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Abstract 

Smoking, heavy alcohol drinking and drug abuse are detrimental lifestyle factors leading to loss of million years 
of healthy life annually. One of the major health complications caused by these substances is the development of 
cardiovascular diseases (CVD), which accounts for a significant proportion of substance-induced death. Smoking and 
excessive alcohol consumption are related to the higher risk of acute myocardial infarction. Similarly, opioid addic-
tion, as one of the most commonly used substances worldwide, is associated with cardiac events such as ischemia 
and myocardial infarction (MI). As supported by many studies, coronary artery disease (CAD) is considered as a major 
cause for substance-induced cardiac events. Nonetheless, over the last three decades, a growing body of evidence 
indicates that a significant proportion of substance-induced cardiac ischemia or MI cases, do not manifest any signs 
of CAD. In the absence of CAD, the coronary microvascular dysfunction is believed to be the main underlying reason 
for CVD. To date, comprehensive literature reviews have been published on the clinicopathology of CAD caused by 
smoking and opioids, as well as macrovascular pathological features of the alcoholic cardiomyopathy. However, to the 
best of our knowledge there is no review article about the impact of these substances on the coronary microvascular 
network. Therefore, the present review will focus on the current understanding of the pathophysiological alterations 
in the coronary microcirculation triggered by smoking, alcohol and opioids.
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Background
Different studies have shown that 20% to 50% of angina 
patients undergoing coronary angiography have nor-
mal or near normal arteries, (non-obstructive coronary 
disease) [1–9]. These groups of patients were conven-
tionally diagnosed as Cardiac Syndrome X. Today it is 
demonstrated that a large proportion of these patients 
have coronary microvascular dysfunction (CMD) [3]. 
CMD has gained more attention over the last 15 years as 

a cardiac cause of morbidity and as critical as CAD. CMD 
diagnosed patients display high rates of hospitalization 
for unstable angina, myocardial infarction (MI) and heart 
failure [7, 10, 11]. Pathophysiology studies suggest that 
CMD develops by: (1) structural alterations including the 
remodeling of microvessels or microcircular rarefaction; 
or (2) functional abnormalities such as spasm or impaired 
dilatory function in endothelial or vascular smooth mus-
cle cell (VSMC). The underlying mechanisms are the 
dysregulation of the related hormonal, metabolic or neu-
rosympathetic (neural tone) stimuli [12–14]. CMD can 
occur as a primary condition in patients with no obstruc-
tive coronary disease or can exist in the setting of diffuse 
and focal epicardial coronary disease [15] or occur as a 
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consequence of acute MI or other cardiac events leading 
to damage in coronary microcirculation (e.g. percutane-
ous coronary intervention). In case CMD and epicardial 
problems exists side by side, the diagnosis of CMD is 
challenging but clinically important for determining the 
prognosis of ischemic and angina patients. For example, 
diagnosis of CMD can explain why symptoms persist in 
some CAD patients following percutaneous coronary 
interventions (PCI) [15–17]. CMD diagnosis is often 
challenging and not as well established as diagnosis of 
CAD. Yet no imaging method is available to visualize ves-
sels smaller than 500 µm directly. Therefore, only indirect 
measurements of microvascular function are practiced in 
clinical settings today. Commonly, coronary flow reserve 
(CFR) is used as an indirect indicator of coronary micro-
vascular function in the absence of CAD (normal or near 
normal angiography) [18–22]. CFR represents the capac-
ity of coronary circulation to increase coronary blood 
flow (CBF) from basal levels to maximum in response to 
a vasodilatory stimulus. Therefore, CFR is proportional 
to blood flow in epicardial vessels plus microvasculature 
[23]. The reduced coronary flow reserve (CFR) mani-
fested in CMD patients with no obstructive CAD (deter-
mined by normal angiography), is due to an impaired 
coronary vasodilation of microvasculature at higher 
demanding conditions of myocardium [23, 24].

