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Abstract 

Background:  Atrial fibrillation (AF) is the most common arrhythmia with poorly understood mechanisms. We aimed 
to investigate the biological mechanism of AF and to discover feature genes by analyzing multi-omics data and by 
applying a machine learning approach.

Methods:  At the transcriptomic level, four microarray datasets (GSE41177, GSE79768, GSE115574, GSE14975) were 
downloaded from the Gene Expression Omnibus database, which included 130 available atrial samples from AF and 
sinus rhythm (SR) patients with valvular heart disease. Microarray meta-analysis was adopted to identified differentially 
expressed genes (DEGs). At the proteomic level, a qualitative and quantitative analysis of proteomics in the left atrial 
appendage of 18 patients (9 with AF and 9 with SR) who underwent cardiac valvular surgery was conducted. The 
machine learning correlation-based feature selection (CFS) method was introduced to selected feature genes of AF 
using the training set of 130 samples involved in the microarray meta-analysis. The Naive Bayes (NB) based classifier 
constructed using training set was evaluated on an independent validation test set GSE2240.

Results:  863 DEGs with FDR < 0.05 and 482 differentially expressed proteins (DEPs) with FDR < 0.1 and fold 
change > 1.2 were obtained from the transcriptomic and proteomic study, respectively. The DEGs and DEPs were then 
analyzed together which identified 30 biomarkers with consistent trends. Further, 10 features, including 8 upregulated 
genes (CD44, CHGB, FHL2, GGT5, IGFBP2, NRAP, SEPTIN6, YWHAQ) and 2 downregulated genes (TNNI1, TRDN) were 
selected from the 30 biomarkers through machine learning CFS method using training set. The NB based classifier 
constructed using the training set accurately and reliably classify AF from SR samples in the validation test set with a 
precision of 87.5% and AUC of 0.995.

Conclusion:  Taken together, our present work might provide novel insights into the molecular mechanism and pro-
vide some promising diagnostic and therapeutic targets of AF.
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Background
Atrial fibrillation (AF) is the most common cardiac 
arrhythmia and is a leading cause of stroke, heart fail-
ure, and dementia [1]. AF currently affects over 30 mil-
lion individuals worldwide [2], and this number is 
projected to grow dramatically over the next 20 years [3]. 
Despite > 100 years of basic and clinical research, the fun-
damental mechanisms of AF remain poorly understood.

Microarray expression analysis of atrial tissues can 
provide a global unbiased framework to characterize the 
transcriptional changes associated with AF. Advance-
ment of high-throughput microarray technology is pro-
ducing a large number of gene expression data, which 
are powerful tools for discovering and studying novel 
biomarkers for AF. Nonetheless, analysis based on high 
throughput data may face the dreaded ‘curse of dimen-
sionality’. This refers to the phenomenon that the amount 
of sample size is relatively small while the number of fea-
tures increases greatly, which will increase the probability 
of making statistical errors [4].

Recently, integrated transcriptomic and quantitative 
proteomic analyses have been widely used to promote a 
better understanding of the molecular mechanisms driv-
ing biological processes in cells and tissues [5]. Advances 
in mass-spectrometry (MS) provide an unprecedented 
opportunity for antibody-independent proteome pro-
filing with approximately 80% of all proteins in major 
human tissues quantifiable by this technique [6]. By inte-
grating the transcriptomic and proteomic data, the ‘curse 
of dimensionality’ can be solved through cross-validation 
in the two levels. Besides, combining datasets from dif-
ferent origins by meta-analysis to extend the sample size 
and using some machine learning algorithms to select 
and reduce features could also help solve the ‘curse’ [7].

