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Abstract 

Background:  CVD is the leading cause of death in T2DM patients. However, few biomarkers have been identified 
to detect and diagnose CVD in the early stage of T2DM. The aim of our study was to identify the important mRNAs, 
micro (mi)RNAs and SNPs (single nucleotide polymorphisms) that are associated with metabolic cardiovascular 
disease.

Materials and methods:  Expression profiles and GWAS data were obtained from Gene Expression Omnibus (GEO) 
database. MiRNA-sequencing was conducted by Illumina HiSeq 2000 platform in T2DM patients and T2DM with CVD 
patients. EQTL analysis and gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses were conducted. MRNA-miRNA co-expression network and mRNA-SNP-miRNA interaction network 
were established and visualized by Cytoscape 3.7.2.

Results:  In our study, we identified 56 genes and 16 miRNAs that were significantly differentially expressed. KEGG 
analyses results indicated that B cell receptor signaling pathway and hematopoietic cell lineage were included in the 
biological functions of differentially expressed genes. MRNA-miRNA co-expression network and mRNA-SNP-miRNA 
interaction network illustrated that let-7i-5p, RASGRP3, KRT1 and CEP41 may be potential biomarkers for the early 
detection and diagnosis of CVD in T2DM patients.

Conclusion:  Our results suggested that downregulated let-7i-5p, and upregulated RASGRP3, KRT1 and CEP41 may 
play crucial roles in molecular mechanisms underlying the initiation and development of CVD in T2DM patients.
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Background
It is estimated that in 2019 463 million adults aged 
20–79  years would develop diabetes with type 2 diabe-
tes (T2DM) accounting for > 90% of cases [1]. The inci-
dence of T2DM has greatly increased in recent years and 
has become a great threat to human health worldwide. 
T2DM is one of major risk factors of cardiovascular 

diseases (CVD), but its mechanism of action is not fully 
understood [2]. Even newly diagnosed diabetics were 
reported to have at least one vascular complication, and 
CVD is the leading cause of death in T2DM patients [3, 
4]. Furthermore, people with T2DM are 2–6 times more 
likely to die of CVD than those without diabetes [5]. 
However, few biomarkers have been identified to diag-
nose CVD at the early stage of T2DM.

MicroRNAs (miRNAs) bind to complementary 
sequences of their target mRNA by base pairing to 
induce mRNA degradation and/or inhibit translation, 
thus affecting gene expression after transcription [6]. 
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MiRNA has been found to have high specificity for dis-
ease status and may be used as a potential biomarker 
to predict disease progression. In recent years, multi-
ple miRNAs have been demonstrated to be involved in 
angiogenesis and endothelial cells dysfunction [7–9]. 
Expression of miRNAs can be affected by many factors. 
The miRNA seed region can specifically bind to miRNA 
recognition element (MRE) in the 3′UTR (3′ untrans-
lated region) of their target mRNA [10]. Therefore, any 
anomalies of miRNA-MRE interaction may have an 
impact on gene expression and lead to diseases [11–13]. 
Single nucleotide polymorphism (SNP), the most com-
mon genetic variants, can interfere with the base pair-
ing between miRNA and its target mRNA, affecting 
normal expression of genes and eventually contributing 
to disease pathogenesis [14]. Genome-Wide Association 
Studies (GWAS) have found that genetic variants play an 
important role in pathogenesis of CVD [15], and associa-
tion between some genetic variants and CVD has criti-
cal biological significance for T2DM patients [16, 17]. 
Genome-wide expression quantitative trait locus (eQTL) 
analysis is an effective method to study the effect of SNPs 
on gene expression [18, 19]. However, eQTL analysis 
mainly focuses on mRNA expression and rarely involves 
miRNA, which leads to incomplete interaction patterns 
[20].

To more comprehensively reveal the complicated asso-
ciation between mRNA, miRNA and SNP, and to find 
potential biomarkers with high specificity and sensitiv-
ity to diagnose CVD at the early stage of T2DM, we per-
formed an integrative analysis. EQTL analysis and gene 
ontology (GO), KEGG pathway enrichment analyses 
were also conducted to better understand the connection 
between mRNA, miRNA and SNP, and their potential 
effect on CVD in T2DM patients.

