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Abstract 

Background: In terms of cardiovascular magnetic resonance are haematocrit values required for calculation of extra-
cellular volume fraction (ECV). Previously published studies have hypothesized that haematocrit could be calculated 
from T1 blood pool relaxation time, however only native T1 relaxation time values have been used and the resulting 
formulae had been both in reciprocal and linear proportion. The aim of the study was to generate a synthetic haema-
tocrit formula from only native relaxation time values first, calculate whether linear or reciprocal model is more precise 
in haematocrit estimation and then determine whether adding post-contrast values further improve its precision.

Methods: One hundred thirty-nine subjects underwent CMR examination. Haematocrit was measured using 
standard laboratory methods. Afterwards T1 relaxation times before and after the application of a contrast agent were 
measured and a statistical relationship between these values was calculated.

Results: Different linear and reciprocal models were created to estimate the value of synthetic haematocrit and ECV. 
The highest coefficient of determination was observed in the combined reciprocal model “− 0.047 + (779/ blood 
native) − (11.36/ blood post-contrast)”.

Conclusions: This study provides more evidence that assessing synthetic haematocrit and synthetic ECV is feasible 
and statistically most accurate model to use is reciprocal. Adding post-contrast values to the calculation was proved 
to improve the precision of the formula statistically significantly.
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Introduction
Cardiovascular magnetic resonance (CMR) provides a lot 
of non-invasively acquired information about the myo-
cardium. One of the sequences used is T1 mapping [1, 
2], which allows us to measure myocardial extracellular 

volume (ECV), using T1 relaxation time values acquired 
before and after the administration of a gadolinium con-
trast agent. However, haematocrit (Htc) is related to the 
blood volume of distribution and is also required to cal-
culate ECV. Higher ECV values have already proven to 
be a pathological finding in many cardiovascular diseases 
[2–12]. There are already studies showing a strong corre-
lation between ECV measured by CMR and histological 
findings [13, 14].
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Some authors have already published their findings 
and formulae in this field [3, 4, 15–18] and as some other 
studies have already shown—the T1 relaxation times 
obtained while using Modified Look-Locker Imaging 
(MOLLI) sequences still show statistically significant 
differences between different types of scanners with the 
same field strength (both 1.5T and 3T) [19, 20]. In addi-
tion, as Treibel stated in his study [17], further com-
parisons and potentially a local calibration in every 
single centre for synthetic Htc and ECV calculations are 
required. While some other authors have used Short-
ened Modified Look-Locker Imaging (Sh-MOLLI) or 
Sh-MOLLI and MOLLI sequences [15, 17], exclusively 
MOLLI sequences have been used in our study. Other 
studies have also used different formulae for calculating 
synthetic Htc—with mostly the reciprocal proportion 
used [3, 4, 16, 17].

Furthermore, we hypothesise that adding post-contrast 
T1 relaxation time of the blood pool and therefore more 
data to the calculation could improve the formula. To 
our knowledge, post-contrast values of a blood pool have 
never been added to the formula calculating synthetic 
Htc before.

This study could provide more evidence whether linear 
or reciprocal regression is to be used while calculating a 
synthetic Htc for synthetic ECV, if the formula obtained 
by using an Ingenia 1.5  T scanner resembles any other 
obtained with a different scanner and if a statistically rel-
evant improvement can be achieved by adding post-con-
trast values to the calculation.

Methods
The aim of the study was to generate a formula to deter-
mine a synthetic Htc and ECV from the T1 blood relaxa-
tion times using MOLLI sequences obtained with an 
Ingenia 1.5T scanner and to determine whether linear or 
reciprocal regression is statistically more relevant to our 

data. We aimed to find a correlation between Htc and T1 
relaxation times firstly using only native values, and sec-
ondly considering both native and post-contrast values. 
Formulae created were used for ECV quantification and 
compared with values acquired using different formulae 
and laboratory methods.

