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Significances of viable synergistic 
autophagy‑associated cathepsin B 
and cathepsin D (CTSB/CTSD) as potential 
biomarkers for sudden cardiac death
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Abstract 

Background:  The Cathepsins family, including cathepsin B and cathepsin D, potentially affects the entire processes 
involved in atherosclerosis. Although coronary heart disease (CHD) has been widely studied as the basis of Sudden 
Cardiac Death (SCD), the relationship between CHD and CTSB/D remains unclear.

Methods:  We screened for differentially expressed proteins (DEPs) associated with autophagy by limma package 
in R. For the genes corresponding to the DEPs after screening, we used various databases to carry out functional 
enrichment of related DEGs to explore their possible influence on a specific aspect of the disease. Functional enrich-
ment analysis of DEGs was performed by DAVID, Metascape and GSEA. STRING and Cytoscape were obtained the hub 
genes, the analysis of interaction networks through the GENMANIA and Networkanalyst. Western Blot was used to 
validate the protein expression level of target genes. TF and miRNA prediction were performed using Networkanalyst 
and visualized using Cytoscape.

Results:  The expression levels of members of the cathepsin family were up regulated in CHD tissues compared 
with the control. GO and KEGG revealed that cathepsin was markedly enriched in endopeptidase activities, immune 
responses, lysosome pathways, et al. The correlation analysis showed that in patients with CHD, the CTSB/CTSD 
expression were negatively correlated with ATG4D and BNIP3, but positively with BCL2L1, CAPNS1, and TP53. In the 
TF-mRNA-miRNA network, has-miR-24-3p and has-miR-128-3p had higher degrees, CTSB/CTSD could be targeted by 
them.

Conclusions:  Our findings elucidated the expression and regulatory role of cathepsins in coronary heart disease 
induced SCD and might further explore the potential mechanisms of autophagy in CHD.
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Introduction
Sudden cardiac death (SCD) is an unexpected death 
caused by the sudden cessation of cardiac activity. It is 
the most significant cause of natural death in the world, 

accounting for 170,000 to 450,000 adult deaths in west-
ern countries, including the USA, and 544,000 adult 
deaths in China annually [1, 2]. The pathogenesis of SCD 
is extremely complex, coronary heart disease (CHD) is 
certainly the most common disease contributing to SCD 
[3]. Despite discovery of risk factors, innovative diagnos-
tic modalities, therapeutic interventions, and new drug 
targets development, have led to mortality rate reduction, 
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but the incidence of SCD as a proportion of overall car-
diovascular death has remained relatively constant [4]. 
Therefore, identifying accurate molecular markers is very 
important for SCD diagnosis and treatment.

Autophagy is an essential process of the catabolic 
mechanism, which promotes cell survival by eliminat-
ing damaged or defective organelles and releasing energy 
substrates via the degradation of cellular constituents. 
However, an uncontrolled and excessive autophagic acti-
vation can trigger cell death via the depletion of essen-
tial organelles and molecules [5]. Because autophagy can 
eliminate misfolded proteins and damaged organelles 
[6], and supply substrates for ATP regeneration during 
ischemia and starvation [7, 8], these functions can main-
tain cardiac structure and function. So, autophagy is con-
sidered as essential for the maintenance of cardiovascular 
homeostasis and function [9]. Coronary obstruction and 
microcirculation disorder lead to myocardial ischemia 
and hypoxia in the pathogenesis of CHD, autophagy 
was activated, it could be emove damaged organelles, 
and inhibit inflammation, leading to anti-inflammatory 
effects and stabilization of atherosclerotic plaques. The 
process is considered an adaptive response with cardio-
protective effects [10–12]. On the contrary, studies have 
shown that if autophagy becomes dysfunctional, which 
stimulates hyperactivation of inflammasomes to promote 
atherogenesis [13].

