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Abstract 

Background:  Cardiac myxomas (CMs) and thrombi are associated with high morbidity and mortality. These two 
conditions need totally different treatments. However, they are difficult to distinguish using naked eye. In clinical, 
misdiagnoses occur now and then. This study aimed to compare the characteristics of  CMs and cardiac thrombi and 
investigate the value of a radiomics signature in distinguishing CMs from cardiac thrombi, based on cardiovascular 
contrast-enhanced computed tomography (CECT) images.

Methods:  A total of 109 patients who had CMs (n = 59) and cardiac thrombi (n = 50) were enrolled in this retro‑
spective study from 2009 to 2019. First, the lesion characteristics of cardiovascular CECT images were documented 
and compared by two radiologists. Then all patients were randomly allotted to either a primary group or a valida‑
tion group according to a 7:3 ratio. Univariate analysis and the least absolute shrinkage and selection operator were 
used to select robust features. The best radiomics signature was constructed and validated using multivariate logistic 
regression. An independent clinical model was created for comparison.

Results:  The best radiomics signature was developed using eight selected radiomics. The classification accuracies of 
the radiomics signature were 90.8% and 90.9%, and the area under the receiver operating characteristic curves were 
0.969 and 0.926 in the training and testing cohorts, respectively. Cardiovascular CECT images showed that the two 
diseases had significant differences in location, surface, Hydrothorax, pericardial effusion and heart enlargement. The 
naked eye findings were used to create the clinical model. All metrics of the radiomics signature were higher than 
those of clinical model.

Conclusions:  Compared with clinical model, the radiomics signature based on cardiovascular CECT performed bet‑
ter in differentiating CMs and thrombi, suggesting that it could help improving the diagnostic efficiency.
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Introduction
Cardiac tumors are rare, and three-quarters of these 
tumors are benign. Among them, cardiac myxomas 
(CMs) represent the vast majority of primary benign car-
diac tumors [1, 2]. CM is a benign tumor that can lead 
to a lethal outcome and has a slim possibility of malig-
nant transformation [3]. CM is a real tumor originating 
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from undifferentiated mesenchymal cells [1, 4]. Cardiac 
thrombi often appear in patients suffering from cardio-
vascular diseases such as atrial fibrillation (AF), myo-
cardial infarction, and heart failure [5, 6]. A thrombus 
consists of insoluble protein fibrin, platelets, white cells, 
and red cells [7]. CMs and cardiac thrombi are totally dif-
ferent in their essence and are treated in entirely different 
ways. Because CMs can be lethal and have a slim chance 
of becoming malignant, patients with CMs need surgical 
therapy, while patients who have cardiac thrombi might 
only need anticoagulant therapy or cannot bear operative 
procedures because of the threat of thromboembolism or 
patients being poor situation.

Thus, it is very important to diagnose these two con-
ditions correctly. However, in some aspects, they resem-
ble each other. The symptoms of CMs are diverse and 
nonspecific [8]. These two conditions share some same 
symptoms. Besides, the characteristics of their radiologi-
cal images are similar. Both of them manifest as a filling 
defect in the cardiac chambers [9], making it difficult to 
arrive at the correct diagnosis when only using the naked 
eye. Meanwhile, biopsies are hard to get before surgery 
due to the special anatomical location. Thus, in clini-
cal settings, misdiagnoses occur, and with them comes 
incorrect treatment [10, 11].

Radiomics is a high-throughput extraction approach 
that helps to transform digital images into mineable data. 
It is a helpful quantitative way to improve diagnostic and 
predictive accuracy, providing a powerful tool in modern 
medicine [12]. Existing work has already demonstrated 
that artificial intelligence (AI) can be used to diagnose 
cardiovascular conditions such as coronary artery dis-
ease, poor cardiac function, and so on [13]. However, 
there have been no reports about applying radiomics (a 
branch of AI) to cardiac masses. In the meantime, work 
comparing CMs and cardiac thrombi are limited by small 
sample sizes [14, 15]. Therefore, this study aimed to com-
pare the characteristics of CMs and cardiac thrombi in 
cardiovascular contrast-enhanced computed tomography 
(CECT) images and develop a radiomics signature that 
can distinguish CMs from cardiac thrombi.