Today, coronary microvascular function can be meas-
ured using invasive angiographic methods such as Doppler-
tipped coronary guidewire and wire-based thermodilution 
techniques. Additionally, non-invasive imaging technologies 
such as positron emission tomography (PET) cardiac mag-
netic resonance imaging (CMR) or transthoracic Doppler 
echocardiography of the left anterior descending coronary 
artery are applied to measure indexes of coronary microvas-
cular function. Therefore, one complexity for diagnosis of 
CMD is that it requires technologies that may not be widely 
available [14, 25–27]. CMD is associated with conventional 
cardiac risk factors such as smoking, aging, obesity, diabetes 
mellitus, and hypertension [18, 28]. However, growing num-
ber of publications point to the significant contribution of 
non-traditional risk factors in CMD development, includ-
ing substance abuse (e.g., alcohol, opioids, cocaine). Here, 
we overview and highlight on the clinical and pathophysi-
ological effects of substance abuse i.e., smoking, alcohol 
and opioids on CMD, with an aim to bring this topic to the 
attention of more researchers in the field.

Search strategy
In this literature review, a systematic search strategy 
was performed in electronic scientific databases PUB-
MED, Medline, Google Scholar using advanced search 
and all combinations of search terms. Search terms were 
selected based on the entry terms suggested by Medical 

Subject Headings (MeSH). Title and abstracts were first 
screened based on relevance to the subject and the study 
was selected to be included in the review after assessing 
the full text for eligibility and relevance. Additionally, the 
reference and citing publication lists from the retrieved 
articles were checked to identify further relevant studies. 
The search time limit was since 1980 to date. We included 
only studies published in English. Our search terms 
include: (heart, coronary); (percutaneous coronary inter-
vention, percutaneous coronary, revascularization, reper-
fusion, angioplasty); (smoking, tobacco, cigars, cigarette); 
(microvessel, Microvasculature, microvascular  network, 
microvascular, microcirculation, small vessels, capil-
lary, arteriole, angiogenesis, intimal proliferation, intimal 
neoplasia, neointimal, microvascular obstruction, MVO, 
coronary flow reserve, CFR, index of microvasculatory 
resistance, IMR); (Ethanol, alcohol, ethyl, EtOH, alco-
holic, drinking, wine); (opioid, opiate, opium, morphine, 
amphetamine, methadone, analgesics) and (ischemia, 
infarction, MI).

Impact of smoking on coronary microvasculature
Impact of smoking on coronary microvasculature 
and stable CMD
Smoking pattern impact on the coronary microvascular 
function
Epidemiological and case–control studies demonstrated 
chronic long-term smoking as one of the predictors of 
CMD in asymptomatic individuals [29–32] the non-
obstructive coronary ischemic patients (no CAD) (sta-
ble CMD) [33, 34] as well as patients with vasospastic 
Angina [35] or CAD [36] background. These studies rely 
on the measured CFR and its stimulus-induced changes, 
due to unavailability of a direct technique to assess the 
coronary microvasculature status in  vivo. Compared 
to long-term effects, the short-term chronic smoking 
assessed in healthy young smokers (with no evidence of 
CAD) did not affect the myocardial blood flow at resting 
conditions. However, smokers displayed a lower CFR in 
response to stress [29, 31].

Acute smoking can also exert negative impact on coro-
nary microvascular function (in habitual smokers or non-
smokers). Park et  al. conducted a study on healthy young 
smokers and non-smokers, comparing CFR and the coro-
nary vascular resistance index (CVRI) after a 4-h period 
of smoking abstinence. No significant difference between 
smokers and non-smokers was observed. However, after 
consumption of only two cigarettes in the smoking group, 
a considerable decline in CFR and an increase in CVRI were 
observed in the smokers [37].

On the other hand, the acute CFR declining effect was 
shown to be equivalent upon light (containing 0.6 mg nico-
tine, 8 mg tar, 9 mg carbon monoxide) and regular cigarette 
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smoking (containing 0.9  mg nicotine, = 12  mg tar, 12  mg 
carbon monoxide) [38, 39]. On the contrary, one group 
found enhanced acute effect of high nicotine content ciga-
rettes on CFR compared to the low content ones, showing a 
dose-dependent contribution of nicotine component of cig-
arettes in microvascular damaging effects of smoking [40].