Cathepsins are the primary lysosomal proteases, they 
are naturally expressed in the lysosomes of various cells 
and tissues. Cathepsins contribute to arterial plaque 
formation and underlie clinical events by extracellular 
matrix digestion, thereby rendering plaques prone to 
rupture. In addition, lysosomes also mediate a variety of 
homeostatic processes such as nutrient breakdown and 
removal of damaged organelles [14, 15]. Cathepsins are 
subdivided into 3 subfamilies based on the active-site 
amino acids: Serine cathepsin (CTSA/G), aspartic cath-
epsin (CTSD/E), cysteine cathepsin (CTSB/C/F/H/K/
L/O/S/V/W/Z) [6]. CTSB and CTSD were extracted as 
the autophagy-related genes from Human Autophagy 
Database [16] (HADb, http://​www.​autop​hagy.​lu/​index.​
html). Studies conducted in vitro or in vivo models have 
revealed that over-expression of CTSB/D can contrib-
ute to the formation of arterial plaques and increase the 
risk of coronary artery disease. However, the relation-
ship between CTSB/D and coronary heart disease in 
autophagy regulation remains unclear. It is necessary to 
have a comprehensive and in-depth understanding of the 
role of autophagy of the above two genes in the process 
of SCD.

We studied CTSB/D expression in data from coronary 
arteries of SCD in private protein datasets. Moreover, we 
analyzed genomic alterations and functional networks 

related to autophagy-related proteins CTSB/D to deter-
mine their expression patterns, the potential functions, 
and the correlation between autophagy and risk factors 
and autophagy pathways. Thus, our results could poten-
tially reveal new autophagy-related targets and strategies 
for SCD diagnosis and treatment.

Methods
Microarray data and identification of differentially 
expressed proteins (DEPs)
Given the small number of datasets for the human Coro-
nary artery in SCD. For this study we selected three data 
sets for analysis. The one dataset was obtained from 
Label-free quantitative proteomics which contained 6 
samples, including 3 non-coronary atherosclerosis tis-
sues samples and 3 coronary atherosclerosis tissues 
of SCD. Principal component analysis (PCA), a com-
monly method for sample clustering, was used to test 
the intra-group dataset repeatability. In the following 
study, we identified some DEPs by using Limma from R 
(Version:4.0), the values in which statistical significance 
applies were set to P-values < 0.05 and |log2 fold change 
(FC)|≥ 1. Volcano maps were drawn using the imageGP 
(http://​www.​ehbio.​com/​Image​GP/) online analysis tool. 
The other two datasets were GSE12288 and GSE20680 
from the GEO database, where GSE12288 was a sample 
of 222 patients with 110 coronary artery disease (CAD) 
and 112 without CAD; GSE20680 was a sample of 195 
patients with > 1 large vessel stenosis ≥ 70% or > 2 arte-
rial stenoses ≥ 50%, patients with luminal stenosis > 25% 
but < 50% and controls with luminal stenosis ≤ 25%. The 
above two datasets were primarily used for subsequent 
autophagy-related protein correlation analysis.

KEGG and GO enrichment pathway analyses 
of differentially expressed genes(DEGs)by Metascape 
and DAVID
For the genes corresponding to the differentially 
expressed proteins (DEPs) after screening, we used vari-
ous databases to carry out functional enrichment of 
related differentially expressed genes (DEGs) to explore 
their possible influence on a specific aspect of the dis-
ease. DAVID, (an online analysis tool (https://​david.​ncifc​
rf.​gov), used to provide biofunctional comprehensive and 
systematic annotation information for a list of large-scale 
proteins or genes), was used to perform KEGG and GO 
annotations pathway analysis of DEGs. It is mainly used 
for the enrichment analysis of the function and pathway 
of the genes of DEGs [17].The enrichment analysis was 
visualized by using ggplot2 from R. Then we used the 
Metascape database (https://​metas​cape.​org/​gp/​index.​
html) for GO enrichment analysis and KEGG pathway 

http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
http://www.ehbio.com/ImageGP/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html


Page 3 of 15Dai et al. BMC Cardiovasc Disord          (2021) 21:233 	

enrichment analysis again [18]. A P-value < 0.05 was con-
sidered statistically significant.

Gene set enrichment analysis (GSEA)
Identifying the prospective function for genes via the 
GSEA software [19], one can get a comprehensive biolog-
ical functional understanding for that gene, in particular, 
via the enrichment of function sets. To ascertain if prior 
biological processes in the gene rank derived from DEGs 
between both groups were enriched, GSEA was con-
ducted (http://​softw​are.​broad​insti​tute.​org/​gsea/​index.​
jsp) [20]. A false discovery rate (FDR) < 0.25 and a P-value 
of < 0.05 were considered to be statistically significant, 
while the number of permutations was set at 1000.