Materials and methods
Sample processing and miRNA profiling
Six diabetes patients and five diabetes with ischemic 
heart disease were recruited from communities in Bei-
jing after informed consent was obtained from each par-
ticipant. T2DM was diagnosed according to American 

Diabetes Association Criteria 【24357215】. Ischemic heart 
disease was defined by clinical history, including acute 
myocardium infarction, angina pectoris and/or ischemic 
electrocardiographic alterations. All the participants 
did not have diabetic retinopathy, nor diabetic micro-
vascular complications. This study was approved by the 
Ethics Committee of Capital Medical University (No. 
2016SY24).

Total RNA extraction was performed using TRIzol 
(Invitrogen, USA) according to manufacturer’s instruc-
tions. After removing DNA contamination by DNase I 
treatment, total RNA was assessed by NanoDrop spec-
trophotometer (NanoDrop, USA). A total of 2  μg of 
RNA/sample was used for the miRNA library. TruSeq 
Small RNA Sample Preparation Kit (Illumina, Inc., San 
Diego, CA, USA) was used to generate miRNA sequenc-
ing libraries. The library concentration was assessed by 
Qubit Spectrophotometer and the miRNA sequencing 
library quality was obtained by using the Agilent 2100 
Bioanalyzer system with a High Sensitivity DNA Kit 
(Agilent Technologies). Sequencing was performed on 
an Illumina HiSeq 2000 platform and 50  bp of single-
end reads were generated. We used fastqc v0.10.1 (http://​
www.​bioin​forma​tics. babraham.ac.uk/projects/fastqc/) to 
check the quality of raw reads. The reads were mapped to 
hg19 reference genome to identify mature miRNA, and 
the expression profile was generated by using miRDeep2 
software (https://​www.​mdc-​berlin.​de/​85519​03/​en/).

Microarray datasets and preprocessing
We searched GEO data repository (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) for eligible studies until January 20, 
2020. The following terms and different combination of 
them were used: “type 2 diabetes”, “cardiovascular dis-
ease”, “atherosclerosis”, “coronary artery disease”, “heart 
disease”, “angina pectoris”, “myocardial infarction”, “coro-
nary angiography”, “chronic myocardial ischemia syn-
drome”, and “acute coronary syndrome”. Based on the 
search strategy, three datasets were downloaded from 
GEO, among which GSE90074 and GSE90073 (see Addi-
tional file  1: Table  S1 for more details) were from same 
study. Details of each dataset are provided in Table 1.

Table 1  Details of microarray datasets from GEO database

GSE Type Sample size Chip

T2DM T2DM + CVD

GSE90074 mRNA 17 38 Agilent-014850 whole human genome micro-
array 4 × 44 K G4112F

GSE66175 mRNA 48 57 Affymetrix human genome U133A 2.0 array

GSE90073 SNP 13 25 Affymetrix genome-wide human SNP 6.0 array

http://www.bioinformatics
http://www.bioinformatics
https://www.mdc-berlin.de/8551903/en/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 12Fan et al. BMC Cardiovasc Disord          (2021) 21:351 	

Quality evaluation and data preprocessing
The quality of the original CEL files from the data-
set GSE66175 (see Additional file  1: Table  S1 for more 
details) was evaluated in this study. We plotted the rela-
tive log expression boxplot and normalized unscaled 
standard errors boxplot to evaluate the consistency of 
chip quality using affyPLM package (https://​git.​bioco​
nduct​or.​org/​packa​ges/​affyP​LM/). The degradation of 
RNA would have a great impact on the quality of chips, 
thus RNA degradation plot was plotted to show the 
trend. Then RMA algorithm was used for background 
correction and normalization of the data. We could 
obtain the matrix file after quality control and preproc-
essing in dataset GSE90074, thus we did not do further 
quality control. Then we converted the probe names from 
two gene expression profiles into gene names using R 
3.6.2 software. And K-Nearest Neighbor in impute pack-
age (https://​git.​bioco​nduct​or.​org/​packa​ges/​impute/) 
was used to fill in the missing value of the gene. Next, 
we merged two intact gene expression profiles by dplyr 
package (https://​CRAN.R-​proje​ct.​org/​packa​ge=​dplyr). 
To eliminate difference between batches, we used the 
combat function in SVA package ((https://​bioco​nduct​or.​
org/​packa​ges/​sva/)) of R 3.6.2 software.