Methods
Patients
The cardiovascular CECT datasets were consecutively 
searched from December 2009 to November 2019. The 
inclusion criteria for the myxoma group were as follow: 
(1) patients with CM histologically documented after 
surgery and (2) patients who underwent cardiovascular 
CECT in our hospital before surgery. The exclusion crite-
ria were as follows: (1) image quality that was inadequate 
for delineating target region and (2) incomplete patient 
medical records. The inclusion criteria for the thrombus 

group were as follows: (1) patients who went through 
surgical removal of the thrombus, transesophageal echo-
cardiography (TEE), or transthoracic echocardiography 
(TTE) in our hospital and were diagnosed with cardiac 
thrombus; (2) patients with a thrombus who had surgery 
for other indications should have had cardiovascular 
CECT in our hospital before surgery; (3) patients with a 
time interval between cardiovascular CECT and TEE or 
TTE that was less than 1 week due to the thrombus pecu-
liarity of disappearing quickly once anticoagulant therapy 
starts; and (4) patients with thrombus with a significant 
size reduction or disappearance after anticoagulant ther-
apy, which was confirmed on imaging. The exclusion cri-
teria were as follows: (1) imaging quality was inadequate 
for delineating the target region and (2) incomplete 
patient medical records.

Finally, a total of 109 patients were consecutively 
recruited for this study. Fifty-nine patients corresponded 
to 59 CMs (mean age, 61.6 ± 12.6 years, ranging from 16 
to 80 years; female, 33). Fifty patients corresponded to 50 
cardiac thrombi (mean age, 58.5 ± 14.5, ranging from 15 
to 97 years; female, 23).

First, all CMs and thrombi were reviewed three-
dimensionally on a workstation (Syngo-Imaging; Siemens 
Medical Solution Systems, Forchheim, Germany) and 
compared carefully by two radiologists without knowing 
any information of patients. All discrepancies between 
the two observers were settled by consensus.

Second, all 109 lesions were randomly divided into 
either the training group or the testing group according 
to a 7:3 ratio. As a result, 76 lesions and the remaining 33 
lesions were allocated to the training group and the test-
ing group, respectively. Meanwhile, basic patient infor-
mation was collected from the admission records.

Third, after meeting the inclusion and exclusion cri-
teria, the remaining cardiovascular CECT images were 
retrieved from a picture archiving and communication 
system (Syngo-Imaging) for feature extraction. When 
patients had multiple CT examination records, the most 
recent record was selected. Detailed scanning protocol 
information is shown in Additional file 1.

Finally, referred to a classic radiomics method [16], 
a radiomics signature and a clinical model were con-
structed and validated. The specific steps were as follow. 
The flow chart of this study is shown in Fig. 1.

Image segmentation and preprocessing
First, all images were loaded into IBEX (β1.0, http://​
bit.​ly/​IBEX_​MDAnd​erson],  an open infrastructure 
software platform that streamlines common radiomics 
workflow tasks. Second, two radiologists with two and 
five years of experience, respectively, in cardiovascular 
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imaging, independently delineated the region of inter-
ests (ROIs) manually without knowing any patient 
information. Third, a radiologist with 35 years of expe-
rience in cardiovascular imaging compared the two 
ROI groups delineated by the two other radiologists 
and decided the best group using the next step. Resam-
pling was used as preprocessing steps to ensure repeat-
ability. Resampling was performed to obtain a voxel 

size of 0.4 × 0.4 × 0.4  mm3 via a trilinear interpolation 
before the feature calculation.

Feature extraction, dimensionality reduction, 
and radiomics feature selection
Four commonly used feature groups, shape, intensity his-
togram, gray-level co-occurrence matrix (GLCM), and 
gray-level run-length matrix (GLRLM), were extracted 
from IBEX (Additional file  1: Table  1). A total of 430 

Fig. 1  Flow chart of patient recruitment in this study
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radiomics features were extracted from the cardiovas-
cular CECT images. The missing values of all radiomics 
features were replaced by a value of zero. Z-score was 
performed to reduce the features’ variable magnitudes 
by scaling values to a mean of 0 and a standard devia-
tion of 1. To reduce the dimensionality and the bias when 
building the model, three steps were applied to pick out 
the robust features in the training group. First, an inde-
pendent sample t-test or the Mann–Whitney U test was 
used to select potential useful features. Features were 
abandoned if they did not meet either of these tests. Sec-
ond, the least absolute shrinkage and selection operator 
(LASSO) with five-fold cross-validation was adopted to 
select features and reduce the dimensionality. The pre-
diction accuracy and interpretability of the model were 
enhanced by performing variable selection and regulari-
zation. The minimum criteria were used to tune the regu-
larization parameter (λ) and for feature selection. Finally, 
the selected features were tested by Spearman correlation 
coefficients to avert the latent severe linear dependence. 
If features were deemed to have severe linear dependence 
(the correlation coefficients were 0.90–1.00), one of the 
two features would be chosen to use finally.

