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Abstract 

Background:  Atherosclerosis (AS) is a leading cause of vascular disease worldwide. MicroRNAs (miRNAs) play an 
essential role in the development of AS. However, the miRNAs-based biomarkers for the diagnosis of AS are still lim-
ited. Here, we aimed to identify the miRNAs significantly related to AS and construct the predicting model based on 
these miRNAs for distinguishing the AS patients from healthy cases.

Methods:  The miRNA and mRNA expression microarray data of blood samples from patients with AS and healthy 
cases were obtained from the GSE59421 and GSE20129 of Gene Expression Omnibus (GEO) database, respectively. 
Weighted Gene Co-expression Network Analysis (WGCNA) was performed to evaluate the correlation of the miRNAs 
and mRNAs with AS and identify the miRNAs and mRNAs significantly associated with AS. The potentially critical miR-
NAs were further optimized by functional enrichment analysis. The logistic regression models were constructed based 
on these optimized miRNAs and validated by threefold cross-validation method.

Results:  WGCNA revealed 42 miRNAs and 532 genes significantly correlated with AS. Functional enrichment analysis 
identified 12 crucial miRNAs in patients with AS. Moreover, 6 miRNAs among the identified 12 miRNAs, were selected 
using a stepwise regression model, in which four miRNAs, including hsa-miR-654-5p, hsa-miR-409-3p, hsa-miR-485-5p 
and hsa-miR-654-3p, were further identified through multivariate regression analysis. The threefold cross-validation 
method showed that the AUC of logistic regression model based on the four miRNAs was 0.7308, 0.8258, and 0.7483, 
respectively, with an average AUC of 0.7683.

Conclusion:  We identified a total of four miRNAs, including hsa-miR-654-5p and hsa-miR-409-3p, are identified as the 
potentially critical biomarkers for AS. The logistic regression model based on the identified 2 miRNAs could reliably 
distinguish the patients with AS from normal cases.
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Highlights

•	 A total of 2 miRNAs, including hsa-miR-654-5p and 
hsa-miR-409-3p, are identified as the potentially crit-
ical biomarkers for atherosclerosis;

•	 The logistic regression model based on the identified 
2 miRNAs, including hsa-miR-654-5p and hsa-miR-
409-3p, could reliably distinguish the atherosclerosis 
patients from normal cases.

Introduction
Atherosclerosis (AS) is a chronic arterial disorder and 
a significant determinant of vascular death [1]. Fatty 
streaks in arterial walls regularly develop into character-
istic plaques and atheroma [2]. The acute rupture of these 
atheromatous plaques leads to local thrombosis, causing 
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partial or total occlusion of the affected artery [3]. AS is 
featured by the progressive accumulation of lipids in the 
intimal space of the atrial walls, which results in several 
complications, such as oxidative stress, endothelial dys-
function, and chronic low-grade inflammation [4]. AS 
serves as an inflammatory disease that involves the accu-
mulation of fatty components and fibrous in the intima of 
medium and large arteries such as the peripheral artery, 
carotid artery, and coronary artery, and the clinical mani-
festations vary with the arteries induced [5, 6]. AS are 
still the leading cause of death and loss of productive life 
years globally, although considerable advances in diagno-
sis, prevention, and therapy have been made [7]. Moreo-
ver, due to the early symptoms of AS are not obvious or 
even asymptomatic, early detection and early interven-
tion can prevent the disease from continuing to develop 
in a more serious direction, which is extremely critical for 
the treatment of the disease [8]. Consequently, there is an 
increased need to identify the innovative biomarkers and 
predicting models for the diagnosis of AS.

