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Abstract 

Background:  Myocardial iron overload in patients with thalassemia major (TM) is one of the most important com-
plications. The purpose of the study was to identify advanced echocardiography parameters for early identification of 
myocardial dysfunction during follow-up of patients with TM.

Methods:  Forty TM patients who were 41 ± 5 years old were included in the study and divided into two groups 
according to cardiac magnetic resonance T2* results (Group 1: Τ2* > 25 ms, Group 2: Τ2* ≤ 25 ms). Liver T2* param-
eters were also measured. Conventional and deformational echocardiographic parameters were measured at baseline 
and approximately 2 years later.

Results:  Thirty-two patients had Τ2* = 34 ± 4 ms (Group 1), and 8 had Τ2* = 17 ± 9 ms (Group 2). Blood consump-
tion was 185 ± 60 and 199 ± 37 ml/kg/yr (p = 0.64), and liver T2* was 4 ± 5 and 17 ± 21 ms (p = 0.01) in Groups 
1 and 2, respectively. At baseline, Group 1 had better left ventricular global longitudinal strain (GLS) (− 22 ± 3 vs. 
− 18 ± 5, p = 0.01) and similar left ventricular ejection fraction (LVEF) (62 ± 5% vs. 58 ± 10%, p = 0.086) than Group 2. 
At the 28 ± 11-month follow-up, LVEF, GLS, and T2* values in Group 1 (63 ± 3%, − 21 ± 3%, 34 ± 4 ms) and Group 2 
(56 ± 11%, − 17 ± 4%, 17 ± 9 ms) did not change significantly compared to their corresponding baseline values. In 8 
patients from Group 1, a worsening (> 15%) in LS (p = 0.001) was detected during follow-up, with a marginal reduc-
tion in LVEF.

Conclusions:  GLS seems to be an efficient echocardiographic parameter for detecting hemochromatosis-related car-
diac dysfunction earlier than LVEF. It also seems to be affected by other factors (free radical oxygen, immunogenetic 
mechanisms or viral infections) in a minority of patients, underscoring the multifactorial etiology of cardiomyopathy.
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Background
Thalassemia major (TM) is one of the most common 
inherited hemoglobin disorders. Ineffective erythropoie-
sis results in hemolytic anemia, and the patient is in need 
of lifelong transfusion therapy that ultimately leads to 

iron overload. Despite advances in the field of iron che-
lator therapies for TM, iron continues to accumulate in 
heart tissue, and subsequent cardiomyopathy remains the 
leading cause of death for these patients [1–3].

The pathophysiology of the cardiomyopathy that devel-
ops in the modern era of iron chelator therapies is more 
complicated. Even though iron overload is still consid-
ered the leading cause of the occurrence of heart fail-
ure in patients with TM, the production of free radical 
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oxygen, immunogenetic mechanisms and viral infections 
are being increasingly recognized [2, 4, 5].

The complex etiopathogenetic milieu of thalassemia 
cardiomyopathy requires identifying the dysfunctional 
myocardium at an early stage to make the most of the 
early implementation of medical therapies. While cardiac 
magnetic resonance imaging (MRI) provides the ability 
to directly and noninvasively measure cardiac iron [6, 7], 
echocardiography is still the first-line imaging tool for the 
assessment of myocardial function. Notably, however, 
conventional echocardiography parameters may still be 
within the normal range before the development of overt 
heart dysfunction. Newer echocardiographic techniques 
focusing on the analysis of myocardial deformation have 
been proven to be potentially useful tools for the early 
identification of myocardial dysfunction [8].

The purpose of our study was to evaluate the changes 
in left ventricular global longitudinal strain and circum-
ferential strain in patients with thalassemia major with 
and without myocardial iron overload.

Methods
We retrospectively studied 70 consecutive patients diag-
nosed with TM who were receiving blood transfusions 
and chelation therapy. Patients were eligible for enroll-
ment when they fulfilled all the following criteria: (a) car-
diac MRI for T2* measurement at the beginning of the 
study and during the follow-up period and (b) echocar-
diographic study at the initiation of the study and during 
the follow-up period. Patients were included in the study 
if their initial LVEF was more than 50%, (c) their tran-
sthoracic echocardiographic images for the measurement 
of left ventricular longitudinal and circumferential strain 
were of adequate quality, and (d) they had undergone a 
follow-up period between 12 and 36 months.