Development of the optimal radiomics signature
Logistic regression, a classic machine learning (ML) 
method, and multivariable binary logistic regression 
with backward stepwise selection were used to construct 
a linear classifier. The area under the receiver operating 

characteristic curves (AUCs) was a main index to assess 
the optimal radiomics signature. Other discrimination 
indicators were also calculated, including positive pre-
dictive value (PPV), negative predictive value (NPV), 
specificity, sensitivity and predictive accuracy. After 
the radiomics signature was constructed in the training 
group, all the testing group data were put into the model 
to validate the diagnostic efficiency and accuracy of the 
model (Fig. 2]. Then an independent clinical model was 
developed using the same way as above with all naked eye 
findings for comparison the values of the two models.

Statistics
During the construction of the radiomics signature, the 
R language software (Version 3.6.1, https://​www.r-​proje​
ct.​org/] was used for all statistical analyses. The Shap-
iro–Wilk test was used to test whether the variables were 
normal distributions. Bartlett’s test was used to assess the 
homogeneity of variance. The “lme4” and “psych” pack-
ages were used for the intra-class correlation coefficient 
(ICC). The “glmnet” and “pROC” packages were used for 
LASSO regression. Basic clinical  data  were analyzed by 
Statistical Package for the Social Sciences software (ver-
sion 25.0). Clinical characteristics were measured based 
on the variable type. Categorical variables were measured 
as percentages, and Fisher’s exact or chi-square test was 
used for comparison, depending on the expected fre-
quencies. Continuous variables were recorded as mean 
values or medians, and were compared by independent 

Fig. 2  Framework of this study
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t-tests (normally distributed continuous variables) or the 
Mann–Whitney U tests (non-normally distributed con-
tinuous variables). A two-tailed p value < 0.05 was consid-
ered statistically significant in all statistical analyses.

Results
Clinical characteristics
Patients’ characteristics in the training group and the 
validation group are presented in Table  1. There was 
no significant difference between the training group 
and validation group in terms of sex, age, or clinical 

manifestations. Among the naked eye findings, calcifica-
tion, location, and density uniformity had no significant 
difference either. While heart enlargement was signifi-
cantly different in both groups (p < 0.05), hydrothorax 
(p = 0.030) and pericardial effusion (p = 0.020) were 
significantly different in the validation group, but had 
no significant difference in the training group. Patients’ 
medical records were significantly different in two 
cohorts (p = 0.011, p = 0.010, respectively).

For comparison of CM and thrombus with the 
naked eye, significant differences were observed in 

Table 1  Characteristics of patients in the training and validation cohorts

*  p value < 0.05; ages and heart rate are shown as mean ± standard deviation; other data are the number of patients with the percentage in Parentheses

Cardiac signs included: Dyspnea, palpitations, malaise or syncope, chest pain or discomfort, dizziness, lower limb edema and hemoptysis

Constitutional symptoms included: fever, weight loss, anemia, or pseudo-connective tissue disease signs

Others included: Patent foramen ovale, Pulmonary hypertension, cardiomyopathy and arrhythmia. LA: left atrium, RA: right atrium 

The primary group p The validation group p

Myxoma (41) Thrombus (35) Myxoma (18) Thrombus (15)

Sex 0.684 0.373

 Female 23 (56.1) 17 (48.6) 10 (55.6) 6 (40.0)

 Male 18 (43.9) 18 (51.4) 8 (44.4) 9 (60.0)

Age(years) 60.98 ± 12.62 56.38 ± 15.35 0.054 62.94 ± 12.92 62.27 ± 12.20 0.873

Clinical manifestation 0.146 0.061

 Cardiac signs 27 (55.1) 30 (73.2) 9 (45.0) 13 (86.7)

 Embolism 12 (24.5) 9 (22.0) 6 (30.0) 2 (13.3)

 Constitutional symptoms 3 (6.1) 1 (2.4) 2 (10.0) 0 (0.0)

 No symptom 7 (14.3) 1 (2.4) 3 (15.0) 0 (0.0)