Due to the difficulty in obtaining atrial tissue from 
healthy populations, the majority of atrial transcrip-
tomic and proteomic studies of AF used atrial tissue 
from patients undergoing open-heart surgery with or 
without AF [8, 9]. By controlling other variables such as 
the comorbidity, severity of mitral valve disease, age, and 
sex, analyzing differentially expressed genes (DEGs) or 
differentially expressed proteins (DEPs) could also help 
explain the associations between genes expression and 
this complex disease phenotype. Another commonly 
applied method is to use samples that are more avail-
able in healthy people such as peripheral blood. However, 
the expression profiles from different cells and tissues 
could be quite different due to cell/tissue-specific epige-
netic regulation mechanism [10]. Hence, we propose to 

identify feature genes from local atrial tissue as it can 
directly depict the altered gene expression profiles of 
atria, and so able to identify the atrial remodeling process 
of AF.

Here, our objective was to elucidate a more complete 
understanding of molecular mechanisms underlying AF 
and to find potential diagnostic and therapeutic targets. 
The integration of multi-omics data, along with the appli-
cation of the machine learning approach, vouched for the 
identification of key pathways and feature genes in AF, 
which may help to investigate the underlying mechanism 
of AF and to discover potential diagnostic and therapeu-
tic targets.

Methods
Microarray data collection and preprocessing
For the meta-analysis, AF microarray expression data 
sets were collected from NCBI Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/). Only microarray data that met the following cri-
teria were included: (1) Data  sets were produced by 
Genome-wide mRNA expression profiling by microar-
ray; (2) The experimental platform was GPL570 (Affy-
metrix Human Genome U133 Plus 2.0 microarray); (3) 
Data sets should be gene expression profiles of human 
atria tissues between AF and sinus rhythm (SR); (4) The 
minimum number of cases and controls was three. Then, 
the raw CEL files were downloaded and preprocessed 
using robust multi array average (RMA) algorithm with 
‘affy’ package [11] implemented in R software. The qual-
ity of individual samples was assessed using the ‘array-
Qualitymetrics’ packages [12]. The outlier samples were 
excluded if it was detected by array intensity distribution 
criteria. After that, raw CEL files of the rest samples were 
preprocessed again using RMA algorithm for background 
correction, quantile normalization, and summarization.

We then reannotated the probes of GPL570 as it 
improves accuracy and makes it possible to identify new 
transcripts. In brief, the probe sequences were down-
loaded from Affymetrix (affymetrix.com) and were rema-
pped to the human genome (GRCh38 release 99 primary 
assembly) using the R package ‘Rsubread’ [13]. Then, the 
chromosomal positions of these probes were matched 
to the corresponding genome annotation database in 
Ensembl using the R package ‘GenomicRanges’ [14]. 
Probe sets that were mapped to > 1 gene were removed 
to ensure the reliability of the reannotation. The median 
expression values among all multiple probe IDs were 
selected to represent the corresponding gene symbol. 
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After that, 19,557 unique genes were retained. The nor-
malized and annotated datasets containing 19,557 rows 
and 130 columns were used for further meta-analysis.

GSE2240, which contained microarray expression 
profiles from 10 AF and 20 SR atrial samples, were pre-
processed using RMA algorithm and annotated using 
‘annotate’ and ‘hgu133a.db’ packages. The median expres-
sion values among multiple probe IDs were selected to 
represent the corresponding gene symbol.

Microarray meta‑analysis using GeneMeta
‘GeneMeta’ Bioconductor package [15] in R was used to 
perform a microarray meta-analysis of data sets from dif-
ferent ‘origins’. This package is based on the meta-analysis 
method proposed by Choi et al. [15] using fixed or ran-
dom effects. In this study, samples regarded as the same 
‘origin’ must come from the same tissue (left atria, right 
atria, etc.) and the same microarray study. The Random 
effect model (REM) was used [15]. The false discovery 
rate (FDR) for each gene was obtained with the func-
tion “ZscoreFDR” using 1000 permutations. Genes with 
FDR < 0.05 were considered as DEGs.

