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Integration of transcriptomic data 
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Abstract 

Background:  Hypertrophic cardiomyopathy (HCM) represents one of the most common inherited heart diseases. To 
identify key molecules involved in the development of HCM, gene expression patterns of the heart tissue samples in 
HCM patients from multiple microarray and RNA-seq platforms were investigated.

Methods:  The significant genes were obtained through the intersection of two gene sets, corresponding to the 
identified differentially expressed genes (DEGs) within the microarray data and within the RNA-Seq data. Those 
genes were further ranked using minimum-Redundancy Maximum-Relevance feature selection algorithm. Moreover, 
the genes were assessed by three different machine learning methods for classification, including support vector 
machines, random forest and k-Nearest Neighbor.

Results:  Outstanding results were achieved by taking exclusively the top eight genes of the ranking into considera-
tion. Since the eight genes were identified as candidate HCM hallmark genes, the interactions between them and 
known HCM disease genes were explored through the protein–protein interaction (PPI) network. Most candidate 
HCM hallmark genes were found to have direct or indirect interactions with known HCM diseases genes in the PPI 
network, particularly the hub genes JAK2 and GADD45A.

Conclusions:  This study highlights the transcriptomic data integration, in combination with machine learning meth-
ods, in providing insight into the key hallmark genes in the genetic etiology of HCM.
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Background
Hypertrophic cardiomyopathy (HCM) is a genetically 
heterogeneous cardiac muscle disorder characterized 
by left ventricle hypertrophy in the absence of abnor-
mal loading conditions [1]. HCM occurs in at least 1 in 
500 of the general population, making it one of the most 
common inherited heart diseases [2]. In 70% of HCM 
patients, the disease is caused by mutations in sarcom-
eric genes, Z-disc genes, calcium-handling genes and so 

on. The genetic background of about 30% HCM patients 
remains unknown [3]. The cellular signaling processes 
that lead from the primary mutation to the HCM pheno-
type are also poorly understood. Therefore, it is essential 
to investigate the pathogenic mechanisms and develop 
novel diagnostic hallmark genes.

Two gene expression profiling technologies, microar-
ray and RNA sequencing (RNA-Seq), have been widely 
used for obtaining gene expression signature. Compared 
to microarray, RNA-Seq can simultaneously detect whole 
gene expression levels [4]. Existing evidence showed a 
high consistency between microarray and RNA-Seq [5, 
6].
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In the last decade, various methods for classification 
have been developed and gained great attention of bio-
medical applications [7, 8]. In most classification stud-
ies, support vector machines (SVM), random forest (RF), 
K-Nearest-Neighbors (KNN) are reported as the fore-
most classifiers producing high accuracies [9].

In this study, the integrated analysis of transcriptomic 
datasets from different platforms was performed to iden-
tify differentially expressed genes (DEGs) between HCM 
patients and healthy controls (Fig.  1). Machine learning 
methods, including  SVM, RF and KNN, were applied to 
prioritize the HCM candidate hallmark genes. This study 
provided novel perspective for understanding mecha-
nism and exploiting new therapeutic means for HCM.

Methods
Data collection
Gene expression profiles of the heart tissue samples in 
HCM patients/mice and healthy controls and patient-
specific induced pluripotent stem cells-derived cardio-
myocytes (iPSC-CMs) were obtained from ArrayExpress 

(http://​www.​ebi.​ac.​uk/​array​expre​ss/), Gene Expression 
Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​gds/) and 
Sequence Read Archive (SRA, https://​www.​ncbi.​nlm.​nih.​
gov/​sra/).

Microarray data analysis
For microarray datasets, standard analysis process 
including quality control, pre-processing, normalization 
using Limma and Lumi packages across Illumina and 
CapitalBio platforms was performed [10, 11]. To avoid 
distortion of the results by noise, uninformative probes 
(low variance, expressed uniformly close to background 
detection levels) were filtered out. Finally, normalized 
log2-transformed expression values were obtained.

RNA‑seq data analysis
For RNA-Seq data sets, after removing adapters and 
low-quality bases using the Trimmomatic program, we 
implemented STAR​ [12] to map reads to human genome 
hg38. Samtools [13] and Htseq [14] were then used to 
obtain the read count for each gene. Then the expression 

Fig. 1  Flowchart of using transcriptomic data for HCM hallmark genes discovery

http://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
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values for the genes were calculated using the Cqn and 
the NOISeq R packages [15, 16].