Aberrantly expressed genes may be served as the 
potential diagnostic biomarkers of AS. For instance, an 
analysis of gene expression profiling identifies APH1B, 
JAM3, FBLN2, CSAD and PSTPIP2  as the potential 
diagnostic biomarkers for AS [9]. Intercellular adhesion 
molecule-1 expression and serum level could serve as 
diagnostic markers of pre-clinical AS [10]. Meanwhile, it 
has been recognized that combining various biomarkers 
into a single model will substantially improve the diag-
nostic value [11]. Moreover, microRNAs (miRNAs) were 
identified as short non‐coding RNAs with a length of 
approximately 20‐25 nucleotides, which exert significant 
impacts on numerous biological processes [12]. MiRNAs 
might control gene expression in the post‐transcriptional 
levels by pairing with target mRNAs at the 3′ untrans-
lated region (3′ UTR) [13]. A substantial number of 
investigations have revealed that miRNAs are involved in 
the progression of AS. For example, it has been reported 
that miRNA-33 modulated the macrophage autophagy 
in AS [14]. MiRNA-181b regulated AS and aneurysms 
by controlling the expression of TIMP-3 and Elastin [15]. 
However, the miRNA expression-based signatures for the 
diagnosis of AS were still limited.

In this study, we aimed to identify the miRNA-based 
diagnostic signature and construct the predicting model 
for the diagnosis of AS by combining bioinformatics 
analysis and machine learning, which will benefit the 
development of the early diagnosis strategy of AS.

Materials and methods
Data collection
The miRNA microarray data of GSE59421 [16], contain-
ing 33 blood samples of patients with AS and 63 healthy 

control blood samples, and the mRNA microarray data 
of GSE20129 [17], including 57 peripheral blood samples 
from patients with AS and 78 peripheral blood samples 
from healthy cases, were obtained from the Gene Expres-
sion Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) database. The expression value of miRNA micro-
array data of GSE59421 was detected using the Agi-
lent-021827 Human miRNA Microarray (V3) (miRBase 
release 12.0 miRNA ID version). The expression value of 
mRNA microarray data of GSE20129 was detected using 
the Illumina humanRef-8 v2.0 expression beadchip. The 
clinical information of samples was shown in Additional 
file 6: Table S1. Besides, the bioinformatics workflow was 
shown in Additional file 1: Fig. S1.

Weighted gene co‑expression network analysis (WGCNA)
The weighted gene co-expression network analysis 
(WGCNA) was performed by the WGCNA R package in 
the samples [18]. The hierarchical cluster was conducted 
according to the miRNA expression of the samples, and 
the miRNA with higher similarity in expression were 
identified in modules using the dynamic cut tree method. 
The characteristic gene (Module Eigengene, ME) value 
of each module and the correlation coefficient of the ME 
value with the phenotype, including the sample type (AS 
or not) and age, were calculated.

Functional enrichment analysis
After the potential miRNAs were screened from 
WGCNA analysis, we further predicted the genes tar-
geted by these miRNAs using the miRTarBase database 
(Release 7.0: Sept. 15, 2017 mirtarbase.mbc.nctu.edu.tw). 
Then, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [19] pathway enrichment 
analysis were performed by using clusterProfiler package 
of R software [20]. P < 0.05 was regarded as statistically 
significant.

Protein–protein interaction analysis
The function and interactions of proteins were analyzed 
and predicted by The STRING database (https://​string-​
db.​org/​,versi​on 11.0) [21]. Besides, the protein–protein 
interaction analysis (PPI) was visualized by Cytoscape 
software (version 3.7.2) [22].

Logistic regression models
The logistic regression models were constructed, in 
which the expression value of identified miRNAs was 
considered as predictive variables, and the sample type 
(AS or not) was considered as a binary responsive vari-
able. The samples from GSE59421 and GSE20129 were 
used for the construction of the multivariable logis-
tic regression model using glm of R, followed by the 
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stepwise regression method to filter out the significant 
variables finally included in the model with P < 0.05 as 
the threshold. The threefold cross-validation was per-
formed in the GSE59421 cohort to validate the accuracy 
of the logistic regression models by caret function of R 
language (https://​CRAN.R-​proje​ct.​org/​packa​ge=​caret). 
The receiver operating characteristic (ROC) curves were 
generated to evaluate the sensitivity and specificity of 
the logistic regression models, and the area under the 
curve (AUC) was calculated to assess the accuracy of the 
models.

