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Abstract 

Background:  Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide and is associ‑
ated with multiple inherited and environmental risk factors. This study is designed to identify, design, and develop 
a panel of genetic markers that combined with clinical and angiographic information, will facilitate the creation of a 
personalized risk prediction algorithm (GEnetic Syntax Score—GESS). GESS score could be a reliable tool for predict‑
ing cardiovascular risk for future adverse events and for guiding therapeutic strategies.

Methods:  GESS (ClinicalTrials.gov Identifier: NCT03150680) is a prospective, non-interventional clinical study 
designed to enroll 1080 consecutive patients with no prior history of coronary revascularization procedure, who 
undergo scheduled or emergency coronary angiography in AHEPA, University General Hospital of Thessaloniki. Next 
generation sequencing (NGS) technology will be used to genotype specific single-nucleotide polymorphisms (SNPs) 
across the genome of study participants, which were identified as clinically relevant to CAD after extensive bioin‑
formatic analysis of literature-based SNPs. Enrichment analyses of Gene Ontology-Molecular Function, Reactome 
Pathways and Disease Ontology terms were also performed to identify the top 15 statistically significant terms and 
pathways. Furthermore, the SYNTAX score will be calculated for the assessment of CAD severity of all patients based 
on their angiographic findings. All patients will be followed-up for one-year, in order to record any major adverse 
cardiovascular events.

Discussion:  A group of 228 SNPs was identified through bioinformatic and pharmacogenomic analysis to be 
involved in CAD through a wide range of pathways and was correlated with various laboratory and clinical param‑
eters, along with the patients’ response to clopidogrel and statin therapy. The annotation of these SNPs revealed 127 
genes being affected by the presence of one or more SNPs. The first patient was enrolled in the study in February 
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Background
Coronary artery disease (CAD) is a complex, multifac-
torial disease driven by the cumulative and interactive 
modular effects of gene–gene, gene–environment and 
epigenetic interactions [1]. Notwithstanding intense 
investigation in the postgenomic era, the fundamental 
biological pathways underlying the multidecade pro-
cess of atherosclerotic formation and chronic inflamma-
tion in CAD have not yet been addressed [2]. The need 
for unraveling the molecular and genetic underpinnings 
of CAD at a deeper level is stressed nowadays, due to 
exceptionally high mortality rates of CAD, despite the 
expanded arsenal of precision medicine [3]. There-
fore, defining CAD will enable the treatment of patients 
on the basis of a better understanding of their clinical 
presentations.

The potential for genotype-guided precision medi-
cine is pointed out by recently emerging evidence from 
large scale studies investigating various gene expressions 
in patients with CAD. Hitherto, several Genome-Wide 
Association Studies (GWAS) have mapped more than 
150 single-nucleotide polymorphisms (SNPs) potently 
implicated in CAD pathogenesis [1, 4–7]. These candi-
date variants are not yet established though and as Next 
Generation Sequencing (NGS) becomes the heart of 
high-throughput genotyping technologies, several plau-
sible genetic variants linked with multifactorial traits of 
CAD might be discovered, shedding light on the road 
of personalized medicine [8]. Meanwhile, significant 
therapeutic implications emerge from the integration of 
genetic data into predictive risk scores. Specifically, sev-
eral studies have been envisaged, in order to correlate 
distinct genetic variants with modulation of the risk for 
CAD occurrence or progression [9–11]. In those stud-
ies the severity of CAD has been assessed via clinical, 
laboratory or imaging parameters, but not with the Syn-
ergy Between Percutaneous Coronary Intervention With 
Taxus and Coronary Artery Bypass Graft Surgery (SYN-
TAX) score yet [12–15].

The SYNTAX score is the best-known scoring algo-
rithm to evaluate CAD complexity as a comprehensive 
angiographic grading tool taking into consideration 

anatomic risk factors [16]. According to the extent of 
CAD, this score facilitates the objective guidance of deci-
sion-making between coronary artery bypass grafting 
(CABG) surgery and percutaneous coronary interven-
tion (PCI). Despite, the SYNTAX score relies on invasive 
coronary angiography findings and the discovery of risk 
stratification algorithms that facilitate non-invasive esti-
mation of CAD complexity could alter the prognostic 
plan in patients with CAD.