Patients with heart failure, valvulopathy, or history of 
myocardial infarction were not included in the study.

Echocardiography
Patients were studied in the left lateral decubitus position 
with a commercially available system (GE E9, Horten, 
Norway) coupled with a 3.5  MHz (M3S) transducer. 
Analysis was performed offline.

Echocardiographic study protocol
Cardiac MRI was performed no later than 1  month 
after the echocardiography study. Echocardiographic 
studies included complete 2D and Doppler examina-
tions. Assessment of LVEF was performed using apical 
4- and 2-chamber views. Doppler evaluation included 
the assessment of mitral inflow velocities. The mitral 
inflow parameters evaluated were early mitral inflow 
velocity (E-wave) and late or atrial mitral inflow 

velocity (a-wave). Peak right ventricular systolic myo-
cardial velocity (RVSm) was obtained by placing the 
sample volume of tissue Doppler imaging at the lateral 
tricuspid valve annulus. All measurements were per-
formed by following the current European Society of 
Echocardiography guidelines [9, 10].

Deformational echocardiographic analysis
For both global longitudinal strain (GLS) and cir-
cumferential strain (CS) measurements, analysis was 
performed with dedicated software (EchoPAC v11, 
General Electric Medical Systems).

Longitudinal strain
Grayscale two-dimensional apical images of the LV (4-, 
2-, and 3-chamber views) were obtained, and global 
longitudinal strain (GLS) analysis of the LV was per-
formed by speckle-tracking imaging [9, 10]. Three 
consecutive beats in each view were stored digitally 
for offline analysis. Mean values were calculated for all 
measured parameters. The frame rate was set between 
50 and 100 frames/s, sector width was set as narrow 
as possible, and gain settings were optimized. For each 
view, three consecutive beats were analyzed, and mean 
values were calculated for all parameters derived. After 
the cardiac cycle was selected, the software prompted 
the operator to apply a region of interest in a ‘‘click-
to-point approach’’ to delineate the endocardium. 
Subsequently, the software automatically defined an 
epicardial and midmyocardial line and processed all 
frames of the selected cardiac cycle. Global longitudi-
nal strain (GLS) was calculated as the average LS from 
all segments generated by software analysis of the 3 api-
cal views.

Additionally, we separately studied non-iron–over-
loaded TM patients who demonstrated a relative percent-
age of worsening in the GLS > 15% during the follow-up 
period. We considered the relative percentage reduction 
in GLS > 15% to be a clinically meaningful reduction, sim-
ilar to the cases of oncology patients where the changes 
in GLS are used for the early identification of myocar-
dial damage following the administration of agents with 
potential cardiotoxic properties [11].

Circumferential strain
Circumferential strain (CS) of the mid-LV was calcu-
lated using the short-axis view at the level of the papil-
lary muscles. Peak CS was defined as the average CS of 
all 6 segments (generated as previously described) in the 
short-axis view.
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Magnetic resonance imaging for cardiac and liver iron 
measurement
Magnetic resonance imaging examinations were per-
formed with a 1.5-T scanner (Symphony, Siemens, Erlan-
gen, Germany). The scans included measurements of 
the liver T2* and myocardial T2* values. The T2* of the 
heart was assessed by a cardiac-gated single breath-hold 
multiecho technique (FOV, 400  mm; TR, 135  ms; TE, 
2.6–22.3 ms (8 echo times); flip angle, 20; slice thickness, 
10  mm; matrix, 192 × 75; number of averages, 1; band-
width in Hz/pixel, 810).

Statistical analysis
Values are reported as the mean ± SD. The paired t-test 
was used for intragroup comparisons of the echocardi-
ography measurements at baseline and during follow-up. 
Independent-sample t-tests were used to compare base-
line parameters of the TMio and Group 2 patients. For 
values with a nonnormal distribution, the Mann–Whit-
ney U test was used. The χ2 test was used to compare 
the noncontinuous characteristics between the 2 groups. 
Spearman’s correlation coefficient was used to assess cor-
relations of the measured parameters. The statistical soft-
ware package SPSS for Windows was used for the analysis 
(SPSS 18 Inc., Chicago, IL, USA). A p-value < 0.05 was 
considered statistically significant.