This retrospective study included 139 subjects with a 
wide range of diagnoses, who underwent CMR exami-
nation using an Ingenia 1.5T scanner using both native 
and contrast methods. Inclusion criteria were both native 
and post-contrast T1 mapping sequences available and a 
blood sample collected right before the CMR examina-
tion (several minutes). The patients consisted of 5 groups 
following primary diagnoses: chronic obstructive pulmo-
nary disease, Duchene muscular dystrophy female carri-
ers, a group after anthracycline treatment, patients after 
a heart transplant, and controls. Control group included 
patients with a clinical indication for CMR examination, 
but normal CMR findings, other cardiac results and no 
other relevant medical history (Table 1). The appropriate 
size of the group to reveal even medium size effects was 
checked using the online available calculator for multiple 
regression [21], with parameters set as  f2 = 0.15, power 
level (1 − β) = 0.8, α = 0.05, and 3 predictors. The number 
of patients enrolled well exceeded the necessary mini-
mum of n = 76.

Patients had their Htc measured using standard labo-
ratory methods in a centralised hospital laboratory. 
Afterwards, the patients underwent CMR including T1 
mapping using MOLLI sequences both before the admin-
istration of a contrast agent and 15  min after. Similarly 
as described previously [22]—a balanced single-shot 
T1-TFE sequence with an inversion prepulse, cardiac 
triggering and breath-hold technique in the mid-ven-
tricular level in the short-axis was used. With a 5s (3s) 3s 
MOLLI scheme for native T1 and 4s (1s) 3s (1s) 2s for 
enhanced T1 mapping was used with typical imaging 

Table 1 Characteristics of the patient groups: genetic carriers of Duchenne muscular dystrophy, patients after anthracycline 
treatment, heart transplant, chronic obstructive pulmonary disease and controls

Values represent the number of patients or the median ± standard deviation

Htc = haematocrit, DMD carriers = genetic carriers of Duchenne muscular dystrophy, HT = heart transplant, COPD = chronic obstructive pulmonary disease

Primary diagnosis Number of 
patients

Age Female Mean laboratory Htc Mean T1 blood 
relaxation time—
native

Mean T1 blood 
relaxation time—post-
contrast

Overall 139 35.42 ± 15.97 76 (54.7%) 0.41 ± 0.04 1545.78 ± 84.24 229.76 ± 27.03

DMD carriers 40 37.93 ± 11.85 40 (100%) 0.4 ± 0.03 1560.33 ± 79.66 223.92 ± 24.64

Patients after anthra-
cycline treatment

71 25.99 ± 5 26 (36.6%) 0.42 ± 0.04 1534 ± 80.12 230.9 ± 29.02

HT 8 53.63 ± 13.51 2 (25%) 0.4 ± 0.08 1563.5 ± 104.27 234 ± 26.46

COPD 15 67.33 ± 8.5 5 (33.3%) 0.42 ± 0.04 1566.13 ± 70.54 235.67 ± 19.72

Controls 5 24.4 ± 2.58 3 (60%) 0.44 ± 0.04 1496.8 ± 69.15 235.8 ± 24.21
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parameters as follows: FOV 300 × 300  mm, reconstruc-
tion matrix 256, slice thickness 10 mm, acquisition voxel 
size 2.00 × 2.00 × 10.00  mm, time to repetition (TR) ≈ 
2.2 ms, echo time (TE) ≈ 1.1 ms, flip angle 35°, SENSE 
factor 2. For the contrast agent, gadolinium (Gadovist, 
Bayer AG, Leverkusen, Germany) in the dosage of 
0.2 mmol/kg was used.

The regions of interest (ROIs) were contoured in both 
native and post-contrast images acquired 15  min after 
the contrast injection, including only a blood pool with-
out any papillary muscles (Figs.  1, 2). First, the formula 
and correlation coefficient using only native values of the 
blood pool was calculated; afterwards, the same calcula-
tion was performed using both native and post-contrast 
values. Acquired Htc values were used to quantify ECV.