Proteomics study
18 left atrial appendage (LAA) tissue samples were 
obtained as surgical specimens from patients with 
mitral stenosis undergoing cardiac surgery at the Second 
Xiangya Hospital of Central South University, includ-
ing 9 with chronic AF and 9 with SR. The characteristics 
of all patients are presented in Table 2. For each clinical 
group, three samples were mixed into one pooled sample. 
Qualitative and quantitative proteomic analysis was per-
formed using dimethyl label-coupled high performance 
liquid chromatography-tandem mass spectrometry 
(HPLC–MS/MS) and MaxQuant software [16]. Benja-
mini–Hochberg’s method was used to calculate the FDR. 
DEPs were identified using a criterion of FDR < 0.1 and 
fold change > 1.2. The detailed procedure for proteomic 
study was described in Additional file 1.

Pathway enrichment analysis
Metascape (https​://Metas​cape.org/) is a web-based por-
tal designed to provide a comprehensive gene list anno-
tation and analysis resource for biologists [17]. It is one 
of the most effective tools to conducted muti-omics level 
enrichment analysis. To gain more insights into the bio-
logical roles of identified DEGs and DEPs, we conducted 
pathway enrichment analysis of Gene Ontology biologi-
cal process (GO BP), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Reactome, and Canonical pathway 
in Metascape tools. By inputting the lists of DEGs and 
DEPs simultaneously, Metascape can identify commonly-
enriched and selectively-enriched pathways from two 

levels, which enables a comprehensive assessment of the 
molecular features of the biological process.

Cross‑validation between the transcriptomic 
and proteomic study
The DEGs and DEPs were further analyzed using 
VennDiagram to compare and identify the shared genes. 
To make the selected biomarkers more significant, we 
only select genes that have consistent expression trends 
(upregulated or downregulated) between the transcrip-
tomic and proteomic levels for further analysis.

Feature selection and classification algorithm
The 130 samples involved in the meta-analysis were 
selected as the training set. The correlation-based fea-
ture selection (CFS) method [18] implemented in WEKA 
solfware [19] was used using the training set to select 
feature genes. Three popular state-of-the-art super-
vised classification methods (NB, Naive Bayes; SMO, 
sequential minimal optimization; and RF, random for-
est) were used for generating the classification models 
using WEKA with the default parameter settings [20]. 
The three algorithms were trained with the training set 
and their performances were further validated by six-
fold cross-validation. The best classifier generated in the 
training set with the highest accuracy was then validated 
on the independent test set GSE2240, which contained 
right atrial appendages samples from 10 AF patients and 
20 SR patients undergoing open-heart surgery. The per-
formance of the classifier was evaluated using criteria 
including precision, recall, F-measure, Matthews cor-
relation coefficient (MCC), AUC (area under receiver 
operating curve), and auPRC (area under precision-recall 
curve), true positive rate, false positive rate, and Kappa 
statistic.

Results
Microarray data description and preprocessing
In the transcriptomic meta-analysis study, four microar-
ray data sets were included containing a total of 54 SR 
and 79 AF paired atrial samples (Table 1) from patients 
with valvular heart disease. The included raw CEL files 
were pre-processed and quality control analysis of the 
data sets (after normalization) led to the removal of 3 
samples including GSM1005420, GSM3182694, and 
GSM3182707. After removing the outliers and reprocess-
ing, the normalized data sets consisting of 130 samples 
were taken for further meta-analysis approach.

Identification of DEGs
As shown in Table  1, we only considered samples from 
the same study and the same tissue as the same ‘ori-
gin’, which led to a total of 7 different origins. We 
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then performed a meta-analysis by using the R pack-
age ‘GeneMeta’ and DEGs were detected by compar-
ing the differential expression levels between the AF 
and SR group. The results identified 863 genes as DEGs 
(FDR < 0.05; 485 up-regulated: z-score > 0; 378 down-reg-
ulated: z-score < 0) (Additional file 2).

Results of proteomic study
The characteristics of the patients included in the pro-
teomic study were balanced between the two groups, 
except for the left atrial (LA) size (Table  2). Figure  1a 
shows the procedure of the proteomic study. Pearson’s 

correlation analysis indicated good repeatability between 
the samples (Fig. 1b). The mass accuracy of the MS data 
met the requirement (Fig.  1c) and the distribution of 
peptides’ length agreed with the properties of tryptic 
peptides (Fig.  1d). In total, we identified 4489 proteins 
including 3606 quantifiable proteins (Fig.  1e). Proteins 
with FDR < 0.1 and fold change > 1.2 were considered sig-
nificant, which led to the identification of 482 DEPs (301 
upregulated and 181 downregulated) (Fig.  1e, f ) (Addi-
tional file 3).