Multiple studies have implicated passive smoking as a 
significant risk factor in CHD, being associated with higher 
rate of morbidity and mortality and poor outcome in CHD 
and acute coronary syndrome patients [41–49]. Addition-
ally, an impairment of microvascular function and reactiv-
ity was supported by other studies indicating passive smoke 
exposure as a risk factor in CMD development [50, 51]. On 
the other hand, passive smoking is associated with lower 
odds ratio of smoking cessation in CHD patients [52, 53]. 
This is important due to the fact that smoking cessation is 
considered as a major preventive measure and management 
strategy to reduce mortality risk among CHD patients [54, 
55] as well as patients with coronary microvascular dysfunc-
tion [56, 57].

Based on current information on the effects of different 
patterns of smoking on CMD (light vs. regular cigarette; 
active vs. passive smoking), evidence does not support 
one pattern over the other, emphasizing on the detrimen-
tal effects of smoking nevertheless. However, the limited 
number of studies on smoking-connected CMD, and par-
ticularly the small population size in most of these studies, 

necessitates conduction of large-scale research on this sub-
ject in the future.

Mechanistic studies on the effects of smoking on coronary 
microvasculature in human subjects
Evidence indicates that smoking affects coronary micro-
vasculature via altering endothelial cells. Impaired coro-
nary microvascular function in healthy young chronic 
smokers was observed under cold stress as an endothe-
lium-dependent stimuli [29, 31] whereas dipyridamole 
which acts through endothelium-independent mecha-
nisms, failed to affect microvascular function in healthy 
smokers [29]. The main mechanisms underlined in the 
literature for the smoking-induced vascular endothelial 
cell damage are oxidative stress, inflammation, impaired 
Na+/K+ ATPase function (Fig. 1). Cigarette smoke con-
tains several radical or non-radical oxidants including 
superoxide radicals (.O2−), hydroxyl radicals (.OH), and 
peroxides (ROOH). Therefore, smoking can induce oxi-
dative stress directly via its content and cause damage 
to coronary microvascular cells [58, 59]. It was shown 
that vitamin C as a potent antioxidant has been demon-
strated to normalize the impaired coronary microvas-
cular function in chronic smokers, whereas it did not 
alter CFR in non-smokers at all [32]. In addition to the 
oxidative stress, smoking is considered as a potent pro-
inflammatory factor in cardiac pathology. The reciprocal 

Fig. 1  Pathophysiology of smoking-triggered coronary microvascular damage. Summary of the underlying mechanisms of coronary microvascular 
damage caused by smoking
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stimulatory crosstalk between inflammation and oxida-
tive stress has been widely discussed in the literature [60].

Multiple studies have linked chronic inflammatory disor-
ders such as lupus, rheumatoid arthritis, and inflammatory 
bowel disease with higher risk of developing CMD [61–63]. 
Others confirmed this result finding a significant corre-
lation between systemic inflammatory markers (mostly 
plasma CRP) and risk of CMD [64–66]. Recently, Schroder 
et al. assessed the differential blood protein profile of CMD 
patients and healthy volunteers. Interestingly, the main dif-
ferentially expressed protein biomarkers they found to be 
associated with CMD were several pro-inflammatory fac-
tors, related to the TNF-α-IL-6-CRP pathway [66]. Smok-
ing is conventionally considered to induce inflammation 
based on studies who rely on self-reports on smoking status 
[67–70]. Recently, the National Health Survey in Korea con-
ducted on 8655 men and 10,432 women reported a systemic 
pro-inflammatory effect of smoking. This study investigated 
the dose-dependent effect of cigarette smoking based on the 
cotinine concentration in the urine, on the systemic inflam-
mation measured by leukocyte count [71]. In addition, they 
found higher plasma levels of inflammatory markers TNF-
α, IL-6, IL-8 and IL-1β in current smokers, while the anti-
inflammatory marker IL-10 showed reduction [58].