The rationale behind this prospective study is to asso-
ciate, for the first time, the severity of CAD, as assessed 
by the SYNTAX score, with patients’ genomic profile 
in a real-world setting of patients undergoing coronary 
angiography [16]. The desirable goal is to corroborate 
genomic and pharmacogenetic research on CAD explor-
ing the potential clinical association of 228 selected SNPs 
with CAD and individualized response to clopidogrel and 
statin therapy, which could disentangle gene expression 
alterations in blood of patients with CAD. Ultimately, 
the GESS trial aspires to develop a genetic SYNTAX 
score that could non-invasively enable the identification 
of patients with complex and severe CAD after a blood-
based gene expression analysis. This study is designed 
to contribute to recent calls for implementing geno-
type-guided precision medicine decisions, by aiding the 
clinicians to achieve improved prediction and therapy 
outcomes for CAD patients [3].

Methods
Study design and population
GESS (ClinicalTrials.gov Identifier: NCT03150680) is an 
ongoing prospective, single‐center, cohort study enrolling 
patients undergoing coronary angiography.

Ethical approval was obtained from the Scientific Com-
mittee of AHEPA University Hospital (reference num-
ber 309/11–05-2017). Written informed consent will be 
obtained from each patient prior to study enrollment and 
the trial procedures conform with the Declaration of Hel-
sinki [17].

GESS study is designed to enroll 1080 consecutive adult 
patients admitted to AHEPA University Hospital of Thes-
saloniki, Greece and undergoing coronary angiography 

2019 and enrollment is expected to be completed until June 2021. Hence, GESS is the first trial to date aspiring to 
develop a novel risk prediction algorithm, the GEnetic Syntax Score, able to identify patients at high risk for complex 
CAD based on their molecular signature profile and ultimately promote pharmacogenomics and precision medicine 
in routine clinical settings.

Trial registration GESS trial registration: ClinicalTrials.gov Number: NCT03150680. Registered 12 May 2017- Prospectively 
registered, https://​clini​caltr​ials.​gov/​ct2/​show/​NCT03​150680.

Keywords:  Genetics, Pharmacogenomics, SNPs, NGS, Biomarkers, Coronary artery disease, SYNTAX score, Acute 
coronary syndrome
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for clinical purposes. Coronary angiography can be per-
formed either on an emergency basis or scheduled. For 
the purpose of this research, patients with history of 
prior percutaneous coronary intervention or coronary 
artery bypass grafting and patients unwilling to provide 
informed consent will be excluded from the study. The 
selection criteria of the study are presented in detail in 
Table 1.

Pre-specified clinical data, including demographic 
characteristics, medical history, medication and clini-
cal presentation will be recorded for the entire study 
population by research study coordinators under stand-
ardized methods. Accordingly, study participants will 
be classified into 3 main subsets, based on their clinical 
presentation: 1. patients undergoing preoperative coro-
nary angiography without symptoms suggestive of CAD, 
2. patients with chronic coronary syndrome, and iii. 
patients with acute coronary syndrome.

Moreover, all enrolled patients will undergo selective 
coronary angiography, which will be performed through 
radial or femoral artery approach in the cardiac catheter-
ization laboratory of the hospital. Images obtained will be 
assessed by experienced interventionalists (GS1, GS2), 
blinded to the study protocol, who will be in charge of 
calculating the SYNTAX scores. According to their SYN-
TAX score, patients will be categorized into the following 
groups: i. low SYNTAX score (0–22) group, ii. intermedi-
ate SYNTAX score (23–32) group, and iii. high SYNTAX 
score (> 32) group [16].

Additionally, peripheral blood samples will be drawn 
on the enrollment day- prior to coronary angiography—
for genomic profiling. The vials of drawn blood will be 
aliquoted and stored as whole blood, plasma, serum, and 
buffy coat.

The first participant of the study was enrolled in Feb-
ruary 2019 and 783 patients have been recruited through 
November 2020. Completion of patient enrollment is 
expected until June 2021.

Telephone follow-up will be systematically carried 
out for every study subject at 1  year after enrollment, 
in order to document the incidence of CAD symptoms, 
major adverse cardiovascular and cerebrovascular events 
(MACCE-need for coronary revascularization, myo-
cardial infarction, stroke/ transient ischemic attack or 

all-cause mortality) and bleeding complications (Bleed-
ing Academic Research Consortium classification score 
[18]).