Pathway enrichment analysis and visualization
Pathway enrichment analysis helps researchers gain 
mechanistic insight into gene lists generated from 
genome-scale (omics) experiments. This method identi-
fies biological pathways that are enriched in a gene list 
more than would be expected by chance. Metascape 
helps to integrate different omics data such as genomics, 
transcriptomics, and proteomics, which enables a com-
prehensive understanding of a biological process. Unlike 
other methods, Metascape clusters enriched terms into 
non-redundant groups that will be critical for inform-
ing future studies. We visualized the top 20 clusters and 
chose the most significant (lowest p value) term within 
each of the 20 clusters to represent the cluster. For the 
upregulated proteins and mRNAs, most of the top 20 
clusters (19) were enriched in both protein and mRNA 
levels, which highly suggested the importance of these 
pathways in AF pathogenesis (Fig.  2a). While for the 
down-regulated ones, the top 20 clusters were mainly 
involved in energy metabolism-related pathways, and 
these pathways were only enriched in the protein level 
(Fig.  2b). To further capture the relationships between 
the terms, we selected a subset of representative terms 
from each of the 20 clusters (up to the 10 best scoring 
terms) and convert them into a network layout which was 
visualized within Cytospace (Fig. 2, right part).

Table 1  Characteristics of publically available GEO data sets used in the microarray meta-analysis

Accession number Organism Platform Number of samples (SR/AF) Origin

GSE41177 Homo sapiens Affymetrix Human Genome U133 Plus 2.0 Left atrial appendage: 3/16 1

Left atrial junction: 3/16 2

GSE79768 Homo sapiens Affymetrix Human Genome U133 Plus 2.0 Left atrial specimen: 6/7 3

Right atrial specimen:6/7 4

GSE115574 Homo sapiens Affymetrix Human Genome U133 Plus 2.0 Left atrial tissue: 15/14 5

Right atrial tissue: 16/14 6

GSE14975 Homo sapiens Affymetrix Human Genome U133 Plus 2.0 Left atrial appendage: 5/5 7

Table 2  Characteristics of the patients with mitral stenosis 
involved in the proteomic study