DEGs extraction
The expression values obtained from both microarray 
and RNA-Seq technologies were integrated using the 
merge function from the base R package. Extraction of 
DEGs was performed using the limma R package, at both 
individual level (microarray data and RNA-Seq data sepa-
rately). Then a normalization of all joint data was applied 
using the NormalizedBetweenArrays function. Log-fold 
change (LFC) and adjusted p value (adj. PV) using Ben-
jamini Hochberg’s method, were considered to select sta-
tistically highly differentiated expressed genes.

Feature selection process
The feature selection process was performed to obtain a 
ranking of the most relevant DEGs, using the minimum-
Redundancy Maximum-Relevance (mRMR) algorithm 
[17]. To create this ranking, mRMR sorts the genes so 
that they bring largest relevance with respect to the 
class (HCM/control), at the same time, they have lowest 
redundancy among themselves. Therefore, this algorithm 
will rank in first position the gene that contains the larg-
est amount of information, but the following genes will 
provide also minimum redundancy (apart from maxi-
mum relevance as regard to the class) with respect to the 
already selected genes. The mRMR algorithm was imple-
mented by importing the pymrmr package with python 
[18].

Classification process
In the classification process, three different machine 
learning algorithms, including SVM, RF and KNN, were 
implemented to assess the results. The experiments are 
implemented with Python using the svm, RandomForest-
Classifier, KNeighborsClassifier from scikit-learn libraries 
[19].

SVM are supervised learning models with associated 
learning algorithms that analyze data used for classifica-
tion and regression analysis [20]. Four kernels, including 
the radial basis function (RBF), polynomial, linear and 
sigmoid kernel, were tested to implement the SVM algo-
rithm. Among the four kernels, the RBF kernel showed 
a good performance and was chosen by using the argu-
ment (kernel = ’rbf ’).

RF is essentially, an ensemble of decision trees com-
bined where each tree votes on the class assigned to a 
given sample, with the most frequent answer winning 
the vote [21]. For the RF classifier, two main param-
eters were tested and evaluated: n_estimators and 
min_samples_leaf.

The KNN algorithm is an instance-based learning 
method for classifying objects based on closest training 
examples in the feature space [22]. Two main parameters 
n_neighbors and p were tested to find the optimal KNN 
model for classification.

Ten-fold cross-validation (CV) was used over the train-
ing dataset to obtain the optimal hyperparameters for the 
methodologies. Accuracy and f1-score were used as the 
performance measures.

Protein interaction network
The protein–protein interaction (PPI) network is repre-
sented as graphs where nodes and edges are proteins and 
pair wise interactions, respectively. Only intermediate 
genes known to interact between 47 known HCM disease 
genes and HCM candidate hallmark genes were included. 
Experimentally verified interaction data from StringDB 
[23] and Biogrid [24] were used for establishing the PPI 
network. Only medium- and high-confidence experimen-
tal interactions in StringDB were shown, although these 
may not always represent local interactions. Cytoscape 
(version 3.7.2), a bioinformatics software platform, was 
used for visualizing the molecular interaction networks 
[25]. ClueGO, a cytoscape plugin, was used for functional 
enrichment analysis based on the intermediate genes 
[26].

Statistical analysis
Statistical analysis and Pearson’s correlation analysis were 
performed with R studio.

Results
Integration of samples
Two hundred sixteen samples in 5 datasets were selected, 
including 154 HCM samples and 62 healthy control sam-
ples (Table 1). Four datasets contain gender information, 
and one of them with MYH7/MYBPC3 genotype infor-
mation. Both microarray and RNA-Seq data analysis were 
conducted and the gene expression values were obtained 
for each technology separately. The representation of the 
individual dataset reflected several different expression 
value ranges (Fig. 2). To remove dynamic expression vari-
ability between samples due to different platforms, a nor-
malization of all joint data per technology was performed 
(Fig. 3).

Detection of DEGs
After data integration, the general LFC value of the iden-
tified DEGs were relatively low with a maximum value 
of 2.36. Therefore, the criteria for DEGs detection we 
chosen was less stringent, with |LFC|≥ 0.6, and |adj. 
PV|≤ 0.05. Two sets of DEGs were identified for micro-
array dataset and RNA-Seq dataset (Fig. 1). A total of 48 
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common DEGs were obtained through the intersection 
of the two sets of DEGs (Fig. 4). Two genes (GADD45B 
and THBS1) showed opposite direction in the two DEGs 
sets (Additional file 1: Table S1 and S2).