The quality of raw data for miRNA were quality 
checked by visualization of base quality distributions. 
To ensure the quality of data analysis, the raw data were 
filtered and clean data were obtained by using FASTX-
Toolkit software (http://​hanno​nlab.​cshl.​edu/​fastx_​
toolk​it/). The following sequences were removed: linker 
sequence; sequences without 3′ adapter sequences and 
insert fragments; sequence with Q20 percentage below 
60%; sequences outside the length range of 18–36  bp. 
After the quality control, BLAST alignment (http://​blast.​
ncbi.​nlm.​nih.​gov/) was performed between the miRNA 
data and the mature miRNA sequences of the corre-
sponding species in the miRBase database (http://​www.​
mirba​se.​org/), and comparison with the RFAM database 
(http://​rfam.​xfam.​org/) and the reference genome were 
performed to conduct a preliminary evaluation of the 
sequencing results.

Differential expression analysis
We performed differential expression analysis to find 
mRNA and miRNA whose |Log twofold change|> 1.5 and 
p value < 0.05 by comparing T2DM patients with T2DM 
patients complicated with CVD in the R computing envi-
ronment using limma (https://​bioco​nduct​or.​org/​packa​
ges/​limma/) and DESeq2 packages (https://​bioco​nduct​
or.​org/​packa​ges/​DESeq2/). Next, we plotted volcano plot 
and heatmap to visualize differentially expressed genes 
and miRNA using pheatmap package (https://​CRAN.R-​
proje​ct.​org/​packa​ge=​pheat​map).

Construction of mRNA‑miRNA co‑expression network
We performed Pearson correlation analysis to test cor-
relation of differentially expressed mRNA and miRNA. 
Then, mRNA-miRNA pairs (p value < 0.05, absolute value 
of correlation coefficient > 0.5) were used to construct 
mRNA-miRNA co-expression network by using software 
Cytoscape 3.7.2.

GO and KEGG pathway enrichment analyses
GO and KEGG pathway enrichment analyses were per-
formed to explore the biological process, cellular compo-
nent, molecular function of differentially expressed genes 
and other pathways they might get involved in.

MRNA expression quantitative trait locus analysis
We performed the mRNA expression quantitative trait 
locus analysis to explore the association between SNP 
and mRNA expression level by using MatrixEQTL 
package (https://​CRAN.R-​proje​ct.​org/​packa​ge=​Matri​
xEQTL). Gender was used as a covariate to adjust its 
effect on mRNA expression. There are two types of 
eQTL, cis-eQTL which means the difference of gene 
expression may be caused by the gene itself and trans-
eQTL which means the difference of gene expression 
may be caused by other genes. Then, cis-eQTL and trans-
eQTL (p value < 0.05) were used for the next analysis.

Construction of mRNA‑SNP‑miRNA interaction network
We downloaded SNP data related to differentially 
expressed miRNA from open sources MirSNP (http://​
bioin​fo.​bjmu.​edu.​cn/​mirsnp/​search/) and PolymiRTS 3.0 
(https://​compb​io.​uthsc.​edu/​miRSNP/), including SNPs 
in the binding regions of miRNA and its target mRNA. 
Next, the SNPs were matched with the cis- and trans- 
eQTLs of mRNA to find the overlapping SNPs, which 
could be used to connect mRNA and miRNA. TargetScan 
(http://​www.​targe​tscan.​org/​mamm_​31/) and miRTarBase 
databases (http://​mirta​rbase.​cuhk.​edu.​cn/​php/​index.​
php) were used to predict the target mRNA of miRNA. 
Then, we used the overlapping SNPs and the predic-
tion target relationships between mRNAs and miRNAs 
to construct mRNA-SNP-miRNA interaction networks. 
Visualization of the mRNA-SNP-miRNA interaction net-
work was performed by Software Cytoscape 3.7.2.