*p < 0.05

SR (n = 9) AF (n = 9) p

Male (n, %) 5 (55.6%) 4 (44.4%) 1

Age (year) 50.5 ± 6.5 55.5 ± 9.0 0.195

BMI (kg/m2) 22.2 ± 2.0 22.7 ± 1.8 0.489

Hypertension (n, %) 4 (44.4%) 6 (66.7%) 0.637

Hemoglobin (g/L) 135.7 ± 16.8 128.1 ± 22.4 0.546

WBC (109/L) 6.2 ± 2.1 6.7 ± 1.6 0.546

Platelet (109/L) 225.8 ± 86.4 205.2 ± 44.0 0.931

ALT (u/L) 18.7 ± 11.4 19.6 ± 7.7 0.666

AST (u/L) 20.2 ± 4.9 24.8 ± 12.4 0.605

ALB (g/L) 37.4 ± 1.9 39.1 ± 4.2 0.489

Serum creatinine (umol/L) 64.5 ± 21.0 69.1 ± 15.6 0.222

NT-proBNP (pg/mL) 161.4 ± 77.7 201.8 ± 138.7 0.546

Fasting blood glucose (mmol/L) 5.0 ± 0.4 5.2 ± 0.4 0.489

Total cholesterol (mmol/L) 4.6 ± 0.5 4.3 ± 0.5 0.269

RA size (mm) 33.0 ± 4.3 33.0 ± 4.3 0.796

LA size (mm)* 37.9 ± 3.1 49.4 ± 8.0 0.001

RV size (mm) 30.1 ± 4.9 33.8 ± 8.1 0.489

LV size (mm) 46.9 ± 10.6 54.1 ± 10.8 0.161

EF (%) 62.9 ± 8.6 61.3 ± 8.8 0.711

Mitral valve area (cm2) 1.8 ± 0.3 1.9 ± 0.3 0.746

NYHA class (I/II) 9/0 6/3
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Fig. 1  Quantitative proteomic analysis of AF and SR tissue samples. a Experimental process; b reproducibility of the quantitative proteomic analysis; 
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Cross‑validation
To make the selected biomarkers more significant, we 
only select genes that have consistent expression trends 
(upregulated or downregulated) between the tran-
scriptomic and proteomic levels for further analysis. As 
VennDiagram showed (Fig.  3), 23 up-regulated genes/
proteins, and 7 down-regulated genes/proteins were 
identified to have consistent trends from two-level. These 
30 genes/proteins were considered important biomarkers 
for AF.

Performance evaluation of AF classifier
After feature selection using training set, the num-
ber of features reduced from 30 to 10 including CD44, 
CHGB, FHL2, GGT5, IGFBP2, NRAP, SEPTIN6, 
YWHAQ,  TNNI1, and TRDN. After removing the bath 
effect using ‘sva’ packages in the R solfware, the expres-
sion values of these 10 features were used to generate 
classifiers with three supervised machine learning algo-
rithms—NB, SMO, and RF, based on the training set. We 
first conducted sixfold cross-validation to classify AF and 
SR samples. All classifiers performed well with a preci-
sion of 86.9% for NB, 86.3% for SMO, and 76.8% for RF 

a

b

Fig. 2  Pathway enrichment analysis. a Top 20 clusters with the smallest p value of upregulated mRNAs/proteins; b Top 20 clusters with the smallest 
p value of downregulated mRNAs/proteins right. The right part displays the network of selected enriched terms. Each term is represented by a circle 
node, where its size is proportional to the number of input genes that fall into that term, and its color represents its cluster identity (i.e., nodes of the 
same color belong to the same cluster). Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity 
score)

Fig. 3  Venn diagram of DEGs and DEPs
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(Table 3). Base on a comprehensive evaluation of preci-
sion and other measures, the NB classifier performed 
best and the constructed NB classifier using the whole 
training set was further evaluated in the independent test 
set. Among the 30 atrial samples, 24 of them (80%) were 
correctly classified. The performance criteria including 
precision, recall, F-measure, MCC, AUC, auPRC, true 
positive rate, false positive rate, and Kappa statistic were 
87.5%, 0.8, 0.805, 0.661, 0.995, 0.995, 0.8, 0.1, and 0.609, 
respectively. Therefore, the overall measures of high 
accuracy confirmed the efficacy of the classifier to distin-
guish AF from SR samples, which further proved that the 
10 gene feature are important biomarkers for AF.

Discussion
To our knowledge, this is the first integrated transcrip-
tomic and proteomic analysis of human AF atrial tis-
sue, and the first to identify feature genes of AF using 
machine learning approach. Previous transcriptomic 
studies have provided insights into the pathogenesis of 
AF [21, 22]. However, these experiments are generally 
analyzed through a single data source or restricted to a 
fewer sample which can lead to biological and techni-
cal biases. Thus, the microarray meta-analysis was used 
in this study to integrate four microarray data sets of AF 
from GEO which led to the identification of 863 DEGs. 
To elucidate a more complete understanding of AF 
pathogenesis, we also conducted a proteomic study of 
local atrial tissue which identified 482 DEPs.