Genotyping and bioinformatic analysis
Peripheral whole blood will be collected and labeled with 
a unique barcode to ensure anonymization and unbiased 
assessment. High quality genomic DNA will be extracted 
using commercial kits (Qiagen) and will be quantified 
by spectrophotometry using Nanodrop 1000 (Thermo 
Fisher). Ultrasensitive targeted NGS of extracted DNA 
(40 ng) will be performed using custom QIAseq Targeted 
DNA Panel (Qiagen) containing primers for the enrich-
ment of the 228 SNPs of interest. The produced molec-
ularly barcoded libraries will be quantified by Qubit 3 
Fluorometer (Invitrogen) and real time PCR (QIAseq 
Library Quant Assay kit). Sequencing will be performed 
by sequencing by synthesis (SBS) chemistry on MiniSeq 
Platform of Illumina using the MiniSeq Mid Output Kit 
(300-cycles). The generated NGS data (in fastq format) 
will be analyzed with the CLC Genomics Workbench 
(Qiagen) bioinformatics software and the genotype of 
each SNP will be determined.

Biostatistics and disease ontology enrichment analysis
We sought to identify genes whose coding sequence 
and/or expression levels are affected by the selected 228 
SNPs studied here. To this end, data mining was per-
formed from dbSNP database using reutils [19, 20]. In 
addition, further information on genes, associated with 
the selected SNPs through GWAS, were retrieved from 
HumanMine database [21] using InterMineR [22]. Our 
approach led to the formation of a list with 127 genes 
that have been associated with the selected SNPs. Next, 
enrichment analysis was performed to identify statisti-
cally significant disease terms, whose involved genes 
are overrepresented in our gene list. Enrichment analy-
sis, with Benjamini–Hochberg adjusted p-value < 0.001, 
was performed using clusterProfiler [23] and DOSE [24] 
(Figs. 1 and 2).

Table 1  Eligibility criteria for the enrollment in the GESS study

Inclusion criteria Exclusion criteria

Patients undergoing coronary angiography Medical history of prior coronary 
revascularization procedure

Age > 18 years old Cardiopulmonary arrest at admission

Informed consent for study participation Severe concurrent disease with life 
expectancy less than 12 months
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Statistical considerations
Sample size estimation and endpoints of the study
The primary endpoint of the study is to discover 
potential correlations of the SYNTAX score with 
patients’ genomic profile and create a blood-based 
gene expression test (genetic SYNTAX score) which 
could accurately identify patients at high risk for CAD 
of moderate or high severity. For the estimation of the 
sample size the G*Power [25, 26] and Epi Info (Stat-
Calc) [27] software tools were used. To this regard, 
we made use of the exact sampling distribution of the 
squared multiple correlation coefficient implemented 
in G*Power assuming 250 predictors, a two-tailed test, 
power of 0.9, significance level of 0.05, ρ2 = 0.13 and a 
ratio of unexposed to exposed equal to 2 (based on a 
pilot study on 100 patients). The initial sample size was 
finally increased by 10% because of the possibility that 

some patients might be lost to follow-up. Hence, we 
aim for a total sample of 1080 patients.

Secondary endpoints of the study are the development 
of a panel of genetic markers that, in conjunction with 
clinical parameters, could strongly predict the occur-
rence of MACCE or any bleeding events during follow 
up.

Statistical analysis
Descriptive analysis will be used to summarize the data. 
Specifically, results will contain statistics as mean, stand-
ard deviation, median, minimum and maximum values, 
whereas for categorical variables the frequency distribu-
tion tables with number of cases and percentage distri-
bution will be presented. Statistical hypothesis testing 
procedures (Kolmogorov–Smirnov and Shapiro–Wilk) 

Fig. 1  Barplot of top 15 statistically significant disease ontology terms. Disease terms and number of genes are displayed in y and x axis, 
respectively. Enrichment analysis and barplot creation were performed using clusterProfiler and DOSE
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will be conducted for continuous variables to check, 
whether they satisfy the normality assumption. Given 
the fact that the response variable (SYNTAX score) pre-
sents a heavily-skewed and non-normal distribution with 
an excess number of zeros, non-parametric statistical 
hypothesis tests will be used for the investigation of the 
main effects of categorical variables on the population 
median values of the response variable. More specifically, 
the Mann–Whitney and Kruskal–Wallis followed by pair-
wise comparisons through Mann–Whitney test using 

Bonferroni’s correction will be conducted. The investiga-
tion of the relationship between SYNTAX score and the 
set of continuous variables will be performed using the 
non-parametric Spearman’s correlation coefficient.