PPI network analysis and extraction of hub genes
We imputed the gene symbol of the DEGs into the 
STRING (https://​string-​db.​org/) (version 11.0), to evalu-
ate the interactive relationships among the 148 DEGs. 
Medium confidence of > 0.4 and a minimum required 
interaction score were deemed significant. Cytoscape 
software [21] (version 3.4.0, http://​chian​ti.​ucsd.​edu/​cytos​
cape-3.​4.0/) was then used to construct PPI networks, 
while plug-in molecular complex detection (MCODE) 
was used to screen PPI network modules in Cytoscape. 
Hub genes were excavated based on a combined score 
of ≥ 10. In addition, analysis of gene–gene interaction 
networks through the GENMANIA online analysis tool 
and Clustering analysis of hub genes using Networkan-
alyst. (https://​www.​netwo​rkana​lyst.​ca/) [22].

Western blot analysis
Coronary artery tissues were frozen in liquid nitrogen. 
Total protein was extracted from Coronary artery using 
RIPA lysis buffer (P0013B, Beyotime) with PMSF (ST506, 
Beyotime), resolved by 12% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred onto polyvinylidene fluoride (PVDF) membranes 
by electroblotting. CTSB/C/D/Z proteins were detected 
using monoclonal antibody, then they were subjected to 
horseradish peroxidase (HRP) -labeled goat anti-rabbit 
IgG polymer (1:5000). After the addition of developer 
and post-exposure, grayscale values were measured using 
ImageJ analysis software (National Institutes of Health, 
USA) and internal controls were used with β-actin.

Screening and correlation analysis of autophagy‑related 
genes
Screening cathepsin from the available datasets, genes 
in GSE12288 and GSE20680 were compared to 222 
autophagy genes in the Human Autophagy Database 
(http://​www.​autop​hagy.​lu/). Then we analyzed the 

presence of a linear correlation between cathepsin and 
autophagy-related genes in other data sets.

Predictive studies of TF‑mRNA‑miRNA regulatory networks
Firstly, the mRNA-miRNA and the TF-mRNA interac-
tions were predicted with Networkanalyst online tools. 
We next extracted the miRNAs that were predicted to 
interact with both TF and mRNAs. The TF-mRNA-
miRNA regulatory network was constructed from these 
miRNAs and their targets, while the final network was 
visualized by Cytoscape. P-value < 0.05 was considered 
statistically significant.

Results
Validation of the datasets and identification of DEGs
In this study, the specific workflow is shown in Fig. 1. We 
employed the PCA to substantiate the intra-group data 
repeatability. Based on the PCA the intra-group data 
repeatability for protein dataset was acceptable. The dis-
tances between per samples in the control group were 
close and the distances between per samples in the CHD 
group were also close in the dimension of principal com-
ponent-1 (PC1) (Fig. 2a).

After analyzing the datasets with the Linear Models for 
Microarray (LIMMA; Version:4.0) affy in R package, we 
used P-value < 0.05 and |log2 FC|> 1 as the cut-off crite-
ria. We extracted 148 DEPs from our datasets, including 
101 up-regulated DEPs and 47 downregulated DEPs. The 
screened DEPs were plotted as volcano plots between 
control and SCD samples (Fig. 2b). Therefore, the related 
DEG can be used for subsequent analysis.

Functional enrichment of DEGs
In order to gain insight into the function of identified 
related DEGs in SCD, the results of the GO analysis 
revealed that there were markedly enriched in biologi-
cal processes (BP), including neutrophil degranulation, 
neutrophil activation involved in immune response. The 
variations in cell components (CC) of DEGs were mark-
edly enriched in the secretory granule lumen, lysosomal 
lumen and collagen-containing extracellular matrix. The 
variations in molecular function (MF) were markedly 
enriched in endopeptidase activity, actin binding and cell 
adhesion molecule binding (Fig.  3a). Moreover, analysis 
of the KEGG pathway revealed that the DEGs were pri-
marily enriched in Lysosome, Phagosome, Regulation of 
actin cytoskeleton (Fig.  3b). Metascape online analysis 
software was used to analyze the DEGs, and the similar 
enrichment results were obtained as that of DAVID soft-
ware (Fig. 3c–e).