Pathway enrichment analysis can help to characterize 
physiological and functional changes associated with the 
changes in mRNA and protein expression in AF atrial 
tissues. For the upregulated mRNAs or proteins, the top 
19 scoring items were enriched in both transcriptomic 
and proteomic levels, which vouched for the importance 
and significance of these pathways. Some of the items, 
such as ‘PDGFRB PATHWAY’, ‘activation of immune 
response’, ‘muscle structure development’, ‘regulation of 
actin cytoskeleton’, and ‘leukocyte degranulation’, have 
been proved to play key roles in AF progression [3, 23]. 
For the downregulated mRNAs or proteins, the top 19 
scoring items were only enriched in the proteomic level, 
and these pathways were mainly involved in metabo-
lism regulation, such as ‘mitochondrial respiratory chain 

complex assembly’, ‘TP53 regulates metabolic genes’, and 
‘response to oxidative stress’. Besides, the ‘Metabolism of 
lipids’ pathway was enriched in two levels. These are in 
accord with the recent studies which highlighted the role 
of metabolic remodeling in AF [24–26]. The reason why 
these pathways are only identified in the protein level 
may be caused by some post-transcriptional and transla-
tional regulations.

After cross-validation between the two omics data. 
We identified 30 genes or proteins with the same trends 
between two levels. To make the selected features more 
significant and informative, the machine learning CFS 
feature selection method was adopted in the training set 
which led to the final 10 features, wherein 8 are upreg-
ulated (CD44, CHGB, FHL2, GGT5, IGFBP2, NRAP, 
SEPTIN6, YWHAQ) and 2 are downregulated (TNNI1, 
TRDN). The NB classifier base on the expression values 
of these features in the training set can classify AF and SR 
samples with a precision of 87.5% and AUC of 0.995 in 
the independent test set.

Some of these feature genes have been reported to be 
associated with AF or its related pathogenesis. The CD44 
related pathways including CD44/STAT3 and CD44/
NOX4 signaling pathways can lead to atrial fibrosis [27] 
and Ca2+-handling abnormalities [28] during AF. Secre-
togranin-1 (CHGB) presents in the secretory granules in 
atrial myoendocrine cells and is co-localized with atrial 
natriuretic peptide (ANP) while CHGB genetic varia-
tion results in oxidative stress [29] and hypertension [30]. 
The four and a half LIM domains protein 2 (FHL2) is a 
component of the hypertrophic response and is found to 
be protective in cardiac hypertrophic through inhibit-
ing MAPK/ERK signaling [31]. MAPK has been proved 
to function in AF context by mediating oxidative stress 
[32, 33], epicardial adipose tissue remodeling [34], atrial 
fibrosis [35], load-induced hypertrophic response [36], 
and ionic channel remodeling [37]. Gamma-glutamyl-
transferase-5 (GGT5) is confirmed to be closely associ-
ated with immune cell activation [38] and oxidative stress 
[39, 40] and can be a potential biomarker of myocar-
dial infarction [41]. Insulin-like growth factor-binding 
protein 2 (IGFBP2) belongs to the insulin-like growth 
factor-binding protein (IGFBP) family. Two recent stud-
ies observed a higher hazard of incident AF associated 

Table 3  Performance of different prediction models generated by sixfold cross-validation on the training data set

NB Naive Bayes, SMO sequential minimal optimization, RF random forest, MCC Matthews correlation coefficient, AUC​ area under receiver operating curve, auPRC area 
under precision recall curve, TP true positive, FP false positive

Classifier Precision Recall F-Measure MCC AUC​ auPRC TP rate FP rate Kappa statistic

NB 0.869 0.869 0.869 0.729 0.925 0.920 0.869 0.143 0.728

SMO 0.863 0.862 0.862 0.715 0.860 0.814 0.862 0.142 0.715

RF 0.768 0.769 0.768 0.518 0.887 0.881 0.769 0.259 0.516
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with higher mean levels of plasma IGFBP1 protein [42] 
and IGFBP3 protein [43]. Nebulin related anchoring pro-
tein (NRAP) is present in myofibril precursors during 
myofibrillogenesis and thought to be involved in myofi-
bril assembly [44], and its genetic variance is associated 
with cariomyopathy [45]. Septin-6 (SEPTIN6) is invov-
led in extracellular matrix remodeling [46]. 14–3-3 pro-
tein theta (YWHAQ) is a gene in the P53 network and 
has been shown to promote apoptosis directly upon 
genotoxic stress [47]. Another proteomic also identified 
YWHAQ as an important biomarker in AF [47]. TNNI1 
encodes a troponin-I protein that is the dominant form 
of troponin-I expressed in the fetal/neonatal/infant 
heart, and its participants in AF remains unknown. Tria-
din (TRDN) is a stable subunit of the ryanodine receptor 
2 (RyR2) and is involved in the regulation of Ca2+ release 
[48]. The loss or dysfunction of RyR2 stable subunits 
was demonstrated to cause the occurrence of spontane-
ous calcium elevation in AF atrial cells [49]. Our present 
study further proved and emphasized the importance of 
these markers.