Results
Analysis of chip quality
To ensure the quality of chips included in the study, 
we evaluated the original CEL files from the dataset 
GSE66175 to eliminate the chips with poor quality. The 
relative log expression boxplot showed that the central 
values of all samples were close to the Y-axis "0" and basi-
cally consistent, indicating that all samples were of high 

https://git.bioconductor.org/packages/affyPLM/
https://git.bioconductor.org/packages/affyPLM/
https://git.bioconductor.org/packages/impute/
https://CRAN.R-project.org/package=dplyr
https://bioconductor.org/packages/sva/
https://bioconductor.org/packages/sva/
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://www.mirbase.org/
http://www.mirbase.org/
http://rfam.xfam.org/
https://bioconductor.org/packages/limma/
https://bioconductor.org/packages/limma/
https://bioconductor.org/packages/DESeq2/
https://bioconductor.org/packages/DESeq2/
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=MatrixEQTL
https://CRAN.R-project.org/package=MatrixEQTL
http://bioinfo.bjmu.edu.cn/mirsnp/search/
http://bioinfo.bjmu.edu.cn/mirsnp/search/
https://compbio.uthsc.edu/miRSNP/
http://www.targetscan.org/mamm_31/
http://mirtarbase.cuhk.edu.cn/php/index.php
http://mirtarbase.cuhk.edu.cn/php/index.php
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quality (Fig.  1). To further evaluate the chip quality, we 
plotted normalized unscaled standard errors boxplot, in 
which the standard errors of the samples were all close 
to the Y-axis "1" with small deviation, indicating that the 
chip quality was reliable and consistent with the results 
of the relative log expression boxplot (Additional file  1: 
Figure S1). The RNA degradation plot showed that the 

lines of each chip are roughly parallel, indicating that the 
chip quality is high, which can be used for subsequent 
data analysis (Additional file  1: Figure S2). We down-
loaded matrix file of dataset GSE90074 after quality con-
trol and preprocessing and integrated it with the dataset 
GSE66175, then a total of 160 samples (including 65 

Fig. 1  Results from quality evaluation analysis for dataset GSE66175
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T2DM patients and 95 T2DM patients with CVD) were 
included in this study.

To ensure the quality of data analysis, we visualized 
the base quality distributions to check the data quality 
(Fig.  2). In addition, we filtered the raw data and per-
formed data quality control. The quality control results 
were listed in Table 2.

Differential expression analysis and visualization
Differentially expressed genes were screened by differen-
tial expression analysis using limma and DESeq2 pack-
ages. The results showed that a total of 56 genes were 
significantly differentially expressed, among which 47 
were up-regulated and 9 were down-regulated (Addi-
tional file  1: Table  S2). Also, miRNAs were selected by 

Fig. 2  Base quality distributions of raw data

Table 2  Quality control results

N: number of sequence

Sample ID N after filtration N of high quality N with 18–36 bp N alignments to 
mature miRNAs in 
miRBase

DM-01 12,250,616 12,238,294 12,233,798 1530

DM-02 12,281,076 12,268,427 12,264,970 1499

DM-03 10,744,486 10,731,569 10,728,194 1468

DM-04 10,689,640 10,678,807 10,676,732 1440

DM-05 12,995,117 12,981,009 12,975,479 1588

DM-06 9,843,907 9,832,067 9,828,794 1498

DM + CVD-01 13,441,194 13,427,396 13,420,180 1584

DM + CVD-02 15,087,835 15,070,108 15,060,695 1572

DM + CVD-03 12,995,412 12,982,855 12,980,420 1518

DM + CVD-04 9,701,266 9,692,259 9,676,519 1521

DM + CVD-05 11,029,427 11,017,673 11,014,271 1427
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differential expression analysis using DESeq2 packages. 
There were 16 miRNAs were significantly differentially 
expressed, among which 8 were up-regulated and 8 were 
down-regulated (Additional file  1: Table  S3). Then, we 
plotted heatmap to visualize the results by using pheat-
map package (Fig. 3a, b).