Results
Out of the 70 patients with TM disease who we identi-
fied in our database, 40 fulfilled the criteria for inclusion 
in our study (Fig.  1). Seventeen patients were excluded 

due to inadequate image quality, and 13 patients were 
excluded because they had a follow-up period of less than 
12 months.

Patient characteristics
The age of the patients was 41 ± 5  years, and 22 were 
males. Chelation therapy consisted of desferrioxam-
ine (n = 7), defersirox (n = 14), deferiprone (n = 4), 
desferrioxamine + defersirox (n = 2), and desferrioxam-
ine + deferiprone (n = 13) (Table 1).

Eight TM patients were identified as iron overloaded 
based on cardiac MRI (T2* ≤ 25  ms, Group 2) [12, 13]. 
In this group, 4 patients had marginal T2* (20–25  ms), 
and 4 patients had abnormal T2* < 20  ms. The rest of 
the patients (n = 32) had a T2* > 25  ms and composed 
the non-iron–overloaded group (Group 1). The baseline 
characteristics of the two patient groups are shown in 
Table 1. Group 2 patients had significantly higher mean 
serum ferritin levels and a higher liver iron load than 
group 1 patients.

Conventional echocardiography and deformational 
parameters at baseline
Analysis of strain parameters was performed by one 
experienced operator. Group 1 had similar LVEF to 
Group 2 patients. Additionally, Group 1 had signifi-
cantly better GLS values than Group 2. No differences in 
CS values were observed between the two study groups 
(Table 2).

Fig. 1  Flow diagram of patients included in the study
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Mid‑term follow‑up of patients with TM
The mean follow-up of TM patients was 29 ± 11 months 
(range 12–36  months). Patient chelation therapy was 
adjusted by the attending physicians. There was no 

significant change in either conventional or deforma-
tional parameters during the follow-up period for either 
group of patients. Interestingly, during the follow-up 
period, we detected no significant changes in serum fer-
ritin or T2* signals for either group of patients (Table 2).

We identified eight patients with GLS worsening. These 
non-iron–overloaded TM patients who exhibited GLS 
worsening during follow-up also had a marginally sta-
tistically significant deterioration in LVEF. There was no 
significant change in other echocardiographic param-
eters (Table 3) (Fig. 2).

Correlation between various parameters at baseline 
and follow‑up
There was a good correlation between LVEF and T2* and 
between LS and T2* values (Table 4). There was a signifi-
cant correlation between liver and myocardium T2* at 
baseline but not in the follow-up measurements. There 
was a strong correlation between ferritin and liver T2* 
and a good correlation between ferritin and cardiac T2* 
at baseline but not at follow-up.

Discussion
The main findings of the present study suggest that in 
patients with TM, left ventricular longitudinal strain 
(GLS) can detect LV subclinical dysfunction due to high 
cardiac iron load better than LVEF. There was a good cor-
relation of cardiac T2* with both LVEF and GLS, both at 
baseline and follow-up. At the mid-period of follow-up, 
we detected no changes in conventional or deformational 

Table 1  Baseline profile of  the  Thalassaemia Major 
patients group according to CMR-T2* values

ACEI ACE inhibitors, ARB angiotensin receptor blockers, BSA body surface area, 
CMR Cardiac Magnetic Resonance, LIC liver iron concentration, RBC red blood 
cells

Group1 (n = 32) Group2 (n = 8) P

Age 42 ± 4 39 ± 8 0.45

BSA (m2) 1.69 ± 0.12 1.67 ± 0.23 0.75

Pure RBC (ml/kg/yr) 185 ± 60 199 ± 37 0.64

Serum ferritin (mg/L) 1217 ± 1804 3663 ± 4204 0.02

Cardiac T2* (ms) 33 ± 3 16 ± 9 0.01

Liver T2* (ms) 4 ± 5 17 ± 21 0.01

Splenectomy (n) 12 2 0.68

Diabetes (n) 7 0 0.18

Medication (n) 0.02

 Chelators

 Deferoxamine 5 2

 Deferasirox 13 1

 Deferiprone 4 0

 Deferoxamine + Deferasirox 0 2

 Deferoxamine + Defer-
iprone

10 3

Beta-blockers 4 2 0.28

ACEI/ARB 2 1 0.46

Table 2  Echocardiographic and MRI data at baseline and during follow-up

LVEF left ventricular ejection fraction, LVEDD left ventricular end-diastolic diameter, LVESD left ventricular end-systolic diameter, IVS intraventricular septum thickness, 
E/A early to atrial transmitral flow ratio, RVSm right ventricular basal myocardial systolic velocity
*  p = 0.01; **p = 0.04; ***p = 0.01, all compared to the baseline values of the Group1

