, per 1 ng/ml 0.95 (0.75–1.21) 0.695

 AST, per 1U/L 1.00 (0.99–1.02) 0.615
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are needed to diagnose transmural scar. STR is a useful 
predictor of the final infarct size, left ventricular function, 
and clinical outcome after early reperfusion [17–19]. 
Nonetheless, the predictive value of STR is still contro-
versial [20, 21]. Rakowski et al. showed that STR < 70% is 
a marker of large infarct size [21]. However, the transmu-
ral depth of an infarction is more consequential than its 

size. To the best of our knowledge, there are no data to 
date on the relationship between STR and the transmural 
thickness of infarcted myocardium. Therefore, our study 
was focused on defining a specific cut-off value of STR for 
the diagnosis of transmural scars. We found that the pre-
dicted critical value of STR of a transmural myocardial 
scar after STEMI was 40.15%, with a sensitivity of 96% 
and a specificity of 88% (Fig.  1). Poor STR was related 
to thicker and larger scars (Figs.  2, 3). Previous studies 
have reported relationships between STR and reduced 
myocardial perfusion and between early STR and myo-
cardial rescue [22]. In addition, STR following PCI and 
restoration of perfusion to TIMI flow grade 3 was cor-
related with collateral circulation [23]. STR < 50% may 
be associated with worse left ventricular function and 
increased mortality [11, 24]. These results are consistent 
with our findings, but our study found that patients with 
STR > 40.15% had thinner and smaller myocardial scar.

STR is significant in monitoring the prognosis and 
treatment of transmural myocardial fibrosis after myo-
cardial infarction. Transmural myocardial scars are 
caused by ischemic injury followed by fibrosis of necrotic 
tissue [1, 25–27]. Poor perfusion, limited myocardial sal-
vage, and microvascular disease promote scarification. 
The severity and localization of ventricular wall injuries 
are also influenced by the length of coronary artery ste-
nosis and the degree of collateral circulation [28–30]. The 
extent of myocardial fibrosis is an important determinant 

Fig. 2 Pearson correlation analysis between ST-segment resolution and myocardial scar thickness or size. A Pearson correlation analysis was 
performed to evaluate ST-segment resolution was negatively correlated with scar thickness. r = − 0.838, P < 0.001. B Pearson correlation analysis was 
performed to evaluate ST-segment resolution was negatively correlated with scar size. r = − 0.714, P < 0.001

Table 4 Results of linear regression analysis with ST-segment resolution (%) as the independent variable and myocardial scar 
thickness and size as dependent variables

Dependent variables R2 B Std.error t P 95% CI for B

Myocardial scar thickness 0.702 − 0.718 0.074 − 9.707 < 0.001 (− 0.867, − 0.568)

Myocardial scar size 0.510 − 0.214 0.033 − 6.453 < 0.001 (− 0.281, − 0.147)

Fig. 3 Myocardial scar thickness and size difference between 
two ST-segment resolution groups. A Myocardial scar thickness 
was statistically significant in patients with ST-segment 
resolution < 40.15% and in patients with ST-segment resolution 
≥ 40.15% (t-Test). Data are reported as mean ± SD. *P < 0.001. B 
Myocardial scar size was statistically significant in patients with 
ST-segment resolution < 40.15% and in patients with ST-segment 
resolution ≥ 40.15% (t-Test). Data are reported as mean ± SD. 
*P < 0.001
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of prognosis. In STEMI, transmural MF usually leads to 
irreversible ventricular remodeling and heart failure, and 
is also the pathological basis for arrhythmias, and is gen-
erally considered to be associated with sudden cardiac 
death [31–34]. Nguyen et  al. [35] found that the sever-
ity of myocardial fibrosis was significantly correlated 
with the frequency of ventricular arrhythmias (r = 0.83, 
P < 0.01). Our study showed that the STR < 40.15% group 
had a higher incidence of transmural myocardial fibrosis, 
and no differences in the incidence of arrhythmias and 
readmission rate were found between the two groups, 
which may be related to the small sample size (Additional 
file  1: Fig. S3). Scientists’ understanding of the mecha-
nisms and consequences of cardiac fibrosis has only 
improved greatly in recent years, with the improvement 
of non-invasive techniques to better track its develop-
ment [36]. It is significant to explore the effect of STR 
on the prognosis of transmural myocardial fibrosis after 
myocardial infarction in a larger sample and a longer fol-
low-up time.

The physiology of STR is related to the restoration of 
myocardial perfusion. Following PCI of epicardial coro-
nary arteries, microvascular spasm and embolism may 
lead to persistent coronary microvascular dysfunction 
(CMD) and subsequently cause myocardial and especially 
endocardial ischemia. In the setting of CMD, extracellu-
lar potassium ion clearance is decreased, thus prolong-
ing repolarization and delaying STR. Poor STR reflects 
microvascular and left ventricular dysfunction [20, 37, 
38], and is thereby an important biomarker of CMD 
after PCI in STEMI patients. Inadequate perfusion due 
to CMD is the proximate cause of transmural myocar-
dial injury; consequently, assessment of the severity of 
ischemia by monitoring dynamic ST-segment changes is 
of the utmost importance. In our study, it was found that 
compared with the group with STR ≥ 40.15%, the pain 
to balloon time was significantly prolonged (P = 0.001), 
the left ventricular ejection fraction was significantly 
reduced (P < 0.001), and the troponin and BNP were 
higher (P < 0.001) in the group with STR < 40.15%. The 
delay of opening time of effective coronary blood flow 
in STR < 40.15% group may be an important reason for 
the aggravation of myocardial transmural injury and the 
formation of transmural myocardial fibrosis. Shortening 
the pain to balloon time may avoid or reduce the occur-
rence of poor STR, thus affecting the clinical prognosis of 
patients.

Limitations
There are several limitations of this study. First, this was 
a cross-sectional study with a relatively small number 
of patients. Second, it was difficult to recruit STEMI 
patients who were willing or able to undergo CMR-LGE 

7 days after PCI. Third, because this study was limited to 
STEMI patients, cross-validation analysis is needed to 
determine whether delayed STR can be used to predict 
myocardial scarification in non-STEMI patients. Fourth, 
to verify the clinical effects of STR, longer clinical follow-
up is needed, especially for the monitoring and follow-up 
of malignant arrhythmias.

Conclusion
We found that STR correlated with myocardial scar 
thickness following STEMI. To the best of our knowl-
edge, this is the first study to confirm that STR < 40.15% 
after PCI can provide important prognostic information 
regarding myocardial fibrosis in STEMI patients. These 
results suggest that STR may represent a safe, readily 
accessible, easily administered, inexpensive diagnos-
tic modality in the management of STEMI patients for 
whom CMR-LGE is contraindicated.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12872- 021- 02269-y.

Additional file 1. Eye representation of segments in which visual analysis 
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