Medical records 0.011* 0.010*

 Diabetes mellitus 3 (6.7) 3 (3.1) 4 (26.7) 4 (10.5)

 Hypertension 9 (20.0) 7 (7.1) 5 (33.3) 5 (13.2)

 Atrial fibrillation 4 (8.9) 15 (15.3) 0 (0.0) 12 (31.6)

 Rheumatic heart disease 2 (4.4) 28 (28.6) 0 (0.0) 5 (13.2)

 Heart valves obstruction 8 (17.8) 14 (14.3) 1 (6.7) 3 (7.9)

 Heart valves insufficiency 12 (26.7) 19 (19.4) 5 (33.3) 5 (13.2)

 Others 7 (15.6) 12 (12.2) 0 (0.0) 4 (10.5)

 Heart rate 82.00 ± 9.26 89.51 ± 21.65 0.076 82.17 ± 12.61 87.40 ± 13.34 0.244

 Cardiac murmur 19 (46.3) 14 (40.0) 0.373 4 (26.7) 7 (46.7) 0.133

Naked eye findings

 Calcification 8 (19.5) 4 (11.4) 0.367 2 (11.1) 3 (20.0) 0.639

 Hydrothorax 4 (9.8) 9 (25.7) 0.066 1 (5.6) 6 (40.0) 0.030*

 Pericardial effusion 9 (22.0) 13 (37.1) 0.146 2 (11.1) 8 (53.3) 0.020*

 Heart enlargement 25 (61.0) 29 (85.3) 0.036* 8 (44.4) 12 (80.0) 0.037*

 Homogeneous density 27 (65.9) 26 (74.3) 0.425 12 (66.7) 11 (73.3) 0.722

 Surface 0.041* 0.048*

  Coarse 24 (58.5) 12 (34.3) 11 (61.1) 4 (26.7)

  Smooth 17 (41.5) 23 (65.7) 7 (38.9) 11 (73.3)

 Location 0.498 0.375

  LA 37 (90.2) 29 (82.9) 16 (88.9) 11 (73.3)

  RA 4 (9.8) 6 (17.1) 2 (11.1) 4 (26.7)
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the adjacent structures. The thrombus group had 
more hydrothorax (30.0% vs. 8.5%, p = 0.004), peri-
cardial effusion (42.0% vs. 18.6%, p = 0.008), and heart 
enlargement (82.0% vs. 55.9%, p = 0.004). For lesions, 
lesion surface and location were significantly different 
between the two groups (p = 0.004, p = 0.000, respec-
tively). The CM group had more coarse surfaces (59.3%) 
while the thrombus group had more smooth surfaces 
(68%). More thrombi (48%) were located in the Left 
atrial appendage (LAA), while most CMs (88.1%) are 
in left atrial (LA). Calcification (p = 0.672), homogene-
ous density (p = 0.371), and enhanced CT value (0.370) 
showed no significant difference in the two cohorts 
(Fig. 3]. More information is shown in Table 2.

Inter‑observer agreement
The ICC of the 430 radiomics features ranged from 
0.03 to 0.99 (mean ICC = 0.98). An ICC score greater 
than 0.75 was considered a satisfactory agreement. The 
ICC scores of two features were less than 0.75 and were 
excluded. Finally, 428 radiomics features were included in 
the following calculation.

Dimensionality reduction and feature selection
There were 97 radiomics features showing a normal dis-
tribution with homogenization, and 85 of them were sig-
nificantly different based on independent sample t-tests. 
The remaining features were tested by Mann–Whitney 
U tests; 236 features were significantly different. Finally, 
a total of 321 radiomics features were used for LASSO 
regression, and 11 radiomics features with non-zero 

Fig. 3  The cardiovascular CECT Images. a thrombi, b myxomas. Both the two diseases present as filling-defects in the left atrium and mimic each 
other sometimes
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coefficients were chosen, with the best-tuned regulari-
zation parameter λ of 0.020 under the minimum criteria 
found by five-fold cross-validation (Fig. 4]. Four pairs of 
features showed a strong positive correlation when tested 
by Spearman correlation coefficients (Additional file  1: 
Table  2). As a result, three features were excluded, and 
eight features were left (Additional file 1: Table 3).