T2* > 25 ms (n = 32) Group1 P T2* ≤ 25 ms (n = 8) Group2 P

Βaseline Follow-up Baseline Follow-up

Echocardiographic data

Conventional

 LVEF (%) 62 ± 5 63 ± 3 0.60 58 ± 10 56 ± 11 0.17

 LVEDD (mm) 49 ± 4 48 ± 4 0.10 49 ± 4 48 ± 4 0.36

 LVESD (mm) 31 ± 4 30 ± 4 0.72 31 ± 6 32 ± 6 0.10

 IVS (mm) 8.6 ± 0.9 8.7 ± 0.9 0.50 8.1 ± 0.9 8.5 ± 0.9 0.08

 E/A 1.5 ± 0.6 1.4 ± 0.5 0.93 1.5 ± 0.6 1.4 ± 0.3 0.68

 RVSm (cm/sec) 15.0 ± 1.9 15.1 ± 1.8 0.84 14.8 ± 2.3 14.6 ± 1.7 0.81

Deformational

 Circumferential strain (%) − 22 ± 5 − 22 ± 5 0.71 − 20 ± 6 − 18 ± 6 0.22

 Circumferential strain rate − 1.4 ± 0.9 − 1.4 ± 0.4 0.65 − 1.2 ± 0.4 − 1.2 ± 0.5 0.64

 Global Longitudinal strain (%) − 22 ± 3 − 21 ± 3 0.24 − 18 ± 5 * − 17 ± 4 0.38

 Mean Longitudinal strain rate − 1.2 ± 0.3 − 1.2 ± 0.2 0.37 − 1.0 ± 0.3 ** − 1.0 ± 0.2 0.68

 T2* (msec) 33 ± 3 34 ± 4 0.52 16 ± 9 *** 17 ± 9 0.55
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Table 3  Characteristics of  non cardiac iron overloaded patients, with  or  without a > 15% relative worsening in  GLS 
during follow-up period

LVEF left ventricular ejection fraction, GLS left ventricular global longitudinal strain, LVEDD left ventricular end-diastolic diameter, LVESD left ventricular end-systolic 
diameter, IVS intraventricular septum thickness, E/A early to atrial trans-mitral flow ratio, RVSm right ventricular basal myocardial systolic velocity
*  p = 0.02 compared to the corresponding value of Group1a at baseline

 < 15% relative worsening in GLS  > 15% relative worsening in GLS

Group 1a (24 pts) Group 1b (8 pts)

Baseline Follow-up p Δ (%) Baseline Follow-up p Δ (%) Group 1a 
versus 1b 
Follow-up

Group 1a 
versus 1b 
Δ%

P p

T2* (msec) 34 ± 4 36 ± 3 0.12 6 34 ± 4 31 ± 5 0.40 − 8 0.06 0.12

Ferritin 1190 ± 1573 1295 ± 1998 0.64 43 674 ± 642 263 ± 103 0.15 − 39 0.25 0.18

Echocardiographic data

Conventional

 LVEF (%) 62 ± 5 63 ± 3 0.47 2 65 ± 3 63 ± 3 0.046 − 3 0.75 0.09

 LVEDD (mm) 50 ± 4 49 ± 4 0.06 − 2 47 ± 5 47 ± 6 1.00 0 0.54 0.37

 LVESD (mm) 32 ± 4 31 ± 3 0.35 − 1 29 ± 4 30 ± 5 0.74 2 0.44 0.51

 IVS (mm) 8.5 ± 0.9 8.6 ± 0.9 0.58 2 8.5 ± 1.2 8.9 ± 1.0 0.44 6 0.51 0.44

 E/A 1.4 ± 0.3 1.4 ± 0.2 0.66 5 1.7 ± 1.1 1.5 ± 0.9 0.28 − 9 0.66 0.20

 RVSm (cm/sec) 15 ± 1 15 ± 2 0.56 − 2 15 ± 3 16 ± 1 0.41 14 0.19 0.09

Deformational

 Circumferential strain (%) − 21.0 ± 3.9 − 22.8 ± 5.4 0.15 9 − 21.9 ± 4.3 − 20.7 ± 6.1 0.63 − 5 0.66 0.21