Results
MiRNAs and mRNAs related to AS are identified by WGCNA.
To explore the potential miRNAs and mRNAs that were 
correlated with AS, GSE59421 and GSE20129 were nor-
malized to minimize the batch deviation of gene expres-
sion intensity (Additional file  2: Fig. S2A and B). The 
cluster analysis was performed based on the miRNA 
microarray data of GSE59421, in which an outlier sample 

was excluded in the subsequent analysis (Fig. 1a). Besides, 
the power value of β = 18 (scale-free R2 = 0.80) was 
selected as the soft-thresholding parameter to construct 
a scale-free network (Fig. 1b). A total of 6 modules were 
identified through the average linkage hierarchical clus-
tering (Fig. 1c). The correlation of the modules with the 
sample type (AS or not) and age was analyzed, in which 
the turquoise module contained 42 miRNAs presented 
the highest association with the sample type (P = 0.01) 
(Fig. 1d). The cluster analysis was also conducted based 
on the mRNA microarray data of 119 samples from 
GSE20129 detected by Illumina humanRef-8 v2.0 expres-
sion beadchip platforms, in which two outlier samples 
were excluded in the subsequent analysis (Fig.  2a). The 
power value of β = 5 (scale-free R2 = 0.80) was selected 
as the soft-thresholding parameter to construct a scale-
free network (Fig. 2b). A total of 10 modules were iden-
tified through the average linkage hierarchical clustering 
(Fig. 2c). The correlation of the modules with the sample 
type and age was analyzed, in which the blue module 

Fig. 1  WGCNA analysis miRNA microarray data of GSE59421. a Schematic diagram of clustering analysis was shown. b Schematic diagram of soft 
threshold screening was shown, in which the red line in the figure was the correlation coefficient, and the first point above the red line was the soft 
threshold β = 18. c Schematic diagram of gene module clustering was shown, in which each color represented a module, the genes in the gray 
module were genes that were not clustered into any module. d The heatmap of the correlation between the gene module and the phenotype was 
shown, in which the color of red and blue represented the phenotypic correlation
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contained 532 genes showed the highest association with 
the sample type (P = 0.01) (Fig. 2d). Together these data 
suggest that the 42 miRNAs and 532 genes determined 
from the WGCNA might be closely correlated with AS.

Functional enrichment analysis identifies 12 miRNAs 
potentially critical for patients with AS
The turquoise miRNA module contained 42 miRNAs 
and the targeted-gene prediction analysis identified 1396 
potential targeted genes for these miRNAs (Additional 
file  7: Table  S2) by the miRTarBase database (Release 
7.0: Sept. 15, 2017 mirtarbase.mbc.nctu.edu.tw). For 
primary comprehensions of the identified 1396 genes, 
GO and KEGG pathway enrichment analysis were per-
formed. Multiple GO terms, such as positive regulation 
of catabolic process and response to topologically incor-
rect protein, and KEGG pathways, for instance, cellular 
senescence and fluid shear stress and atherosclerosis, 

were revealed based on the 1396 genes (Additional file 8: 
Table S3), in which the top 30 remarkable GO terms and 
KEGG pathways were demonstrated (Fig.  3a and Addi-
tional file 3: Fig. S3A). Meanwhile, GO and KEGG path-
way analysis were conducted based on the 532 mRNAs 
of the blue module. Several GO terms, such as response 
to lipopolysaccharide, and KEGG pathways, for instance, 
fluid shear stress and atherosclerosis, were enriched 
based on the 532 genes (Additional file  9: Table  S4), in 
which the top 30 remarkable GO terms and KEGG path-
ways were demonstrated (Fig.  3B and Additional file  3: 
Fig. S3B).