The biological significance of more genes in the data-
sets were analyzed by GSEA. Significant GO term 
analysis by GSEA showed that 906/1721 gene sets were 

http://software.broadinstitute.org/gsea/index.jsp
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up-regulated in SCD, 523 gene sets were significantly 
enriched at nominal P-value < 0.05. In addition, 815/1721 
gene sets are downregulated in SCD, 433 gene sets are 
significantly enriched at nominal P-value < 0.05. GSEA 
also revealed that up-regulated gene sets in SCD were 
mainly associated with lysosomal lumen (NES = 3.444, 
FDR q = 0.000), and extracellular space (NES = 3.093, 
FDR q = 0.000) (Fig. 3f, g). The KEGG enrichment analy-
sis showed that 37/82 gene sets are up-regulated in phe-
notype SCD, 20 gene sets are significantly enriched at 
nominal P-value < 5%, 45/82 gene sets are downregulated 
in SCD, 26 gene sets are significantly enriched at nominal 
P-value < 5%. The KEGG result also confirmed that up-
regulated gene sets in SCD were mainly associated with 
Lysosome (NES = 2.444, FDR q = 0.000), ECM receptor 
interaction (NES = 2.017, FDR q = 0.000) (Fig. 3h, i), and 
so on. GSEA results showed that cysteine cathepsin fam-
ily members were core enriched and played an essential 

role in the occurrence and development of coronary 
heart disease.

Protein–protein interaction network analysis and hub gene 
selection
To better understand the protein–protein relationship, 
we constructed the PPI network. At the same time the 
most significant module and hub genes of the PPI net-
work were identified by using Cytoscape. The PPI net-
work of DEGs consisted of 144 nodes and 392 edges, 
including 101 up-regulated genes and 47 down-regulated 
genes. According to combined score ≥ 10, two func-
tional subnet modules are obtained from the PPI net-
work and 43 genes were identified as hub genes from the 
most significant module (Fig. 4a, b). Among these genes, 
CTSZ, CTSC, CTSF, CTSD, CTSB, CTSA which belong 
to cathepsins family members were up-regulated in the 
SCD samples and their functional enrichment analysis 

Fig. 1  A flowchart of data analysis
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were involved in lysosome pathway. Hierarchical clus-
tering results showed that differentially expressed genes 
s in the lysosomal pathway could effectively distinguish 
SCD from atherosclerotic samples (Fig. 4c). We obtained 
genes -genes interaction networks among cathepsin fam-
ily members via using the GENEMANIA online analysis 
tool (Fig.  4d). The central role of the cysteine protease 
family in the PPI network suggested that it played an 
important regulatory role in the pathogenesis of SCD.

Verification of the expression of CTSB/ CTSC/CTSD/CTSZ
The expression of CTSA/CTSB/ CTSC/CTSD/CTSF/
CTSZ were verified via dataset and western blotting. We 
found these proteins were significantly up-regulated in 
the SCD samples in proteomics datasets (Fig.  5a). The 
results of Western blotting analysis displayed that the 
relative expression level of the SCD group was signifi-
cantly higher than that of the normal group (Fig. 5b, c). 
The results suggested that these members of the cysteine 
cathepsin family may be considered biomarkers for SCD.

The correlation between expressed cysteine cathepsin 
and pathological parameters of SCD
Univariate linear regression was implemented to com-
pare expression of hub genes between different groups 
base on pathological parameters. The results showed 
that the influence of gender, BMI, Diabetes, Hyperlipoi-
demia, Hypertension, LVW and RVW was not statisti-
cally significant (P > 0.05). On the other hand, Gensini 
score was statistically significant (P < 0.05). The Degree 
of vascular stenosis remained related to the CTSA 

(R2 = 0.7337, P < 0.05), CTSB (R2 = 0.9697, P < 0.05), 
CTSD (R2 = 0.8094, P < 0.05), CTSF (R2 = 0.8359, 
P < 0.05), CTSZ (R2 = 0.8244, P < 0.05) in the univariate 
linear regression mode (Table  1). It was shown that the 
expression of cysteine cathepsin in coronary arteries was 
positively correlated with the severity of CHD.

Screening and correlation analysis of autophagy related 
gene.