 Circumferential strain rate − 1.2 ± 0.2 − 1.4 ± 0.4 0.10 18 − 1.3 ± 0.2 − 1.2 ± 0.1 0.10 − 14 0.86 0.06

 Global Longitudinal strain (%) − 21.3 ± 2.1 − 22.4 ± 2.2 0.05 6 − 24.5 ± 3.0* − 19.2 ± 2.4 0.01 − 22 0.004 0.001

 Mean Longitudinal strain rate − 1.2 ± 0.2 − 1.3 ± 0.2 0.14 7 − 1.4 ± 0.3 − 1.0 ± 0.1 0.01 − 23 0.05 0.43

Fig. 2  Left ventricular deformational mechanics in patients with and without myocardial iron overload at baseline and at midterm follow-up
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echocardiographic parameters in either iron– or non-
iron–overloaded TM patients. Interestingly, during the 
follow-up period, we detected a relative worsening in 
the left ventricular longitudinal strain by more than 15%, 
with a concomitant marginal reduction in their corre-
sponding LVEF, in eight patients in the non-iron—over-
loaded patient group.

Two-dimensional and three-dimensional LVEF meas-
urement using echocardiography is the standard method 
for evaluating systolic function in TM patients. Serial 
studies have identified that a reduction in LVEF ≥ 7% is 
a strong predictive factor for cardiac death in TM pop-
ulations [14, 15]. Once heart failure symptoms occur, 
survival decreases substantially [16]. The central role of 
iron-mediated cardiac toxicity in TM patients estab-
lished the role of CMR for cardiac iron load quantifica-
tion, guiding the usage of iron chelator therapy and thus 
improving patient outcome [17, 18].

Early impairment of other indices of left ventricular 
systolic function using tissue Doppler imaging, before any 
remarkable reduction in left ventricular ejection fraction, 
has already been reported [16, 19, 20]. In this direction, 
echocardiographic deformational analysis [21] in TM 
patients aims to detect early changes in cardiac mechan-
ics before any observed reduction in LVEF. This strategy 
could potentially prompt a change in the patient’s thera-
peutic strategy. Previous echocardiographic studies have 
reported mixed results in correlating T2* values with 
cardiac deformational parameters. Monte et al. [22] and 
Li et al. [23] found no correlation between left ventricu-
lar deformational parameters and T2* signals. Our study 
is in agreement with others [24, 25], where they found a 
correlation of longitudinal strain with the T2* signal. It 
is noteworthy that in our study, iron–overloaded patients 
had similar LVEFs compared to non-iron–overloaded 

patients. Furthermore, a previous study revealed that 
cardiac and liver iron–overloaded patients have impaired 
left ventricular global longitudinal strain compared to 
non-iron–overloaded patients [25]. Future studies could 
evaluate whether T2* signal measurements combined 
with deformational parameters obtained by cardiac MRI 
can potentially provide better risk stratification for TM 
patients. Particularly in young patients, the identification 
of myocardial fibrosis by MRI could be evidence of previ-
ous iron overload episodes.

During the follow-up period, iron load status accord-
ing to cardiac T2* did not change in either iron– or non-
iron–overloaded patients; accordingly, we did not find 
significant changes in conventional or deformational 
echocardiographic parameters, while a statistically signif-
icant correlation between T2* signal and GLS remained. 
This suggests that left ventricular deformational analy-
sis can detect early myocardial systolic dysfunction and 
could be a sensitive tool for serial follow-up measure-
ments of cardiac function. The absence of improvement 
in deformational parameters and T2* values during fol-
low-up in iron–overloaded patients could be attributed 
to the patient’s compliance issues with chelation thera-
pies, and irreversible myocardial damage secondary to 
repeated exposure of the myocardium to toxic factors 
related to thalassemia major may also play a role.

In our study, circumferential strain (CS) was also meas-
ured as an additional index of myocardial deformation, 
but we identified no correlation between CS and CMR 
T2* signals. Previous studies have shown that GLS is a 
more sensitive parameter than CS in identifying early 
impairment of LV function [26, 27].