More importantly, 42 overlapped genes among the 
532 genes in the blue module and 1396 targeted genes 
of the 42 miRNAs were identified (Fig.  3c), which 
were targeted by 12 of the 42 miRNAs. In addition, 
the functional enrichment analysis identified 6 over-
lapped GO terms (Fig.  3d) and 13 overlapped KEGG 
Pathways (Fig. 3e) between the 1396 genes targeted by 

Fig. 2  WGCNA analysis mRNA microarray data of GSE20129. a Schematic diagram of clustering analysis was shown. b Schematic diagram of soft 
threshold screening was shown, in which the red line in the figure was the correlation coefficient, and the first point above the red line was the 
soft threshold β = 5. c Schematic diagram of gene module clustering was shown, in which each color represented a module, the genes in the gray 
module were genes that were not clustered into any module. d The heatmap of the correlation between the gene module and the phenotype was 
shown, in which the color of red and blue represented the phenotypic correlation
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the 42 miRNAs in the turquoise module and the 532 
genes in the blue module (Additional file 10: Table S5). 
Together these data indicate that the identified 12 
miRNAs are potentially critical for patients with AS.

PPI network construction identifies the genes
Based on the STRING database, the PPI network was 
constructed for 42 genes, the minimum required inter-
action score > 0.4 was used as the threshold to screen 
the interaction protein, and then the PPI network 
was visualized by the Cytoscape software, as shown in 
Additional file 4: Fig. S4. There were 14 nodes and 11 
edges in total in Additional file 4: Fig. S4, and a node 
represented a gene, and an edge represented the inter-
action between two nodes.

Establishment, verification, and evaluation of the logistic 
regression model based on two miRNAs
Next, with the untreated patients as control group, a 
logistic regression model was constructed in the samples 
of GSE59421 and GSE20129 based on the identified 12 
miRNAs and among them, 6 miRNAs were further iden-
tified by the stepwise regression analysis for the further 
analysis, including hsa-miR-337-3p, hsa-miR-654-5p, 
hsa-miR-409-3p, hsa-miR-485-5p, hsa-miR-654-3p, and 
hsa-miR-1197. Then, these 6 miRNAs as the variables 
were incorporated into multivariate logistic regression 
analysis, in which the P values of hsa-miR-654-5p and 
hsa-miR-409-3p were less than 0.05 (Fig.  4a), indicating 
that these miRNAs might be significantly related to the 
occurrence of AS. Besides, the logistic regression model 

Fig. 3  Functional enrichment analysis. a The top 30 significant cellular processes based on the 1396 genes targeted by the 42 miRNAs were 
presented by GO enrichment scatter plot. The y-axis was the name of GO terms, and the x-axis was the gene ratio; The size of the dot revealed the 
number of genes. b The top 30 significant cellular processes based on the 532 genes in the blue module were presented by GO enrichment scatter 
plot. c–e The overlap of genes, GO terms, and KEGG pathways between the 1396 genes targeted by the 42 miRNAs in the turquoise module and 
the 532 genes in the blue module were presented in the Venn diagram
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based on the 2 miRNAs was reconstructed, and it was 
confirmed to conform to the normal distribution (Addi-
tional file  5: Fig. S5A). What’s more, there was a good 
linear correlation between the predictor variable and 
responsive variable in the model (Additional file  5: Fig. 
S5B), and there were no extreme points that significantly 
affected the accuracy in the model (Additional file 5: Fig. 
S5C).

Next, we used the threefold cross-validation method 
to evaluate the reliability of the model. The samples from 
GSE59421 were randomly divided into training set and 
verification set, which was used for constructing the 
logistic regression model and verification of the model, 
respectively. Our data showed that the AUCs of the three 
verification sets in the logistic model constructed by the 
threefold cross-validation method were 0.7308, 0.8258, 
and 0.7483 with an average AUC of 0.7683 (Fig. 4b), sug-
gesting that the logistic regression model based on these 
two miRNAs could reliably distinguish the patients with 
AS and healthy cases, and these 2 miRNAs could be used 
as potential biomarkers for the diagnosis of patients with 
AS.