As for statistical analysis—Pearson correlation coeffi-
cients and related p-values were computed to assess the 
correlation between Htc and CMR-derived blood native 

and blood enhanced values. Four regression models to 
estimate Htc from blood native and blood post-contrast 
values were created in the following fashion:

(1) (native linear):  Htcest = b +  (T1-BN/a)
(2) (native reciprocal):  Htcest = b + (a/T1-BN)
(3) (combined linear):  Htcest = c +  (T1-BN/a) +  (T1-BP/b)
(4) (combined reciprocal):  Htcest = c + (a/T1-BN) + (b/

T1-BP)

Where  Htcest is an estimated value of haematocrit, 
a, b, c are constants,  T1-BN is a blood native value and 
 T1-BP is a blood post-contrast (enhanced) value.

Further, using the estimated or measured Htc value, 
the extracellular volume was calculated as:

where  T1-MN is a myocardium native value and  T1-MP is 
a myocardium post-contrast value. The ECV calculated 
using either measured or estimated Htc was compared to 
the values based on linear and reciprocal models by Trei-
bel et  al. using blood native values obtained by MOLLI 
and ShMOLLI [15, 17] and Bland–Altman analysis was 
performed to assess the systematic bias.

The statistical significance of these factors was 
assessed. To compare the linear and reciprocal mod-
els, a coefficient of determination  (r2) was attributed to 
each model. A residual analysis was employed to con-
firm the adequacy of each model for the estimation of 
Htc and the residual variance of the model with the 
highest  r2 was compared with other models using an 
F-test.

Finally, as the study group was heterogeneous and 
consisted of patients suffering from several diagnoses, 
the possible effect of the primary diagnosis was deter-
mined using an Analysis of Covariance (ANCOVA), 
with the primary diagnosis as an independent factor in 
the model.

Normality was tested by Kolmogorov–Smirnov test 
of normality and by visual inspection of histograms. To 
exclude substantial multicollinearity between the vari-
ables used in a model, the variance inflation factor (VIF) 
was computed for a model containing blood native value 
as an independent and blood post-contrast value as a 
dependent variable, as well as for the diagnoses (nominal 
data, one binary variable per each diagnosis, independ-
ent) and the blood native / blood post contrast value 
(dependent variable). Value > 2.5 was considered as a sub-
stantial multicollinearity.

Generally, results with P < 0.05 were regarded as sta-
tistically significant. The analysis was performed using 

ECV = (1−Htc) ∗ (((1/T1 - MP)−(1/T1 - MN))

/((1/T1 - BP)−(1/T1 - BN)))

Fig. 1 Measurement of T1 blood relaxation time in a native T1 
mapping image

Fig. 2 Measurement of T1 blood relaxation time in a postcontrast T1 
mapping image
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STATISTICA 13.2 (TIBCO software, The United States 
of America).

Results
The blood native value showed a moderately strong 
negative correlation with Htc, (r = − 0.68, P < 0.001) 
(Fig. 3), while using only the blood post-contrast value 
showed only a mildly positive correlation, which lacked 
statistical significance (r = 0.15, P = 0.09) (Fig. 4). These 
two CMR-derived parameters were not correlated 
between themselves (r = − 0.02, P = 0.81). The value 
of VIF was very small (1.0004), effectively excluding 
any collinearity. The parameters were thus regarded as 
independent. The p-value of Kolmogorov–Smirnov test 
was > 0.10 for all measured parameters in CMR, as well 
as for Htc value, and the histograms corresponded with 
the Gaussian distribution in all cases.

Using native and post-contrast blood pool values, the 
following formulae were created:

(1) “Htcest = 0.914 −  (T1-BN/3051)”, where the blood 
native value significantly contributed to the estima-
tion (P < 0.001)

(2) “Htcest = -0.098 + (779/T1-BN)”, where the blood 
native value significantly contributed to the estima-
tion (P < 0.001)

(3) “Htcest = 0.870 −  (T1-BN/3061) + (blood post-con-
trast  T1-BP/5392)”, where both factors significantly 
contributed to the Htc estimation  (T1-BN: P < 0.001, 
 T1-BP: P = 0.043).

(4) “Htcest = -0.047 + (779/(T1-BN)) − (11.36/T1-BP)”, 
where both factors significantly contributed to the 
Htc estimation  (T1-BN: P < 0.001,  T1-BP: P = 0.022).