Construction of the optimal radiomics signature
After Spearman correlation coefficient testing, eight fea-
tures were selected to construct the predictive radiomics 
signature. The performance of the radiomics signature 
was good, with an AUC of 0.969 (95% confidence inter-
val [CI]: 0.939–0.999, Fig. 5a). The classification accuracy, 
sensitivity, specificity, PPV and NPV were 90.8%, 85.7%, 
95.1%, 93.8%, and 88.6%, respectively. Good performance 
was also observed in the validation group. The AUC was 
0.926 (95% CI: 0.819–1.000, Fig.  5c). The accuracy, sen-
sitivity, specificity, PPV, and NPV were 90.9%, 93.3%, 
88.9%, 87.5%, and 94.1%, respectively.

For the clinical model, all performance metrics were 
lower than those of radiomics signature. The AUCs were 
0.898 (95% confidence interval [CI]: 0.824–0.973, Fig. 5b) 
in the training group and 0.878 (95% confidence interval 
[CI]: 0.749–1.000, Fig. 5d) in the testing group. The clas-
sification accuracies were 85.6% and 84.8%, respectively.

Discussion
Cardiac masses are associated with high morbidity and 
mortality and imaging plays a vital role in diagnosing 
and managing them. This study compared CMs and car-
diac thrombi (two of the most common cardiac masses) 
in cardiovascular CECT images with the largest sample 
size and first explored the value of radiomics in cardiac 
masses, to our best knowledge. 

In this study, CMs and thrombi were found to have 
many similarities, which make them hard to be distin-
guished by only using the naked eyes, though they also 

Table 2  characteristics of CMs and cardiac thrombi based on 
the cardiovascular CECT

*  p value < 0.05; enhanced CT value is shown as mean ± standard 
deviation; other data are the number of patients with the percentage in 
parentheses. LA: left atrium, LAA: left atrial appendage, RA: right atrium.

Myxoma (n = 59) Thrombus (n = 50) p

Naked eye findings

 Calcification 10 (16.9) 7 (17.1) 0.672

 Hydrothorax 5 (8.5) 15 (30.0) 0.004*

 Pericardial effusion 11 (18.6) 21 (42.0) 0.008*

 Heart enlargement 33 (55.9) 41 (82.0) 0.004*

 Homogeneous density 39 (66.1) 37 (74.0) 0.371

 Enhanced CT value/HU 54.35 ± 19.10 58.52 ± 22.59 0.370

 Surface 0.004*

  Coarse 35 (59.3) 16 (32.0)

  Smooth 24 (40.7) 34 (68.0)

 Location 0.000*

  LA 52 (88.1) 17 (34.0)

  LAA 1 (1.7) 24 (48.0)

  RA 6 (10.2) 9 (18.0)

Fig. 4  Feature selection using the LASSO regression method. a The 5- fold cross validation was used to select the optimal parameters (Lambda, 
λ = 0.020). b The AUC was plotted versus log (Lambda) by using the minimum standard (left line) and the 1 standard error of minimum standard 
(1 − SE standard, right line) to draw the vertical line with the best value. The minimum standard was used according to the 5-fold cross validation. 
Eleven features were chosen after LASSO regression
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have some differences. Many important characteristics 
of lesions, including calcification, uniformity of density, 
and enhanced CT value, failed to distinguish CMs from 
thrombi. The results of the calcification and enhanced 
CT values were in line with previous studies [14, 15]. 
The mass surface showed a statistically significant differ-
ence with which to differentiate CMs from thrombi. The 
CM group showed more coarse surfaces, which might be 
explained by the fact that CM is a real tumor. The growth 
speeds of tumor cells are various, which leads to a coarse 
surface. Patients of the thrombi group possessed more 
hydrothorax, pericardial effusion, and enlarged hearts 
compared with patients of the CMs group. This might 
be associated with the fact that patients with a throm-
bus tend to suffer from AF and rheumatic heart disease, 
which could lead to thrombi formation. The most com-
mon sites of two lesions are different. Many thrombi are 
located in the LAA. LAA is prone to thrombosis owing to 

its unique anatomical structure characteristic [17]. Most 
CMs are located in LA, especially in the atrial  septum, 
which is in line with previous studies [18]. Symptoms 
were nonspecific in the two cohorts, for all symptoms in 
the CM group could be observed in the thrombi group. 
All of these make misdiagnoses are still problems for cli-
nicians. Therefore, it is necessary to find a new method 
to improve the diagnostic efficiency of radiologists and 
clinicians.