Discussion
AS is a complex multifactorial disease that, despite 
advances in lifestyle management and drug therapy, 
remains to be the major cause of high morbidity and 

mortality rates from cardiovascular diseases in industri-
alized countries [23, 24]. Therefore, it is urgent to seek 
reliable diagnostic biomarkers and effective treatment 
alternatives to reduce its burden [25]. MiRNAs have 
received most of the attention over the last decades 
in particular for their role in tempering gene expres-
sion [13]. An increasing number of studies have high-
lighted the importance of miRNAs in the development 
and progression of AS [26]. Recently, it was shown that 
miRNAs exert their role in the pathophysiology of AS 
via the regulation of AS -prone genes as well as their 
impact in regulating post-transcriptional gene expres-
sion [27]. In this study, a total of 42 miRNAs and 532 
genes showed the highest association with AS in the 
WGCNA. Moreover, it has been identified that cata-
bolic process, neutrophil activation, and TNF signaling 
are involved in the modulation of the development of 
AS [28–30]. Our GO and KEGG pathway analysis based 
on the 1396 potential targeted genes of the 42 miRNAs 
and the identified 532 genes in the WGCNA presented 
multiple cellular processes, such as positive regulation 
of catabolic process, Renal cell carcinoma, neutrophil 
activation, and TNF signaling pathway. Our data were 
consistent with the previous study that the positive reg-
ulation of catabolic process, neutrophil activation, and 
TNF signaling pathway participated in the modulation 
of AS. More importantly, overlap analysis identified 

Fig. 4  Logistic regression model construction. a The forest plot of the 6 identified miRNAs in the model was shown. b The ROC curve of the logistic 
regression model was shown. The x-axis represented the specificity of the negative positive rate (false positive rate FPR), and the y-axis represented 
the sensitivity of the true positive rate (TRR)
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42 overlapped genes among the 532 genes in the blue 
module and 1396 targeted genes of the 42 miRNAs, in 
which these 42 overlapped genes were targeted by 12 
miRNAs. These data suggest that these 12 miRNAs are 
potentially critical for patients with AS.

The pathogenesis of AS is complicated, and it has been 
identified that miRNAs are involved in the develop-
ment of AS. For example, miR-654-3p is involved in the 
lncRNA ZFAS1-mediated inflammation responses in AS 
by targeting ADAM10 and RAB22A [31]. Meanwhile, 
miR-212, miRNA-216a, and miRNA-377 are consid-
ered as the potential biomarkers for the diagnosis of AS 
[32, 33]. In the present study, a total of 2 miRNAs, hsa-
miR-654-5p and hsa-miR-409-3p were identified and the 
threefold cross-validation method showed that the AUC 
of logistic regression model based on these 2 miRNAs 
was 0.7308, 0.8258, and 0.7483 with an average AUC of 
0.7683. As indicated above, hsa-miR-654-3p among our 
identified miRNAs have been reported to associate with 
AS. Our data, along with the previous reports further 
suggest that our logistic regression model can reliably 
predict the diagnosis of patients with AS.

Moreover, the functional enrichment analysis results 
illustrated that the identified genes significantly related 
to fluid shear stress and atherosclerosis pathway, indi-
cating that the results might reliable. Besides, the other 
two pathways screened out, response to topologically 
incorrect protein, and response to lipopolysaccharide, 
were markedly associated with genes and atherosclero-
sis. Based on the topological data analysis of quantita-
tive whole-heart coronary plaque characteristics, recent 
research suggested that varies patients has distinct plaque 
dynamics and clinical outcomes [34]. In addition, several 
studies revealed that microbiota could influence the ath-
erosclerosis by regulating lipopolysaccharide production 
and intestinal homeostasis [35, 36]. The above researches 
were consistent with our results. In the future study, we 
will explore the regulation mechanism of critical miRNA.

In conclusion, this study identified a total of 2 miR-
NAs, including hsa-miR-654-5p and hsa-miR-409-3p, are 
identified as the potentially critical biomarkers for AS. 
The logistic regression model based on the identified 2 
miRNAs could reliably distinguish the AS patients from 
normal cases. Our finding presents new insights into the 
miRNA-based signatures for AS and provide valuable 
predictive model, benefiting the diagnosis of AS patients.
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