The role of autophagy in ischemic heart disease may 
be complex and can be activated when coronary artery 
stenosis occurs. CTSB and CTSD were extracted as 
the autophagy-related genes from Human Autophagy 
Database(HAD). In addition, we analyzed the relation-
ship between these two autophagy related genes with 
other autophagy genes of two other datasets (GSE12288, 
GSE20680), the result of the correlation between CTSB/
CTSD and autophagy-related genes showed that CTSB 
genes expression was negatively correlated with ATG4D 
(P < 0.001, r = 0.41; Fig.  6c), but positively correlated 
with FOXO3 (P < 0.001, r = 0.44; Fig.  6a), and BCL2L1 
(P < 0.001, r = 0.63; Fig.  6b). CSTD expression, on the 
other hand, was negatively correlated with BNIP3 
(P < 0.001, r = 0.41; Fig.  6f ), but positively correlated 
with CAPNS1 (P < 0.001, r = 0.65; Fig.  6d), and TP53 
(P < 0.001, r = 0.45; Fig. 6e). The result can be speculated 
that CTSD/CTSB regulates SCD through autophagy.

Analysis of TF‑mRNA‑miRNA regulating networks
The regulated networks have been recognized that 
it plays a crucial role in understanding the mecha-
nism of disease, so we predicted the interactions of 

Fig. 2  a The quantitative principal component analysis results of 6 samples were shown in the figure. The higher the degree of aggregation 
between repeated samples, the better the quantitative repeatability. b The volcano plots showed the genetic differences between the normal and 
coronary heart disease groups
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Fig. 3  a Detailed information relating to changes in the biological processes (BP), cellular components (CC), and molecular functions (MF) 
of DEGs in Coronary heart disease and control tissues through the GO enrichment analyses. b The KEGG pathway analysis of up-regulated or 
down-regulated DEGs. c Heatmap of enriched terms via the Metascape. d Network of enriched terms from each cluster is selected to have its term 
description shown as label. e Network of enriched terms has its nodes colored by p-value, as shown in the legend. The darker the color, the more 
statistically significant the node is (see legend for p-value ranges). f, g Functional enrichment analysis of DEGs in SCD using GSEA. h, i Pathway 
enrichment analysis of DEGs in SCD using GSEA
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Fig. 3  continued
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miRNA-mRNA and TF-mRNA with Networkanalyst 
online tools. After that, a TF-mRNA-miRNA tri-
ple network was constructed. In the result of in the 
miRNA-mRNA regulatory network, including 2 DEGs 
nodes and 15 miRNA nodes (Fig. 7a). In the TF-mRNA 
regulatory network, including 2 DEGs nodes and 
194miRNA nodes (Fig. 7b). In triple network, the regu-
latory relationships between miRNA, TF, mRNA regu-
lating networks and up-regulated cysteine cathepsin 
family genes were found, SP1-CTSD-(has-miR-24-3p) 
and SP1-CTSB-(has-miR-128-3p) from the TF-mRNA-
miRNA network were identified as playing a potentially 
critical regulatory role in CHD (Fig. 7c).

Discussion
SCD is a significant public health issue, which accounts 
for half of all cardiovascular-related deaths world-
wide [2, 23, 24]. In autopsies performed on adult male 
who are victims of sudden cardiac death, we found that 
these deceased had atherosclerotic plaque led to various 
degrees of coronary artery stenoses, which resulted in the 
dysfunction of cardiomyocytes and cardiac functions.

To investigate the role of autophagy in SCD, we ana-
lyzed the datasets which performed protein quanti-
fication of the anterior descending branch of the left 
coronary artery in six cadavers (SCD = 3, control = 3) 
using label-free proteomics. we identified 148 DEPs, 
and we screened out 6 members of the cathepsins family 

Fig. 3  continued
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Fig. 4  The protein–protein interaction (PPI) network, module analysis, and hub genes selection. a, b Results of subnet module analysis of the 
PPI network. c Hierarchical clustering of differentially expressed genes in lysosomal pathways, red represents up-regulated genes and staining 
represents down-regulated genes. d Gene–gene interaction network among cathepsin family members
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(CTSZ, CTSC, CTSF, CTSD, CTSB, CTSA) as hub pro-
teins through Functional enrichment, PPI module analy-
sis. The relative expression level was significantly higher 
in the CHD group compared with the normal group, 
and their functional enrichment analysis were involved 
in inflammation, immune response, and lysosome path-
way, the same results were still obtained with Metas-
cape, GSEA and Hierarchical clustering. We focused 
on autophagy-associated cathepsins in cathepsins 
family which were obtained by comparing the human 

autophagy database so as to analyze the expression levels 
of expressed, regulatory networks, and potential mecha-
nism of CTSB/CTSD in SCD.