Thus, we constructed and validated a radiomics signa-
ture and a clinical model to distinguish CMs from cardiac 
thrombi and then compare the diagnostic efficiencies of 
the two models. The radiomics signature gave a more 
powerful performance than the clinical model to distin-
guish CMs and thrombi. All discrimination metrics of 
the radiomics signature are good and were observed in 
both the training group and the testing group. Among 
the eight features selected from radiomics features, 

Fig.5  The AUCs and ROCs of two models. a The training group of radiomics signature. b The training group of clinical model. c. The testing group of 
radiomics signature. d The testing group of clinical model. All discrimination metrics of radiomics signature were better than those of clinical model
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cluster prominence, inverse variance and Information 
Measure Correlation 2 belong to GLCMs, which are sec-
ond-order statistics. The left five features were first-order 
statistics that calculated the pixels’ values themselves. As 
discussed above, the lesion surfaces were significantly 
different between the two diseases. It was not surprising 
that three features (compactness, roundness and surface 
area density), pertained to shape, were selected to con-
struct the discriminative model. Compared to informa-
tion derived from naked eyes, the combination of first 
and second order statistics is helpful to analyze the lesion 
comprehensively.

All discrimination metrics of the clinical model were 
not as good as the radiomics signature. The clinical 
model was based on all naked eye findings, including 
locations, the most important differential diagnostic ele-
ments. Visual discoveries were rough and subjective. For 
example, once a mass was located in the LAA, the ver-
dant radiologists may diagnose it as a thrombus. In fact, 
it may be CM or other mass. In this study, a myxoma 
was found to be situated in the LAA. Besides, the clinical 
model was in the setting that all lesions were identified. 
While in clinical, the rates of missed diagnosis and misdi-
agnosis were high. It would further reduce the diagnostic 
efficiency of radiologists and clinicians. The comparison 
between the two models showed that radiomics signature 
was useful for distinguishing CMs and thrombi and more 
efforts should be made to realize its practicability.

The good performance of the radiomics not only 
proved the value of radiomics in the heart mass but 
also indicated that clinicians should take cardiovascu-
lar CECT into account when their patients have cardiac 
masses. The rarity of cardiac tumors, many patients with 
cardiovascular conditions did not undergo cardiovascular 
CECT images, and rapid heart movement made it hard 
to enroll enough images. To the authors’ best knowledge, 
there was no relevant study about the value of radiom-
ics in cardiac mass. Radiomics has already been applied 
in other tumors and heart diseases, suggesting that it 
does have value in diagnosing cardiac masses. For now, 
CT is the most important source of radiomics. How-
ever, when there is a cardiac mass, echocardiography is 
the first choice for most clinicians for its convenience, 
inexpensiveness and no radiation [19]. TTE have insur-
mountable drawbacks such as limited acoustic windows 
and low tissue resolution, leading to misdiagnosis and 
missed diagnosis, nevertheless [20]. TEE is a semi-inva-
sive procedure that is a discomfort study and might lead 
to life-threatening complications [21]. Cardiac MRI has 
high tissue resolution owing to its multiple sequences. 
Meanwhile, cardiac MRI could measure cardiac function 
and mobility of CMs. But MRI is more time and money 
consuming than CT and could not be used in patients 

with claustrophobia, metal and contrast contradictions 
[22, 23]. Cardiovascular CECT has high density resolu-
tion and acceptable time and expenditure consumption. 
With the development of techniques and apparatus, the 
radiation dose is dramatically reduced and CT applica-
tions in the heart diseases has greatly increased [24, 25]. 
Thus, for the diagnosis and differentiation of the cardiac 
masses, CT plays an irreplaceable and important role and 
should be taken into account.

Several limitations of this study should be noted. 
First, the relatively small sample might influence the 
radiomics signature. After feature selecting, ML, which 
needs an enormous amount of data, would be utilized 
to construct the best classifier. Although our patient 
number was larger than that in the previous studies, it 
was relatively small for a radiomics signature. Second, 
all patients coming from a single-center might influ-
ence the robustness of radiomics signature. But this 
is the first exploration for radiomics value in cardiac 
masses. A future study with a larger cohort is needed 
for further validation. Third, due to the nature of retro-
spective studies, there might be selection bias.

Conclusion
Compared with clinical model, the radiomics signature 
based on cardiovascular CECT distinguishes CMs and 
cardiac thrombi better, indicating a promising future in 
clinical practice to improve the diagnostic efficiency of 
radiologists and cardiovascular specialists.
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