The highest coefficient of determination (0.49) was 
observed in the combined reciprocal model (4), followed 
by 0.48 for the combined linear model (3) and 0.47 for 
both models using native values only (models 2 and 1). 
Correspondingly, the variance of residuals decreased 
from model 1 to model 4, as there was no statistically sig-
nificant difference in the variance of residuals (P > 0.05 in 
all cases).

The descriptive statistics of ECV values obtained by 
different methods including the Treibel et  al. reciprocal 
(Htc = 866 * (1/T1-BN) − 0.1232) [17] model used in sev-
eral different articles and other linear models, is shown 
in Table 2.

Interestingly, when compared with Treibel’s formulae, 
there was a significant bias in the case of MOLLI-based 
empirical formulae that rendered significantly lower 
results with around 5% bias in both cases, while there 
was no significant bias in the case of ShMOLLi-based 

Fig. 3 Scatter plot showing the correlation between laboratory measured Htc and native T1 blood relaxation time
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formula (bias < 1%; the 95% confidence interval involved 
zero). The bias was independent on the value of ECV 
in all cases (p for trend > 0.05). As expected, the models 
based on our data had negligible bias close to 0.

Finally, the primary diagnosis was added to the mod-
els as an independent factor. The multicollinearity of 

primary diagnosis and either blood native (VIF = 1.09) or 
blood post-contrast (VIF = 1.03) T1 values was negligi-
ble, confirming the appropriateness of the model. In nei-
ther case did the factor of primary diagnosis contribute 
to the Htc estimation (P > 0.05 in all cases). The age itself 
did not correlate with Htc either (Spearman r = 0.05, 
p = 0.59). The formulae were thus applicable to the whole 

Fig. 4 Scatter plot showing the correlation between laboratory measured Htc and post-contrast T1 blood relaxation time

Table 2 ECV values obtained by different methods of haematocrit estimation

* Compared to the direct measurement of haematocrit value
** Significant bias compared to values obtained by direct measurement of Htc

CI = confidence interval, ECV = extracellular volume, MOLLI = Modified Look-Locker Imaging, Sh-MOLLI = Shortened Modified Look-Locker Imaging

Method of haematocrit estimation ECV value ECV bias (95% CI) [%]* Correlation 
mean vs. bias (r)

Correlation mean 
vs. bias (p-value)

r2 in 
haematocrit 
estimation*

Direct measurement 0.250 ± 0.035 – – – –

Native linear (model 1) 0.250 ± 0.035 0.2 (− 0.7 to 1.1) % 0.03 0.74 0.47

Native reciprocal (model 2) 0.250 ± 0.035 0.2 (− 0.7 to 1.1) % 0.03 0.73 0.47

Combined linear (model 3) 0.250 ± 0.034 0.2 (− 0.7 to 1.0) %  − 0.02 0.78 0.48

Combined reciprocal (model 4) 0.250 ± 0.034 0.2 (− 0.7 to 1.0) %  − 0.03 0.73 0.49

Treibel et al. linear MOLLI** 0.238 ± 0.033  − 4.6% (− 5.5  to  − 3.8) %  − 0.13 0.13 0.47

Treibel et al. reciprocal MOLLI** 0.237 ± 0.034  − 5.2 (− 6.0 to  − 4.3) %  − 0.03 0.74 0.47

Treibel et al. reciprocal shMOLLI 0.252 ± 0.035 0.8 (− 0.1 to 1.6) % 0.01 0.93 0.47
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study population, regardless of the primary diagnosis sta-
tus and age.

Discussion
This study provides more information about synthetic 
Htc calculation from the T1 relaxation times of a blood 
pool acquired using T1 mapping sequences on 1.5  T 
Ingenia scanner. Adding post-contrast values to the for-
mula showed a mild, but statistically relevant improve-
ment of the synthetic Htc calculation. The frequency of 
using synthetic ECV maps and thus calculating synthetic 
Htc values is increasing. This study brings evidence that 
by simply adding post-contrast values to the calcula-
tion formula a statistically relevant improvement of the 
assessment accuracy could be achieved and also implies 
that results assessed using reciprocal regression to T1 
relaxation times of blood pool are statistically more 
accurate.