MRNA‑miRNA co‑expression network
Pearson correlation analysis was performed to explore 
correlation of differentially expressed mRNA and 
miRNA, and the co-expression network was visualized, 
in which 19 mRNA (including 15 upregulated mRNA 
and 4 downregulated mRNA) and 12 miRNAs (including 
5 upregulated miRNAs and 7 downregulated miRNAs) 
were included (Fig. 4). The let-7i-5p and miR-320c were 
both correlated to 6 genes.

GO and KEGG pathway enrichment analysis
To explore the potential biological functions of differen-
tially expressed genes, GO and KEGG pathway enrich-
ment analyses were performed. The GO results showed 
that the differentially expressed gene were most likely 
associated with plasma membrane, extracellular space 
and receptor activity (Fig. 5). KEGG results revealed that 
the biological functions of differentially expressed genes 
included B cell receptor signaling pathway and hemat-
opoietic cell lineage (Table 3).

MRNA‑SNP‑miRNA interaction network
We performed eQTL analysis to explore the associa-
tion between SNP and mRNA expression level, then 
we found 60 mRNA and cis-eQTL pairs, and 44,454 
mRNA and trans-eQTL pairs.We searched MirSNP 
and PolymiRTS 3.0 to obtain the SNPs related to dif-
ferentially expressed miRNAs, eventually we screened 
16,018 miRNA and SNP pairs including 16 differen-
tially expressed miRNAs and 15,741 SNPs. Then SNPs 
related to differentially expressed miRNAs were matched 
with cis- and trans-eQTL, 16 mRNA-SNP-miRNA trios 
were obtained by overlapping SNPs. In addition, the 
effect and binding energy of 8 miRNA and SNP pairs in 
mRNA-SNP-miRNA trios were obtained (Additional 
file  1: Table  S6). The results showed that rs17093783, 
rs2235364, rs1285935 and rs11562803 could enhance 
the binding region, rs2502607, rs325009 and rs11574860 
could result in a decrease in the stability of the binding 
region, and rs17047863 could break the binding region. 
We also predicted the target mRNA of differentially 
expressed miRNA, and found that target mRNA of hsa-
miR-581 included CEP41 which was consistent with the 
mRNA-SNP-miRNA trios. We visualized the relationship 
between 16 mRNA-SNP-miRNA trios and prediction 

of differentially expressed miRNA by using software 
Cytoscape 3.7.2 (Fig. 6).

Discussion
CVD is the most common cause of death among patients 
with T2DM, imposing a heavy burden on the economy 
of individuals and societies. Some studies have investi-
gated the underlying mechanism of CVD and T2DM, 
and found that miRNA and SNP play important role in 
the occurrence and development. However, there is still 
a lack of biomarkers with good sensitivity and specific-
ity for early detection and diagnosis of CVD in T2DM 
patients. Constructing the mRNA-SNP-miRNA interac-
tion network can help to reveal the underlying correla-
tion between genetic variants and diseases. But there 
is a lack of miRNA sequencing data of CVD in T2DM 
patients, leading to few evidence and certain limitations. 
We combined mRNA, miRNA and SNP data by search-
ing GEO database and conducting miRNA sequencing. 
Our present study identified 16 mRNA-SNP-miRNA 
interaction trios, which revealed that SNPs in the binding 
region between miRNA and mRNA can interfere gene 
expression. Previous studies have proved that miRNAs 
play an essential role in the occurrence and development 
of various diseases [21], and our findings may increase 
understanding of the underlying mechanism.