Rooks et  al. measured CFR and different inflammatory 
markers (e.g., interleukin-6 and C-reactive protein), and 
oxidative status indicators (e.g., plasma hydroperoxides and 
the glutathione oxidation (GSSG/GSH ratio)) in healthy 
smoker and non-smoker twin couples. After adjusting the 
CFR levels to the inflammatory and oxidative stress indices, 
the declined level of CFR in smokers retained; which impli-
cates the contribution of other underlying mechanisms to 
this difference, other than inflammation and ROS [30]. One 
such mechanism may be smoking-induced downregula-
tion of ATPases [72]. Impaired microvascular reactivity and 
vasodilation in chronic smokers have been suggested to be 
caused at least partially because of the down-regulation of 
Na+/K+ ATPase in coronary microcirculatory endothelial 
cells in smokers. Since, Quabain as an inhibitor of Na+/K+ 
ATPase, that normally induces vasodilation in coronary 
microcirculation, failed to act on chronic smokers’ micro-
circulation [72].

Mechanistic ex vivo and in vitro evidence on the effects 
of nicotine on coronary microvasculature
Nicotinic acetylcholine receptors (nAChRs) are shown 
to express in coronary endothelial cells, and induce sev-
eral pro-survival pathways upon normal physiologic 
stimulation [73]. However, their overstimulation in cells 
by chronic nicotine exposure causes aberrant microvas-
cular dilatory functions via oxidative stress induction 
[74]. Induction of oxidative stress by overstimulation of 
nicotinic AChRs is due to their intrinsic cationic channel 

function [75]. Chronic nicotine exposure induces open-
ing of these channels and an excessive influx of Na+ 
ions in to the cells. The following electrolyte imbalance 
results in overproduction of ROS and consequently cellu-
lar damage [76]. The effect of nicotine tested in vivo (rat 
model) demonstrated an impaired endothelial-dependent 
vascular function, concurrent with plasma increased 
level of inflammatory parameter CRP, as well as higher 
CD36, TNFα and IL1β in macrophages [77]. The pro-
inflammatory effect of smoking and nicotine are on the 
other hand contradicted by findings of other in vivo and 
in  vitro studies reporting that nicotine affects vascu-
lar endothelial cells and macrophages by reducing their 
production of inflammatory cytokines (e.g. TNF- α), and 
consequently their capacity for leukocyte recruitment 
and adhesion [78, 79]. The reason for the contradictory 
results regarding the pro- or anti-inflammatory impact 
of nicotine is not understood yet, and warrants further 
assessment in the future.

Impact of smoking on post‑ischemic and PCI‑induced 
coronary microvascular injury
Clinical studies on the impact of smoking on coronary 
microvasculature injury by reperfused myocardial infarction
Microvascular dysfunction as either microvascular intra-
luminal obstruction (MVO) or extravascular compression 
is one of the main non-reversible consequences of coro-
nary ischemic reperfusion injury (IRI) caused by cardiac 
therapeutic interventions [80, 81]. Ischemia causes mito-
chondrial damage, plasma membrane and cytoskeleton 
disintegrity, and impaired enzymatic activities in the cells 
by lowering the pH and ATP levels, inducing dysfunction of 
the ion exchange factors and electrolyte imbalance. Upon 
reperfusion and reversal of oxygen supply, the impaired ion 
exchangers, enzymes, cellular membrane and mitochon-
dria result in reciprocal enhancement of oxidative stress 
and inflammation that may result in severe cell damage 
or cell death [82]. Therefore, knowing the risk factors that 
exacerbate this problem or on the contrary precondition-
ing or therapeutic mechanisms, which protect against the 
excessive oxidative damage, inflammation and cell death 
in post-MI conditions or by IRI are currently under special 
attention of researchers and clinicians. Although cigarette 
smoking is an independent risk factor for cardiovascular 
disease, studies have reported controversial results on the 
effects of smoking on the mortality rate and prognosis of 
patients who underwent reperfusion with a percutane-
ous coronary intervention (PCI) or the extent of post-MI 
injury (smoker’s paradox phenomenon) which are previ-
ously reviewed elsewhere [55, 83–85]. Here we review 
studies which assessed the status of coronary microvascu-
lature in these group of patients. Based on magnetic reso-
nance (CMR) analysis in reperfused ST-segment elevation 



Page 5 of 17Jalali et al. BMC Cardiovasc Disord          (2021) 21:185 	

myocardial infarction (STEMI) patients, smoking displayed 
no significant association with microvascular obstruc-
tion (MVO) [86, 87] and index of microvascular resistance 
(IMR) assessed by intra-coronary sensor angiography [88].