Cathepsins are the major lysosomal hydrolases [25]. 
Their activities potentially affect crucial atherogenic cas-
cades, such as the inflammation, lipid metabolism, and 
autophagy [26]. Previous clinical studies suggested that 
CTSB and CTSD were known as plays a crucial role in 
arterial stiffening and atherosclerotic vascular disease 
[23, 27]. The serum levels all associated with increased 

Fig. 5  Verification of the expression of related protein. a Quantitative comparison of cysteine cathepsin family (CTSA/CTSB/CTSC/CTSD/CTSF/CTSZ) 
expression between the two groups. b Western blotting expression of Cysteine cathepsin family (CTSB/CTSC/CTSD/CTSZ) in the control and SCD 
groups. c Relative expression of Cysteine cathepsin family (CTSB/CTSC/CTSD/CTSZ) by Western blotting analysis. * p < 0.05, compared with control
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risk and poorer outcome of coronary events severity 
[28–31]. Above conclusion was also confirmed via the 
quantification of proteomics and western blotting in our 
study. In addition, we also found that the expression of 
CTSB/CTSB in SCD were positively correlated with the 
Gensini score (which is a well-recognized scoring sys-
tem that evaluate the severity of CHD [32, 33]). Yet, a 
few studies have a contrasting conclusion, they reported 
that decreased myocardial and serum CTSD levels were 
relatively lower in SCD with cardiac hypertrophy [34]. 
The different conclusion may be related to a number of 
factors (e.g., the basal diseases, source of samples, sam-
ple collection time et  al.). Despite the opposite conclu-
sion, to be sure, CTSB/CTSD played an important role 
in the development of SCD and involved the severity of 
atherosclerosis.

It is increasingly appreciated that autophagy can 
be both protective and deleterious in atherosclerotic. 
Under the ischemic, hypoxia and hyperlipidemia stress, 
in order to deal with the cytotoxic effects of excessive 
inflammation, autophagy is activated to protect cardio-
myocytes against ischemic or hypoxia injury and inhibi-
tion of inflammation, so as to contributes to enhances 

atherosclerotic plaque stability and attenuate cardiac 
injury. As an indicator of autophagic activity, CTSB and 
CTSD were involved in the regulation of cell death and 
survival in the development of atherosclerosis [35]. Si 
Ming Mand et al. believed that under homeostatic con-
ditions CTSB cleaves the calcium channel MCOLN1/
TRPML1 in the lysosomes, maintaining suppression 
of TFEB and reducing expression of lysosomal and 
autophagy-related proteins [36]. As another indicator 
of autophagic activity. Cardiac autophagy activity was 
increased after myocardial infarction, if up-regulation 
of CTSD was prevented during myocardial infarction 
exacerbates poor cardiac remodeling and dysfunction in 
mice [31]. Some studies had also recognized that after 
the silencing of cathepsin D, apoptosis and necrosis sig-
nificantly increased, while stress-induced autophagy was 
abrogated [37]. From the above viewpoints, upregulation 
of CTSB/CTSD by atherosclerosis promotes autophagic 
flux and protects against cardiac remodeling and heart 
failure. Based on the above, CTSB/CTSD can be consid-
ered as a potential biomarker.

Besides its protective activities, more and more evi-
dence showed that dysfunction of autophagy is an 
essential contributor to the development of advanced 
atherosclerotic lesions [38],it perhaps play a detrimental 
role in plaque formation, excessive or uncontrolled lev-
els of autophagy are able to induce autophagy-dependent 
cell death and promoted atherosclerotic plaque insta-
bility [4]. Our results prefer to this conclusion. In our 
analysis, overexpression of CTSB and CTSD in SCD, we 
considered that CTSB/CTSD was involved in mecha-
nisms of early atherogenesis and activated an autophagic 
response, but from the advanced atherosclerosis stage to 
SCD, the cholesterol crystals in the continuous forma-
tion of plaque destroy the lysosomal membrane, disrupt 
the autophagy process [39],and autophagy promotes 
atherosclerosis through of excessive inflammasome acti-
vation [13],the other is persistent hypoxic or ischemia, 
autophagy fails to deal with the excessive amount of oxi-
dative stress in the plaque, finally lead to cell death, i.e., 
apoptosis. However, the two different perspectives indi-
cating the controversial effect of autophagy in atheroscle-
rosis need more thorough research.