Assessment of DEGs
The feature selection process was applied to the 48 DEGs, 
and the ranking of the genes was based on its relevance 
with HCM using the mRMR algorithm. Subsequently, 
the performance of the obtained ranking was evaluated. 
Stratified sampling was used to divide the integrated 
dataset into a training dataset (172 samples) and a test 
dataset (44 samples). The expression values of the 48 
DEGs were chosen as classification features. Three differ-
ent classifiers were implemented and compared, includ-
ing SVM [20], RF [21] and KNN [22]. Furthermore, the 
comparison has been performed for both accuracy and 
f1-score with different number of genes. The f1-score is a 
measure of a test’s accuracy, calculated by using both the 
precision or accuracy and the recall or sensitivity.

The validation results (10-CV over the training dataset) 
and test results using the three classifiers were shown in 
Additional file 1: Table S3. These validation results were 
above 87% using only the first gene of the ranking for 
classification, and above 93% using a reduced set of eight 
genes in the ranking. Using those eight genes, the test 

Table 1  Characteristics of microarray and RNA-Seq datasets in the study

Source: GEO/ArrayExpress accession

Datasets Source Type Technology Platform Year Case/Control

E-GEOD-36961 Human heart tissue mRNA Microarray Illumina GPL15389 2012 106/39

GSE32453 Human heart tissue mRNA Microarray Illumina GPL6104 2012 8/5

E-GEOD-68316 Human heart tissue mRNA Microarray CapitalBio GPL20113 2015 7/5

Integrated (Microarray) 121/49

GSE89714 Human heart tissue mRNA RNA-Seq Illumina GPL20795 2016 5/4

GSE130036 Human heart tissue mRNA RNA-Seq Illumina GPL11154 2019 28/9

Integrated (RNA-Seq) 33/13

Fig. 2  Expression profile of each dataset before normalization

Fig. 3  Expression profile of each dataset after normalization

Fig. 4  Intersection of DEGs in RNA-Seq dataset and microarray 
dataset
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results showed an accuracy of 97.73% using SVMs, 100% 
using KNN, nevertheless lower using RF with a 93.18%. 
Consequently, the main set of 48 DEGs was reduced to 
the eight genes, which allow discerning whether new 
samples are HCM or not. The eight genes (JAK2, C1R, 
MS4A7, MBP, METTL7B, GADD45A, CD209, TRAK2) 
were then listed as candidate HCM hallmark genes.

Figures 5 and 6 showed the evolution of accuracy and 
f1-score for the three classifiers using a different number 
of genes. Regarding the three classifiers, SVM reached 
comparable results with KNN, better than RF. Expres-
sion levels of the eight candidate HCM hallmark genes 
were shown in Fig.  7, revealing a clear differentiation 
between the average value of the HCM and healthy con-
trol samples.

To see whether gender and MYH7/MYBPC3 genotype 
affects the expression of the eight candidate HCM hall-
mark genes, comparisons of the expression values were 
performed using student’s t-test. The results showed a 
significant difference in the expression of the eight genes 
between male HCM hearts and male control hearts, as 
well as between female HCM hearts and female control 
hearts, while no significant difference was noted between 
male and female HCM samples. Moreover, no significant 
difference in the expression of the eight genes was noted 
between MYH7/MYBPC3 genotype positive and negative 
HCM samples.

The expression of the 48 HCM relevant genes was also 
explored in the iPSC-CMs from a family cohort carrying 
a hereditary HCM missense mutation (Arg663His) in the 
MYH7 gene (GSE35229). The expression of one candi-
date hallmark gene METTL7B was significantly increased 
in iPSC-CMs compared with human embryonic stem 
cells (hESCs) and fibroblasts (p < 0.01) [27].

Fig. 5  The test accuracy achieved by SVM, RF and KNN using the 
most relevant genes obtained by mRMR. Similar trends can be 
observed for f1-score

Fig. 6  The f1-score achieved by SVM, RF and KNN using the most 
relevant genes obtained by mRMR

Fig. 7  Average expression value violin plots of the eight candidate HCM hallmark genes obtained in this study
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Protein interaction network
Since the eight genes were identified as candidate hall-
mark genes for HCM, the investigation of their interac-
tions with known HCM disease genes would provide a 
deep insight into their biological roles. The interaction 
data were extracted from StringDB and Biogrid database 
[23, 24], and the PPI network was formed to summa-
rize these links. As shown in Fig. 8, a total of 155 nodes 
and 463 edges relationship pairs were identified in the 
PPI network, including 44 known HCM disease genes, 
7 candidate HCM hallmark genes and 104 intermediate 
genes. Four candidate HCM hallmark genes (JAK2, MBP, 
CD209, TRAK2) have both direct and indirect interac-
tions with known HCM disease genes, while the other 3 
candidate HCM hallmark genes (C1R, GADD45A, MET-
TL7B) only have indirect interactions with known HCM 
disease genes. Among the eight candidate HCM hall-
mark genes, the most connected genes were JAK2 and 
GADD45A, both with 35 underlying edges.