However, smoking was associated with intramyocar-
dial haemorrhage (IMH) in post-PCI STEMI patients [86, 
88] and in the presence of IMH, the protective effect of 
smoking on post-PCI cardiovascular health was abolished 
suggesting higher microvascular injury by post-ischemic 
reperfusion in smokers [86]. IMH is a marker of severe 
and irreversible injury to the coronary microvasculature 
by ischemia–reperfusion which results to extravasation of 
erythrocytes [89].

This result is challenged by another study using CMR is 
reperfused STEMI patients in another population, which 
did not find a significant association between smoking 
and the frequency of IMH [90]. The effect of smoking on 
endothelial progenitor cells (EPC) as necessary factors for 
repair and regeneration of microvasculature post-ischemia 
[91] was investigated by several studies. Smoking is shown 
to reduce the number of EPC, their adhesive capacity, and 
colony forming abilities [56, 91–93]. Therefore, if the dam-
age to the coronary microcirculation is not irreversible 
(IMH), smoking may have beneficial impact on coronary 
microvascular regeneration post ischemia and reperfusion. 
Further research is warranted to assess this phenomenon 
in the future.

Ex vivo and in vitro effects of smoking on post ischemic 
and PCI‑induced microvascular injury
Animal studies indicate that nicotine has a pathologic angi-
ogenic effect on coronary arteries and microvessels, and 
intimal hyperplasia post ischemia and in PCI [94, 95]. Nic-
otine angiogenic effects are mediated by nicotinic acetyl-
choline receptors in endothelial cells [95–97]. Neointimal 
formation induced by nicotine effect on VSMC post injury 
has been linked to ERK –Egr-1 signaling cascade, and the 
blockade of this pathway can revert the adverse effect of 
nicotine in coronary vascular remodeling [98].

Impact of alcohol on coronary microvasculature
Impact of alcohol on coronary microvasculature and stable 
CMD
Clinical impact of alcohol on the coronary microvascular 
function
Detrimental health effects of alcohol include cardio-
metabolic complications which account for 33% of 
death caused by alcohol [99]. Multiple studies demon-
strated regular and irregular heavy drinking to markedly 
increase the risk of ischemic heart disease and hyperten-
sion [100–102]. However, the general effect of alcohol 
consumption on cardiovascular disease is considered 
to be complicated due to other reports which support a 

protective role for the low and moderate alcohol drink-
ing in regard to the ischemic heart disease and MI [103, 
104]. In this section we will review the current under-
standing of the impact of alcohol on coronary micro-ves-
sels. Similar acute effect was observed for two moderate 
doses of red wine (not vodka or white wine) to improve 
CFR in healthy young individuals, indicating a vasodila-
tory and cardioprotective function. These doses of red 
wine correspond the amount of 0.5 and 1.0 g/kg ethanol. 
The level of CFR increase was correlated with the level 
of antioxidant capacity of plasma induced by alcohol con-
taining red wine. Improtantly, de-alcoholized red wine 
had no such effects. The CFR was measured by transtho-
racic Doppler echocardiography and right after bevarage 
drinking (acute effect of ethanol) [105]. This was contra-
dicted by another study that measured CFR (by myocar-
dial contrast echocardiography) in response to 1–2 weeks 
consumption of moderate dose of ethanol (red wine) and 
observed no change in CFR. The difference could be due 
to the fact that in the later study measurements were 
made at least 12 h after alcohol consumption; therefore, 
it cannot represent the acute effects of alcohol consump-
tion, compared to the abovementioned studies which 
assessed CFR right after drinking [106].