In other studies, most authors have used reciprocal 
regression to T1 relaxation times [3, 17], several others 
[4, 16] have used the formula from Treibel’s 2016 article 
[17]. Only Treibel in his 2015 study [15] has used linear 
regression to T1 blood relaxation times. Previous studies 
have used only native T1 relaxation times, whereas in this 
study a post-contrast T1 relaxation times were added to 
the formulae, resulting in a mild, but statistically relevant 
improvement of the assessed synthetic Htc and therefore 
synthetic ECV accuracy.

This study was a single centre, which means there is 
a certain selection bias, however, this ensures similar-
ity of the protocol, sequences and magnetic resonance 
machine used, where an Ingenia 1.5T scanner was exclu-
sively used. To prove the formulae to be independent of 
the machine, mapping sequence and parameters used, 
still more studies need to be done.

The rationale for adding post-contrast values was, 
that adding more data to the calculation could improve 
the formula. The post-contrast T1 relaxation time of the 
blood pool was chosen, because post-contrast mapping is 
crucial in the calculation of ECV and therefore adding it 
is simple. Post-contrast values could be possibly affected 
by age and other factors, but cohorts with different diag-
nosis were enrolled and the results showed improvement 
of the formulae regardless of age, gender and patient 
history.

Using contrast agent brings several dependencies 
affecting the blood T1 relaxation times—for example 
type of the agent used, its pharmacokinetics and dos-
age. As for the types—in most centres macrocyclic 
gadolinium agents are being used (same as in this case), 
reducing the possible bias. Pharmacokinetics is still a dis-
cussed topic—but as for example Czock et al. [23] stated, 
gadolinium based agents are supposed to be distributed 

rapidly after the administration, and eliminated by the 
kidneys in a fast initial elimination (half-life approxi-
mately 2  h) and followed by a slow elimination phase 
(half-life approximately 6  days) [23]. Although the time 
after application is constant (15  min) and the dosage is 
weight adjusted (0.2 mmol/kg) further reducing the bias, 
this again advocates towards the need of more multicen-
tre studies.

Control group in this study consists of patients indi-
cated to CMR examination but with negative results. 
Since patients showed symptoms they can´t be consid-
ered as healthy, but since relaxation times from blood 
pool and not myocardium were used and we find ethi-
cally problematic applying contrast agent to healthy 
volunteers without any clinical outcome from CMR 
examination, no healthy controls were enrolled in this 
study. Also, study population did not include any subjects 
with extreme values of Htc, such as anaemic patients or 
patients with polycythaemia vera.

Conclusion
After a careful statistical analysis, the linear and reciprocal 
formulae for non-invasive calculating of Htc were created, 
at first using only native blood pool values, afterwards using 
both native and post contrast values. With assessed syn-
thetic Htc values ECV were quantified and compared with 
values calculated using other formulae and laboratory meth-
ods. The synthetic Htc and ECV quantification were best 
explained by a model using reciprocals of native and post 
contrast values: “Htcest = − 0.047 + (779/(T1-BN)) − (11.36/
T1-BP)”;  r2 = 0.49. Adding post-contrast values to the formula 
proved to be statistically significant. A residual analysis 
showed a normal distribution of residuals, confirming the 
adequacy of our formulae. The formulae statistically proved 
to apply to the whole study population, regardless of the pri-
mary diagnosis or age.

In terms of ECV itself, the models based on our own 
data had negligible bias close to 0, while using Trei-
bel’s formulae, there was a significant bias in the case of 
MOLLI-based empirical formulae that rendered signifi-
cantly lower results with around 5% bias in both cases, 
but significantly lower bias in the case of ShMOLLi-
based formula. This further implies statement Treibel 
made in his study [17], that potentially a local calibration 
in every single centre for synthetic Htc and ECV calcula-
tions are required.
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