The model building process will be based on Hur-
dle Models that are a class of modeling techniques able 
to handle excess zeros and overdispersion of SYNTAX 
score variable. Describing briefly, the Hurdle Model has 
two parts: (i) a zero hurdle part which models the right-
censored outcome SYNTAX score variable indicating 

Fig. 2  Gene concept network of top 15 statistically significant disease ontology terms. Enrichment analysis and network creation were performed 
using clusterProfiler and DOSE
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patients with a zero-count ( Y = 0 ) or patients with a pos-
itive count ( Y = 1 ), where all values larger than zero are 
censored (i.e. fixed at one) and (ii) a truncated count part 
modeling the total number of SYNTAX score for patients 
presenting a non-zero count ( Y > 0 ). Regarding the iden-
tification of the best set of predictors for each part of 
the model, a feature selection search strategy based on 
Akaike Information Criterion will be utilized, in which 
the set of predictors are included in the full model and at 
each step of the iterative process, a predictor is dropped 
out. To assess the fitting performance of the final model, 
well-known evaluation metrics for regression (e.g. mean 
and median squared, absolute and percentage errors) and 
classification tasks (accuracy, F-measure, G-mean, preci-
sion and recall) will be used, whereas for the evaluation 
of the prediction performance of the model, data-gener-
ating schemas (i.e. holdout and k-fold cross-validation) 
that split the available dataset into training and test sets 
will be performed. In addition, graphical evaluation of 
model’s performance will be assessed through appropri-
ate visualization methods, such as Receiver Operating 
Characteristic (ROC) and Precision-Recall curves for 
the zero-hurdle part and Regression Error Characteristic 
(REC) curves for the truncated count part.

Survival analysis methods will be also performed for 
examining patients at follow-up period. More specifically, 
the non-parametric Kaplan–Meier analysis will be con-
ducted for graphically evaluating the survival function of 
patients, while log-rank tests will be conducted for inves-
tigating effects of different factors on survival distribu-
tion. Finally, Cox Regression analysis will be performed 
to build a multivariate regression model between several 
predictors and the survival time of patients.. Statistical 
analysis will be performed via the R statistical program-
ming language. In all tests a difference will be considered 
as statistically significant when p-value (significance) will 
be less than 0.05, while all conducted tests will be two-
tailed (non-directional).

Discussion
GESS is a prospective ongoing study designed to deter-
mine the impact of the presence of several genetic vari-
ants on CAD severity. The aim of this study is to further 
understand the pathogenesis of CAD by utilizing 3 fun-
damental pillars: (1) invasive coronary angiography and 
standardized SYNTAX score calculation; (2) revolution-
ary NGS technologies; and (3) systems biology-based 
bioinformatics. To our knowledge, hitherto, this is the 
first study designed to establish a prognostic blood assay 
for the association of the presence of a large number of 
SNPs with CAD severity, as evaluated via the SYNTAX 
score.

Endothelial dysfunction, oxidative stress and inflamma-
tion, which are the products of a multifactorial interplay 
between inherited and environmental risk factors, are 
established determinants of the atherosclerotic burden 
and CAD prognosis [4, 28]. Large GWAS have been con-
ducted in order to locate CAD-associated variants (SNPs) 
and decipher the underlying genetic fundament of the 
disease [6, 29–35]. To date, a great number of susceptible 
multi-SNP loci have been identified with some of them 
reaching the stringent level of significance [6, 32, 34, 36, 
37]. More specifically, more than 150 SNPs, in over 100 
candidate genes have been annotated as CAD-relevant 
with specific loci, such as 9p21.3, 6q25.1, 2q36.3, show-
ing the strongest association with disease phenotypic 
variance [5, 8, 38, 39]. The CARDIoGRAMplusC4D Con-
sortium has carried out a meta-analysis in a total sample 
size of over 190.000 patients and demonstrated a highly 
significant correlation of 36 SNPs with CAD [6]. Further-
more, Liu et al. reported that the most studied multi-loci 
genes are those of angiotensin I converting enzyme, lipid 
and lipoprotein metabolism [1]. Hence, individual GWAS 
and meta-analyses have confirmed the speculated deter-
ministic role of genetic predisposition in occurrence, 
progression of atherosclerosis and coronary plaque cal-
cification, with multiple converging pathways, including 
cardiac muscle contraction, glycerolipid metabolism, and 
glycosaminoglycan biosynthesis [5, 32, 37, 40].