Mechanistic studies on the effects of alcohol on coronary 
microvasculature in human subjects
Heavy alcohol has been shown to result in deleterious 
remodeling and ultra-structural alterations of the car-
diac microcirculation, depicted by case–control stud-
ies that used histochemical staining, and microscopy on 
cardiac biopsies obtained from alcoholic patients (angina 
patients with no CAD) after their death. Briefly in regard 
to the underlying pathophysiological mechanisms of 
alcohol-induced damage, the results showed disorgani-
zation of the layers of the micro-vessel walls, edema, 
perivascular fibrosis, sclerosis, interstitial inflammation, 
the degeneration of endothelial cells and higher density 
of capillary network [107, 108] (Fig. 2).

Mechanistic ex vivo and in vitro evidence on the effects 
of alcohol on coronary microvasculature
Animal studies indicate increased coronary microvascu-
lar wall thickness and an enrichment of the ATP-hydro-
lyzing small-caliber micorvessels [109]. Morphometric 
analysis by electron microscopy confirmed structural 
changes in the endothelial cells of the capillaries but not 
the muscle cells. Numerical density of endothelial cells 
was enhanced, whereas the volume density did not show 
a significant alteration, indicative of the proliferation of 
endothelial cells [110].

Others reported widened peri-capillary distances 
resulting in enforced remodeling changes in the size and 
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connectivity of cardiomyocytes, and subsequently impaired 
myocardial conduction in animal models [111]. Evidence 
suggests that alcohol-induced hypoxia-mimetic and meta-
bolically demanding condition [112] in the endothelial cells, 
lead to the endothelial remodeling and degeneration. Con-
sequently, the damage of the micro-vessel endothelial cells 
precipitates in an increased infiltration of fluids and metab-
olites to the vessel walls and the perivascular space, which 
in turn results in edema and inflammation [111, 113]. This 
mechanism consequently induces the reported deposit of 
higher levels of collagen, perivascular fibrosis and sclerosis, 
and declined conductivity [111].

Impact of alcohol on post‑ischemic and PCI‑induced 
coronary microvascular injury
Clinical studies on the impact of alcohol on coronary 
microvasculature injury by reperfused myocardial infarction
Studies have shown better prognosis and lower mortality 
rate post MI [114–117] upon prior moderate but not heavy 
chronic alcohol consumption. In regard to PCI however, 
administration of a moderate dose of ethanol displayed an 
adverse effect on myocardial ischemic damage post PCI 
in STEMI patients [118]. Specific impact of moderate and 
heavy alcohol consumption on coronary microvascular 

Fig. 2  Pathophysiology of heavy alcohol-mediated coronary microvascular damage. Summary of the underlying mechanisms of coronary 
microvascular damage caused by heavy alcohol drinking
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function remains unfeatured as yet, warranting studies 
that assess the corresponding indices (e.g., CFR, MVO and 
IMR) in relation to beverage type, pattern and duration of 
alcohol consumption in MI patients.

Ex vivo and in vitro effects of alcohol on post ischemic 
and PCI‑induced microvascular injury
The angiogenesis occurs after myocardial injuries such as 
ischemia to provide oxygen and supplies for the regen-
eration process of the myocardium. In  vivo study in rat 
model preconditioned with either a high, or a modest 
dose of alcohol before the induction of MI, showed that 
the angiogenesis is significantly increased upon moder-
ate alcohol preconditioning; whereas it was reduced in 
excessive dose of alcohol consumption prior to MI [119]. 
The level of VEGF expression did not change upon intake 
of high ethanol doses, while endostatin was upregu-
lated. Conversely, upon moderate alcohol intake, VEGF 
level was shown to be up-regulated, whereas endostatin 
expression significantly declined [119].