Impairment of left ventricular longitudinal strain has 
been identified as an early marker of left ventricular dys-
function in patients undergoing chemotherapy [11]. In 

Table 4  Correlations between Cardiac T2*, mean serum Ferritin, Liver T2* and echocardiographic parameters, at baseline 
and follow-up of the study

CS: Mean Circumferential Strain (%), GLS: Global Longitudinal Strain (%), LVEF: Left Ventricular Ejection Fraction (%)

Baseline Follow-up

Cardiac T2* Ferritin Liver T2* Cardiac T2* Ferritin Liver T2*

LVEF

 Correlation 0.37 − 0.27 − 0.47 0.49 − 0.11 − 0.16

 P 0.018 0.132 0.023 0.019 0.520 0.487

GLS

 Correlation − 0.41 0.15 0.20 − 0.67 0.15 0.01

 P 0.013 0.445 0.383 0.001 0.417 0.915

CS

 Correlation − 0.14 0.27 0.50 − 0.1 0.15 0.13

 P 0.411 0.195 0.036 0.716 0.341 0.593
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our study, in the group of non-iron–overloaded patients, 
we identified 8 of 32 patients who revealed a more than 
15% worsening in their left ventricular LS deformational 
parameter with a marginal reduction in the EF. Consist-
ent with our findings, the results from Marsella et al. [28] 
reported that up to 10% of TM patients without cardiac 
iron overload could still develop heart failure.

The pathogenesis of systolic dysfunction in TM is com-
plex. Apart from the toxic effect of iron load, there is a 
significant contribution of the immunoinflammatory and 
inherited components [29–31]. Chronic tissue hypoxia in 
addition to chronic anemia, nutritional deficiencies and 
viral infections may contribute to the different suscepti-
bilities to iron overload and cardiac damage. Moreover, 
myocardial fibrosis has been revealed in CMR studies in 
both iron– and non-iron–overload patients [32]: long-
lasting consequences of previous damage could explain 
the contradictory results on the correlation between 
the actual CMR T2* signal and left ventricular defor-
mational parameters [22–25, 32]. Our results demon-
strated a significant correlation between liver and heart 
iron load assessed by MRI-T2*, while this correlation 
was lost at follow-up. These contradictory findings are 
consistent with previous reports [33, 34]. These results 
could be attributed to differences in iron transport and 
deposition in these organs [33]. Furthermore, we identi-
fied good correlations between ferritin and myocardial 
and liver T2* measurements. However, during follow-up, 
the ferritin-liver T2* correlation was persistent, but the 
ferritin-heart T2* correlation was not. Other studies have 
also reported contradictory findings in the correlation 
between ferritin and iron deposition on the heart and 
liver measured by MRI [35–37], indicating that serum 
ferritin cannot reliably predict the liver and heart iron 
content (Table 4).

The small number of patients in our study indicates 
that our results need validation with a larger group. 
Additionally, longer and less variable follow-up periods 
could potentially detect subtle differences in the defor-
mational mechanics in patients with thalassemia major 
myocardial iron overload. The cutoff point value of a 
15% reduction in GLS (validated in other patient groups) 
is arbitrary in patients with TM, and more studies are 
needed to define its clinical significance. Finally, late 
enhancement studies with gadolinium are not performed 
routinely during CMR to search for myocardial fibrosis. 
These studies could further characterize the myocardium 
in TM patients.

Conclusions
The present study suggests an important role of echocar-
diography in TM patients, identifying early left ventricular 
dysfunction with the use of longitudinal strain parameters. 

TM patients with high iron cardiac load had low left ven-
tricular longitudinal deformation, although LVEF values 
were normal. For a midterm follow-up period, there was no 
significant change in myocardial deformational parameters 
parallel to the absence of T2* value changes in patients with 
TM. Additionally, in a small subgroup of patients without 
myocardial iron overload, a deterioration in left ventricular 
deformational parameters was observed before a striking 
decrease in LVEF. These findings emphasize the signifi-
cant contribution of serial GLS measurements on top of 
MRI follow-up, aiming to identify those patients with myo-
cardial dysfunction at early stages, prompting potential 
therapies.
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