Further functional enrichment analysis showed that the 
intermediate genes were mostly transcription factors and 
protein kinases, which are involved in the regulation of 

multiple signaling transduction pathways, including pro-
tein kinase signaling pathway, calcium-mediated signal-
ing pathway and intrinsic/extrinsic apoptotic signaling 
pathway, et al. Furthermore, intermediate genes that par-
ticipate in positive regulation of cardiac muscle tissue 
growth and cardiac septum morphogenesis were also 
identified in the process.

JAK2 and GADD45A
The expression levels of JAK2 and GADD45A with 
the well-established biomarkers of HCM (NPPA and 
NPPB) were explored using the Pearson’s correlation 
analysis. Positive relationship can be found between 
JAK2 and NPPA (r = 0.62, p = 4.05e−06), JAK2 and 
NPPB (r = 0.65, p = 8.88e−07), GADD45A and NPPA 
(r = 0.63, p = 2.18e−06), GADD45A and NPPB (r = 0.66, 
p = 5.70e−07).

The expression of JAK2 were further explored in the 
heart tissues of HCM animal models. Significant differ-
ence was noted between MHC403/+ mice and wild type 
(WT) mice based on the dataset GSE52038 (p < 0.01) 
[28]. However, negative results were found in the other 

Fig. 8  Protein–protein interaction network created by known HCM disease genes (green circle) and candidate HCM hallmark genes (red circle) 
reveals the important roles of the hub genes, JAK2 and GADD45A. The network also includes 104 intermediate genes (white circle). Solid line 
indicates direct interaction, and dotted line indicates indirect interaction
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HCM animal models, probably due to the timing of the 
detection, since the samples from human were mostly 
collected in the end stage of HCM, whereas the samples 
from animal models were generally collected in the ear-
lier disease stage of HCM.

Discussion
In the last decades, two gene expression profiling tech-
nologies including microarray and RNA-Seq have been 
proved to be excellent in revealing the biomarkers and 
cellular pathways of human disease [29]. Previous stud-
ies on HCM transcriptomic data have focused on only 
the microarray datasets or the RNA-Seq datasets [30, 31]. 
Advances in bioinformatics and the increasing number of 
transcriptomic datasets have enabled a full exploration 
of the integrated transcriptomic data to reveal molecular 
mechanisms underlying HCM.

An exhaustive search from the GEO, ArrayExpress, 
and SRA public repository has been performed to collect 
HCM and control heart tissue samples from both tech-
nologies. After data integration and DEGs extraction, the 
general LFC value of the identified DEGs were relatively 
low, we assume that the mild change of gene expression 
may be related to the slow disease progression of most 
HCM cases.

During the classification process, SVM, RF and KNN 
technologies were implemented for the DEGs evalua-
tion. The differences in performance among classification 
techniques are usual in this type of problems, and several 
papers comparing classification techniques for biological 
data can be found in the literature [32–34]. In the results 
above-mentioned, SVM classifier attains an optimal per-
formance using only 8 genes. The behavior is also seen in 
the KNN technique, although with a lower performance. 
RF classifier obtained similar results when using the com-
plete set of 48 genes but fails to design a simpler classifier 
with a low number of genes with optimal performance 
[32]. Thus, these results support the design of an optimal 
classifier based on SVM classifier with only eight genes.

The PPI network established between known HCM 
disease genes and eight HCM candidate hallmark genes 
contains helpful information for understanding the 
role of them in the development of HCM. JAK2 and 
GADD45A were found to be hub genes in the PPI net-
work, indicating their important roles underlying HCM. 
Further functional enrichment analysis also showed that 
some intermediate genes participate in positive regula-
tion of cardiac muscle tissue growth and cardiac septum 
morphogenesis.