Angiogenic effects of moderate ethanol were concomi-
tant with other beneficial cardio-protective effects includ-
ing improved microvascular reactivity, endothelial function 
and myocardial perfusion in the ischemic regions of the 
myocardium [120, 121]. Interestingly, in the non-ischemic 
regions of myocardium distant from the ischemic territory, 
the blood flow and the endothelial microvascular reactivity 
showed no significant difference between the alcohol naïve 
and moderate EtOH group [120]. Moderate levels of ethanol 
is shown to positively regulate HIF-1α mRNA expression as 
the transcription factor upstream of VEGF [122]; and the 
HIF-1α protein is mainly stabilized upon hypoxic conditions 
while rapidly degraded at normal oxygen levels [123]. This 
could explain why the beneficial effects of alcohol only occur 
at ischemic regions, since HIF-1α is expressed, but degraded 
(Fig.  3). The other suggested mechanisms for the angio-
genic effects of moderate ethanol are the induction of pro-
angiogenic factors including basic fibroblast growth factor 
(bFGF), transforming growth factor-β1 (TGF-β1) [124], and 
Notch/CBF-1/RBP-JK -Ang1/Tie2 or Notch/ Flk-1/KDR 
pathways in endothelial cells as indicated by in vitro studies 
[125, 126]. On the other hand, inhibition of angiogenesis by 
high alcohol supplement may be attributed to the p53 up-
regulation following excessive alcohol consumption [127]. 
P53 is known to have anti-angiogenic features [128]. The 
other potential mechanisms could be inhibited VEGF sign-
aling as shown to occur in the endothelial cells upon intoxi-
cation by high doses of ethanol [129]. It was shown that 
ethanol inhibits the VEGF signaling in vitro regardless of the 
level of VEGF expression, via suppressing the phosphoryla-
tion and the expression level of VEGF receptors [129].

Moderate chronic ethanol preconditioning was indicated 
to protect against IRI [130–132], whereas consumption of 
acute alcohol before IRI does not confer cardioprotection 
[133, 134].

Proposed mechanisms of alcohol-mediated IRI pro-
tection include PKC-ε-ALDH activation, and mitoPTP 
(mitochondrial permeability transition pore) closing, 
which reduce the production and release of reactive 
oxygen species (ROS) [130, 131], as well as the VEGF-
induced neovascularization which compensates for the 
IRI-induced cell death [132]. PKC‐ε activation and its car-
diac mitochondrial translocation are triggered by moder-
ate ethanol exposure. Inside mitochondria, it interacts 
with, and activates ALDH, which plays a critical role in 
reactive aldehydes detoxification and protection against 
mitochondrial-originated oxidative stress [130, 131, 135]. 
In addition, ALDH2 mitochondrial translocation inhibits 
opening of mitochondrial Permeability Transition Pore 
(mitoPTP), and thus leads to cardioprotective outcomes 
[136–138] MPTP is a mitochondrial membrane complex, 
which opens at highly stressed conditions of the cell (e.g. 
IRI, endotoxin, and anticancer agents), permitting the 
flow of the mitochondrial metabolites and ions, which 
leads to the induction of cell death [138]. Li et al., 2010 
found that low concentration ethanol post-conditioning 
confers cardioprotection against IRI via inhibition of 
mitoPTP opening, associated with improved hemody-
namics and smaller infarct size [136].

Further studies are essential to demonstrate the ben-
eficial or harmful effects of alcohol-induced microvas-
cular alterations, specifically in the setting of different 
cardiac diseases. Based on the studies available to this 
date, alcohol-induced microvascular remodeling can 
be directed toward a beneficial or disadvantageous 
path depending on the dose and the pattern of alcohol 
drinking.

Opioids and coronary microvascular function
Clinical effect of opioids on coronary microvasculature 
and CMD
Impact of opioids on coronary microvasculature and stable 
CMD
Many studies have associated opioid abuse with higher 
risk of CAD [139–152]. Nonetheless, the effect of opium 
on the coronary microvascular dysfunction (CMD) is 
under-studied. A cross-sectional study undertaken in 
a city of Iran with almost 30% rate of opioid addiction 
in the rural areas [153–155], analyzed stable angina 
patients, with normal angiography, diagnosed with CMD. 
The results implicated that opium addiction acts as an 
independent risk factor in CMD development [155]. In 
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addition to opioid addiction, the effect of opioid-based 
anaesthetic substances on coronary microcirculation 
integrity showed microvascular perfusion impairment 
(long flow recovery times, and slower rate of oxygen re-
saturation) [156].

Mechanistic ex vivo and in vitro evidence on the effects 
of opioid on coronary microvasculature
Moreover, experiments in animal models indicated that 
morphine aggravates the destructive effect of hyperten-
sion on coronary microvessels, via inhibition of angio-
genesis and lowering the capillary density, as well as by 
deteriorating endothelial cell function in NO (nitrite 
oxide) production [157].