In this study, we identified 56 differentially expressed 
genes and 16 differentially expressed miRNAs between 
T2DM patients and T2DM patients with CVD. Accord-
ing to mRNA-miRNA co-expression network, let-7i-5p 
and miR-320c were both related to 6 genes. Previous 
study showed that let-7i-5p was involved in the regulation 
of cardiac cell cycle, and inhibition of let-7i-5p may be a 
potential strategy for cardiac repair after ischemic injury 
[22]. In addition, downregulated let-7i was observed in 
dilated cardiomyopathy and low expression of let-7i was 
associated with poor clinical outcomes of patients with 
dilated cardiomyopathy [23]. Downregulated let-7i-5p 
was observed in cardiomyocytes during hypoxia injury 
and let-7i-5p pathway was used to suppress hypoxia-
induced apoptosis and mitochondrial energy metabolism 
dysfunction in  vitro [24]. Taken together, let-7i-5p was 
demonstrated to be associated with the pathogenesis of 
CVD, and may play an important role in the pathophysi-
ological process of CVD. Interestingly, the six genes asso-
ciated with downregulated miR-320 were up-regulated 
which indicated that miR-320 may bind to complemen-
tary sequences of mRNA of these genes to induce mRNA 
degradation or inhibit translation, thus affecting gene 
expression.

In our present study, KEGG pathway enrichment anal-
ysis indicated significant enrichment in pathways includ-
ing B cell receptor signaling pathway and hematopoietic 
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Fig. 3  Results from differential expression analysis. a The heatmap 
for differentially expressed genes. (The corresponding number of 
file names of Fig. 3A was listed in Additional file 1: Table S4) b The 
heatmap for differentially expressed miRNAs (The corresponding 
number of file names of Fig. 3B was listed in Additional file 1: 
Table S5). The red represented upregulated genes or miRNAs, the 
green represented downregulated genes or miRNAs, and the black 
represented the genes or miRNAs with no significant difference in 
expression level
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cell lineage. Previous studies suggested that compared 
with healthy people, CD19 was related to B cell recep-
tor and significantly downregulated in patients with 
acute myocardial infarction [25]. However, this study 
showed that CD19 associated with B cell receptor sign-
aling pathway was upregulated in T2DM patients with 
CVD, which could attribute to the mechanism of CVD 
in T2DM patients. Moreover, mutations in the TET2 
that can promote clonal hematopoiesis were associated 
with an increased risk of atherosclerosis [26]. Interest-
ingly, we found that TET2 was target gene of 7 differen-
tially expressed miRNAs (miR-133a-3p, miR-6817-3p, 
miR-873-5p, miR-581, miR-210-3p, miR-202-5p, miR-
2355-3p, let-7i-5p, miR-196a-5p, miR-760) in our study 
which highlighted that the hematopoietic cell lineage 
and differentially expressed miRNAs may be involved in 
the progression of CVD in T2DM patients. In addition, 
KEGG pathway enrichment analysis showed PI3K-Akt 
signaling pathway was associated with PDGFRB, CD19 
and TCL1A. Some studies confirmed that PI3K-Akt 
signaling pathway plays an important role in the patho-
physiology of vascular diseases [27]. Activated PI3K-Akt 
signaling pathway has been proven to improve insulin 
sensitivity, regulate glucose and lipid metabolism, and 
protect vascular endothelial cells [28]. In addition, acti-
vating IRS/PI3K/Akt pathway activity may play an anti-
atherosclerotic role [29]. Interestingly, KEGG pathway 
enrichment analysis indicated that linoleic acid metabo-
lism was related to ALOX15, and a growing number of 
studies reported that linoleic acid was associated with 
the prevention of T2DM and CVD [30, 31]. Therefore, we 
can reasonably speculate that PI3K-Akt signaling path-
way and linoleic acid metabolism may play a role in the 
pathogenesis of T2DM complicated with CVD.

MRNA-SNP-miRNA interaction network included 
16 SNPs, 9 mRNA and 11 miRNAs, but only miR-581, 
rs325009 and CEP41 were related to each other. Previ-
ous studies suggested that CEP41 was a new regulator 
for angiogenesis which promoted angiogenesis through 
the HIF1A-Aurka-VEGF pathway and was involved in 
endothelial cell migration which was involved in the 
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Fig. 3(b)  (continued)

pathogenesis of CVD [32]. Our study showed that RAS-
GRP3 was associated with 4 SNPs in the mRNA-SNP-
miRNA interaction network, and each intermediated 
one pairs of miRNA-mRNA correlations, which indi-
cated that RASGRP3 may play a key role in the underly-
ing mechanism. Paramjeet and colleagues observed that 
RASGRP3 could affect the role of endothelial cells in 
angiogenesis in diabetic mice by mediating endothelial 
cell signal transduction [33]. We further explored func-
tions of the rest of mRNA in the mRNA-SNP-miRNA 
interaction network, and found that KRT1 might be 

associated with CVD. Gao et  al. found that inhibiting 
KRT1 can activate Notch signaling pathway, thereby 
inhibiting the inflammatory response and endoplasmic 
reticulum stress of vascular endothelial cells in coronary 
atherosclerosis [34]. Furthermore, it has been reported 
that inhibition of KRT1 expression can improve myo-
cardial ischemia–reperfusion injury by activating Notch 
signaling pathway [35].