Janus kinase 2, encoded by JAK2, is a protein tyrosine 
kinase involved in a specific subset of cytokine receptor 
signaling pathways. As a member of JAK family, JAK2 
is an important component in the Janus kinase/signal 

transducer and activator of transcription (JAK/STAT) 
signaling pathway. The JAK/STAT signaling triggers mul-
tiple signals involved in development, homeostasis and 
inflammation [35, 36]. Accumulating evidence indicated 
that the JAK/STAT signaling pathway played a vital role 
in transducing stress and growth signals in the hyper-
trophic heart [37, 38]. The JAK/STAT pathway also trans-
duces signals for a wide array of cytokines and growth 
factors including ANGII, TNF-α, IL-1β, IL-6 and IFN-γ, 
all of which have been involved in cardiac hypertrophy 
[39–42]. Moreover, JAK2 has previously been reported to 
play an important role in left ventricular remodeling dur-
ing pressure overload hypertrophy, and the development 
of hypertrophy can be blocked by pharmacological inhi-
bition of JAK2 kinase [43]. Furthermore, one mutation 
V617F in JAK2 has been identified in one patient with 
myeloproliferative disorder (MPD) and HCM, suggest-
ing a potential causative role of JAK2 in the development 
of HCM phenotype [44]. Recent studies also showed that 
cardiac JAK2 was critical for maintaining normal heart 
function, and its ablation produced a severe pathologic 
phenotype composed of myocardial remodeling [45]. 
Taken together, it is likely that JAK2 plays a central role in 
the pathogenesis of HCM. From our previous study, rare 
mutations in JAK2 were identified in 9/72 (12.5%) HCM 
patients without mutations in known HCM disease genes 
(Table  2) [3]. It would be interesting to further explore 
the specific role of these mutations and their associations 
with HCM.

Another hub gene GADD45A, encoding growth 
arrest and DNA damage inducible alpha, is a member 
of GADD45 gene family, which have been implicated 
in stress signaling responses to various physiological or 
environmental stressors, thus contributing to the mainte-
nance of genomic stability [46]. Several previous studies 
have evaluated the hypothesis that two other GADD45 
isoforms, including GADD45G and GADD45B, may have 
relevance to cardiac physiopathology [47, 48].

As one candidate hallmark gene, METTL7B is a mem-
ber of mammalian methyltransferase-like family. The 
expression of METTL7B in HCM significantly decreased 
in our study. In line with our findings, one recent study 
showed that the expression levels of METTL7B in the 

Table 2  Mutations in JAK2 (NM_008413) identified in 72 non-
sarcomeric HCM patients

MAF minor allele frequency in GnomAD database

Sample ID Het/hom AA change SNP MAF

H13, H53, H44, H07 het N1108S rs142269166 1.96e−3

H17 het L892V rs201551707 6.56e−4

H24, H51 het L393V rs2230723 7.88e−3

H60, H65 het R1063H rs41316003 4.37e−3
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cardiac tissue in the diabetic cardiomyopathy patient 
group were statistically lower than those in the healthy 
group [49]. However, the expression of METTL7B was 
significantly increased in iPSC-CMs compared with 
hESCs and fibroblasts. Despite the opposite results, all 
the present data support the importance of METTL7B in 
HCM, experimental data have yet to be fully investigated 
to determine its pathogenic relevance.

Additionally, the list of HCM-related genes between 
our study and previous studies of those datasets were 
compared and found that even though some genes 
appeared in the opposite direction in separated datasets 
[30, 50], most HCM relevant genes showed the same 
directions between microarray and RNA-seq datasets, 
including the eight candidate HCM hallmark genes.

Furthermore, due to the limited number of genes 
detected in the microarray datasets compared to the 
RNA-seq datasets, focusing on common DEGs through 
the intersection of datasets tend to lose some important 
information that RNA-seq would confer. Unfortunately, 
no enriched biological function and pathway based on 
the 48 identified HCM relevant genes can be found 
through GO and pathway analysis. However, we are con-
fident with the results because they have been validated 
in different platforms and different patient cohorts.

Previous studies have demonstrated that distinct cellu-
lar pathways were involved in the development of HCM 
corresponding to different causative gene mutations [40]. 
However, based on the results in this study, we assumed 
that the eight candidate hallmark genes may act as a cen-
tral role in the mutual cellular pathways underlying the 
HCM phenotype, which can somehow be triggered by 
most causative gene mutation. Further studies are needed 
to decipher the specific role of the candidate hallmark 
genes associated with HCM.

Conclusions
Integrating transcriptomic datasets from different plat-
forms, have greatly aid the utility of biological data and 
improved the interpretation of gene expression values. 
Our results showed that the pipeline has good perfor-
mance and a high accuracy of the classifier to distinguish 
unknown samples. Additionally, the central role of JAK2 
and GADD45A in the pathogenic mechanism of HCM 
was highlighted. These findings will greatly contribute 
to extending our knowledge of the biological changes 
underlying HCM and providing perspective to reveal the 
pathology and develop therapeutic targets for HCM.
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