Nevertheless, GWAS have only provided population-
attributable risk data and could not be transferred to an 
individual with CAD. During the last decade, the advent 
of NGS has enabled researchers to perform parallel anal-
yses of hundreds of genes in an unbiased approach [8]. 
This is attracting widespread attention enhancing CAD 
translational study and aiding to close the gap between 
genotype and phenotype. In 2013 the CARDIoGRAM-
plusC4D Consortium reported that targeted sequencing 
with NGS can discover rare variants with high sensitiv-
ity, rendering NGS an essential genetics approach in the 
post-GWA study era [38].

Apart from genetic mapping, GWAS and NGS stud-
ies have also explored the clinical utility of genetic bio-
markers for the creation of genetic risk scores [10, 11, 36, 
41]. These algorithms would ideally predict the severity 
of CAD and the subsequent adverse outcomes aiming to 
identify patients with potential benefit from preventive 
care. For their development, researchers have examined 
the prognostic value of blood-based genetic panels, in 
comparison with imaging (myocardial perfusion imag-
ing or coronary computed tomography angiography), 
angiographic (visual or quantitative assessment of coro-
nary artery stenosis or Gensini) or clinical (GRACE) pre-
dictive scores [12, 15, 42–44]. COMPASS and PREDICT 
trials created 2 gene-expression scores outperforming 
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clinical factors and non-invasive imaging in discriminat-
ing patients with > 50% stenosis [45, 46]. Despite, Labos 
et al. reported that the addition of their developed poly-
genic risk score to the GRACE risk score could not sig-
nificantly improve risk classification in acute coronary 
syndrome admissions [42]. Moreover, weighted multi-
locus risk scores have been created to predict recurrent 
vascular events or statin efficacy and atherosclerotic bur-
den alterations in CAD populations [10, 47–49]. Never-
theless, limited data exist about the utility of genetic risk 
scores for the prediction of MACCE [11–13, 41].

To the best of our knowledge, GESS is the first study 
yet to investigate the association of such a large num-
ber of candidate SNPs (228) with SYNTAX-score-based 
CAD complexity. To this end, GESS emerges as a part of 
a research project aspiring to complement traditional risk 
factor assessment with panels of significant metabolomic 
and genomic biomarkers [50, 51]. The co-evaluation of 
novel risk factors and the complexity of CAD could sig-
nificantly expand the concept of cardiovascular precision 
medicine.

Admittedly, the GESS trial is subject to some limita-
tions that merit discussion. First, the single-center char-
acter of the study and the enrollment of patients from a 
Greek-based population may limit the generalizability of 
our findings, even if our sample will represent a broad 
spectrum of patients with CAD. Furthermore, patients of 
different age groups will comprise the study population, 
which might affect the rate of genetic influence in CAD 
severity, since the genetic component of variability is 
conceivably more common among younger individuals. 
Future studies should explore the combination of pro-
posed genetic risk scores from multi-ethnic populations 
with panels of metabolomics, transcriptomics or prot-
eomics, to achieve the desirable transition from “omics” 
to “panomics” [44]. Therefore, we could define CAD 
at the deepest level and clinical cardiologists would be 
guided in decision-making via an absolutely personalized 
approach.

Conclusion
In conclusion, genotyping of patients presenting with 
CAD symptoms could potentially disentangle genetic 
risk variants implicated in CAD progression. The devel-
opment of a panel with genetic markers combined 
with clinical and angiographic characteristics might 
contribute to implementing accurate risk stratification 
algorithms in CAD populations, with the potential to 
predict the emergence of CAD as well as the hazard 
for subsequent adverse events and modify therapeutic 
strategies. Besides that, the design of the study cre-
ates an interdisciplinary infrastructure that allows the 
clinical translation of molecular knowledge to guide 

decisions for individual and/or CAD patient groups. 
Importantly, such direction contributes to the estab-
lishment and application of processes that successfully 
implement genomics knowledge in the clinical setting 
within the concept of pharmacogenomics and precision 
medicine.
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