In order to further explore regulatory mechanisms 
of CTSB/CTSD in autophagy, we performed a corre-
lation analysis of CTSD/CTSB with other autophagy-
related genes. The results obtained in this study showed 
that the expression of CTSB was negatively correlated 
with ATG4D, but positively correlated with FOXO3, 
the expression of CSTD, was negatively correlated 
with BNIP3, but positively correlated with TP53.How-
ever, the results of our analysis do not fit the trend 
of BNIP3 and ATG4D in autophagy in the literature 

Table 1  The linear regression analysis between SCD and 
relevant genes expression

Gene symbol Gensini score

Univariate linear regression

R square P value

CTSD 0.7337 0.0294*

CTSB 0.9697 0.0003*

CTSF 0.8094 0.0146*

CTSZ 0.8359 0.0107*

CTSA 08,244 0.0123*

GLA 0.8690 0.0067*

TYMP 0.8977 0.0041*

FTL 0.9701 0.0003*

PTGS1 0.9726 0.0003*

HEXB 0.8437 0.0097*

TIMP1 0.8502 0.0089*

THBS1 0.7861 0.0186*

CD14 0.6848 0.0420*

AIF1 0.8708 0.0066*

PTPRC 0.8762 0.0060*

ITGB2 0.9809 0.0001*

ITGAM 0.8915 0.0046*

FERMT3 0.6938 0.0395*

CD74 0.7708 0.0214*

PYCARD 0.7593 0.0238*

TFRC 0.7913 0.0176*
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Fig. 6  Correlation between CTSB/CTSD and autophagy-related genes. a, b CTSB expression was positively correlated with a FOXO3, b BCL2L1, but 
negatively correlated with c ATG4D. CTSD expression was positively correlated with (D) CAPNS1, (E) TP53, but negatively correlated with (F) BNIP3
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Fig. 7  The TF-miRNA-mRNA regulatory networks were constructed. (a) mRNA-miRNA regulatory network. The diamond represents miRNA, and the 
green circle represents CTSB/CTSD. (b) TF-miRNA regulatory network. (c) TF-miRNA-mRNA regulatory network. The blue triangle represents miRNA, 
the red diamond represents TF and orange circle represent CTSB/CTSD
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[40–43],The specific reasons and mechanism merit fur-
ther exploration.

Although changes in CTSD/CTSB affect the occur-
rence of CHD, the main causes and underlying mecha-
nisms are unclear. In this study, to better understand the 
mechanism of CTSD/CTSB in sudden coronary heart 
disease death, we also analyzed the TF-mRNA-miRNA 
relationship to obtain the co-regulatory network. SP1-
CTSD-(has-miR-24-3p) and SP1-CTSB-(has-miR-
128-3p) from the TF-mRNA-miRNA network were 
identified to play crucial roles in CHD. SP1 is a zinc fin-
ger transcription factor that regulates target gene tran-
scription by binding to their promoter contain GC boxes, 
including regulate the expression of cathepsin [44]. It is 
also associated with several cellular processes such as 
chromatin remodeling, cell growth, responses to DNA 
damage, apoptosis, and cell differentiation. Experimental 
studies have revealed an essential role for microRNAs in 
regulating molecular and cellular processes related to the 
development of atherosclerosis. has-mir-24-3p is associ-
ated with plaque progression and plaque instability [45], 
while has-mir-128-3p is a key regulator of VSMC, affect-
ing proliferation, migration, differentiation, and contrac-
tion of VSMC [46]. Thus, in the present study, we gain 
further insight into the mechanisms of target genes in the 
disease from the regulatory.

Conclusion
In our present study, we used a proteomic dataset of 
the left anterior descending branch of the human coro-
nary artery from sudden cardiac death due to coronary 
heart disease, and screening the DEGs to focus on the 
cathepsin family members. The expression and function 
of the gene family members in CHD were comprehen-
sively analyzed, and the CTSD/CTSB associated with 
autophagy were selected for mechanism study. Moreover, 
we have to admit that our study had limitations, although 
the use of human specimens avoids the drawbacks of tis-
sue specificity, and the experimental results were more 
convincing for the development of the disease, but the 
sample size was small and only the male gender was ana-
lyzed. It may have had some influence on the results, so 
in the next step, it requires us to take into account plau-
sibility to design the dataset. we will perform the relation 
between Cathepsins and autophagy by in  vitro study as 
well by using western blot, immunofluorescence, immu-
noprecipitation. In summary, our findings provide new 
insights into the pathogenesis of CTSB/CTSD in SCD.
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