Impact of opioid on post‑ischemic and PCI‑induced 
coronary microvascular injury
Clinical studies on the impact of opioid on coronary 
microvasculature injury by reperfused myocardial infarction
Controversial reports on the impact of morphine 
and opioid agonists on mortality rate and myocardial 

damage post MI and PCI have been published suggesting 
a cardioprotective [158–160], adverse effect [161–163] 
or no significant change [164, 165]. In reperfused STEMI 
patients, CMR analysis suggested contradictory results 
by different studies as no impact of morphine on micro-
vascular obstruction (MVO) [165] versus an adverse 
effect exacerbating the myocardial and microvascular 
damage (MVO) post PCI [162]. Future clinical trials are 
warranted to assess the effect of opioids on coronary 
microvascular function in post MI and Post-PCI patients 
to determine the safety of using opioid analgesics for pain 
treatment of ischemic cardiovascular patients.

Ex vivo and in vitro effects of opioid on post ischemic 
and PCI‑induced microvascular injury
In vitro treatment of cultured endothelial cells and car-
diac myocytes with morphine results in a marked reduc-
tion of VEGF expression. Subsequently the reduction of 
VEGF can lead to the inhibition of the neovascularization 
and the suppressed re-growth of the capillary network 
to restore the myocardial perfusion necessary to recover 

Fig. 3  Beneficial effects of moderate alcohol consumption on coronary microcirculation. Positive impact of moderate alcohol consumption or 
ethanol preconditioning on coronary microvascular integrity and function, protecting against post-MI and PCI microvascular injuries
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from ischemic injuries [166]. On the other hand, multiple 
studies suggest a cardioprotective role for opioids, indi-
cating that the administration of opioid agonists such as 
morphine [167–171], fentanyl [172, 173] and methadone 
[174] attenuate the ischemic-triggered apoptosis and 
inflammation following myocardial ischemia, when used 
as a pre- or post-conditioning agent, or as pain treatment 
[170, 175–179]. Correspondingly, in  vitro and ex  vivo 
studies suggested that the enhanced opioid signaling 
diminished the cell death induced by ischemia-associated 
hypoxic injury [175, 180–183]. Summary of the human, 
animal and in  vitro studies on the clinicopathology 
effects of substance use on the coronary microcirculation 
are presented in Table 1.

Conclusion
Overall, the presented evidence points to the importance 
of considering smoking, excessive alcohol use, and opioid 
addiction as independent risk factors in the development 
of the coronary microvascular disease. Moreover, evi-
dence supports a cardioprotective role for moderate eth-
anol and opioids particularly against post-ischemic and 
intervention-mediated injuries to the coronary micro-
circulation. Almost 80% of the coronary vascular resist-
ance is due to the microcirculation [23, 24]. Therefore the 
dysfunction of coronary microcirculatory network (CMD 
disease) can mainly impair the coronary blood perfu-
sion, which results in cardiac damage [23, 24]. CMD has 
become a subject of attention among cardiologists and 
researchers over the last thirty years. Thus far, the studies 
have led to the identification of some of the mechanisms 
underlying the structural and functional impairment in 
the coronary microvasculature. Nevertheless, this is still 
a growing field and requires much further investigations. 
As of today, the diagnosis of CMD is still facing compli-
cations and misdiagnosis due to the technical limitations 
in imaging the coronary microcirculation, and the high 
cost and the invasiveness of the available clinical tech-
nologies. Therefore, more attention needs to be directed 
toward discovery of peripheral diagnostic markers for 
CMD, which are lacking.

Overall, more ultra-structural, molecular and histopa-
thology assessments of the differential effects of various 
risk factors of CMD including smoking, alcohol, and drug 
addiction are essential. Combined with application of the 
most advanced imaging techniques for myocardial capillary 
network, future studies could lead to the development of 
novel specific diagnostic markers and therapeutic strategies 
for CMD, as well as preparation of accurate administration 
protocols for substances such as ethanol and opioid in pre-
conditioning for ischemic cardiac disease in clinic.
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