Although previous studies have shown that miRNA-
related SNPs play a role in the pathogenesis of T2DM 
complicated with CVD, there is a lack of relevant 
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researches that combine mRNA, miRNA and SNP for 
analysis. We searched GEO database and found that there 
are few studies involving miRNA sequencing for T2DM 
patients and T2DM patients with CVD. Hence, we 
recruited six diabetes patients and five diabetes patients 
with ischemic heart disease from communities in Beijing 
to obtain their miRNA expression profile. Previous stud-
ies suggested that miR-196a-5p and miR-202-5p may play 
a role in the pathogenesis of diabetes and its cardiovas-
cular complications. Omer et al. revealed that compared 
with normal group, miR-196a-5p was downregulated in 
CVD group without statistically significance, and they 

Fig. 4  mRNA-miRNA co-expression network

Fig. 5  GO analysis of differentially expressed genes

Table 3  Results of KEGG pathway enrichment analysis for 
differentially expressed genes

Pathway Gene name Regulation p value

B cell receptor signaling pathway CD72 Upregulation < 0.01

BLNK Upregulation

CD19 Upregulation

CR2 Upregulation

RasGRP3 Upregulation

hematopoietic cell lineage CD19 Upregulation 0.03

MS4A1 Upregulation

CR2 Upregulation
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indicated that miR-196a-5p may be a potential biomarker 
for the diagnosis of coronary artery disease and acute 
coronary syndrome [36]. However, our present study sug-
gested that miR-196a-5p was differentially upregulated in 
CVD group, which was inconsistent with previous study. 
We attributed the difference to the limited sample size, 
and studies with large samples are needed to verify the 
results. In addition, up-regulated miR-202-5p was found 
to have a protective effect on the heart of mice with myo-
cardial ischemia–reperfusion injury [37]. But our present 
study identified that miR-202-5p was differentially upreg-
ulated in CVD group, and we considered that it was due 
to the different species in two studies which weakened 
the comparability.

We successfully constructed the mRNA-SNP-miRNA 
interaction network to visualize the relationships 
between mRNAs, SNP and miRNAs. However, there was 
no statistical significance in Pearson correlation analysis 
of mRNA and miRNA connected by overlapping SNPs in 
the mRNA-SNP-miRNA interaction network. Consider-
ing this study, the reasons may be associated with limita-
tions in this study. First, the sample size of miRNA is so 
small that its results are not representative enough, and 
future studies including larger samples are required; sec-
ond, mRNA and miRNA expression data were obtained 
from different samples, resulting in bias although we 
searched eligible databases by defining the CVD clearly 
and setting covariates to eliminate the bias, and miRNA, 
mRNA and SNP data from same experiment are needed 

to provide more convincing research results. Moreover, 
some miRNAs cannot inhibit mRNA expression but can 
inhibit protein translation. Hence, the co-expression 
analysis of mRNA and miRNA was not statistically signif-
icant, which did not indicate that there was no regulatory 
relationship between them. Further study on the signifi-
cance of miRNA and mRNA at protein level is required.

Conclusion
We demonstrated mRNA-SNP-miRNA interaction net-
work and identified important pathways contributing to 
metabolic cardiovascular disease. These results suggested 
that downregulated let-7i-5p, and upregulated RASGRP3, 
KRT1 and CEP41 may play crucial roles in molecular 
mechanisms underlying the initiation and development 
of CVD in T2DM patients. However, further studies 
regarding the role of these genes and miRNAs in progres-
sion of CVD in T2DM patients are required.
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