There are some limitations to the current study. Firstly, 
the number of samples included in the microarray 
meta-analysis remains relatively small (n = 130), which 
is caused by the limited number of available studies in 
the GEO database. Secondly, there is no corresponding 
clinical information of the samples, we were not able to 
make a prognostic analysis of these biomarkers. Third, 
the samples used in the transcriptomic and proteomic 
studies came from patients with valvular heart disease. 
This is due to the difficulty in acquiring atrial samples 
from healthy cohorts. The psychophysiology of AF in 
patients with valvular heart disease may have some dif-
ferences from those with non-valvular AF. We recom-
mend further study to identify gene expression profiles 
using atrial samples from non-valvular AF patients and 
healthy donors. Finally, the transcriptomic and prot-
eomic can only indicate the potential causes for a pheno-
typic response, but they cannot predict what will happen 
at the next level. Thus, one should consider the metabo-
lomic that provides a functional view of an organism as 
determined by the sum of its genes, RNA, proteins, and 
environmental factors [50]. Nonetheless, the integrated 
analysis of multi-omics data along with the machine 
learning method makes sure the selected genes as impor-
tant features for AF. Further studies are needed to clarify 
their functions in AF pathogenesis.

Conclusions
In conclusion, the current study identified a list of sig-
nificantly dysregulated feature genes associated with 
AF using a multi-omics analysis. The machine learn-
ing feature selection identified 10 feature genes. Naive 

Bayes prediction model built in the training set using 
the expression profiles of 10 features performed accu-
rately and reliably classified AF from SR samples in 
the independent test set. These findings could provide 
novel insight into the pathogenesis of AF and suggested 
that the feature genes might be diagnostic and thera-
peutic targets for AF.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1287​2-020-01819​-0.

Additional file 1. Detailed procedure of the proteomic study.

Additional file 2. Results of the microarray meta-analysis.

Additional file 3. Results of the proteomic study.

Abbreviations
AF: Atrial fibrillation; GEO: Gene Expression Omnibus; MS: Mass spectrom-
etry; DEPs: Differentially expressed proteins; SR: Sinus rhythm; RMA: Robust 
multiarray average; REM: Random effect model; FDR: False discovery rate; 
DEGs: Differentially expressed genes; LAA: Left atrial appendage; HPLC–MS/
MS: High-performance liquid chromatography-tandem mass spectrometry; 
GO BP: Gene Ontology biological process; KEGG: Kyoto Encyclopedia of Genes 
and Genomes; CFS: Correlation-based feature selection; NB: Naive Bayes; SMO: 
Sequential minimal optimization; RF: Random forest; AUC​: Area under receiver 
operating curve; MCC: Matthews correlation coefficient; auPRC: Area under 
precision-recall curve.

Acknowledgements
Liu Yaozhong would like to thank Miss Wan Ziwei for her love.

Authors’ contributions
YL and FB performed the bioinformatic analysis and were major contributors 
in writing the manuscript. ZT and NL made important contributions to data 
interpretation and substantively revised the manuscript. YL and QL designed 
the research project and created the final revision of the manuscript. All 
authors read and approved the final version of the manuscript.

Funding
This work was supported by grants from the National Natural Science Founda-
tion of China (No. 81770337). They had no role in the design of the study and 
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The microarray datasets analyzed during the present study are available from 
the Gene Expression Omnibus repository (https​://www.ncbi.nlm.nih.gov/geo). 
The accession numbers were GSE41177, GSE79768, GSE115574, GSE14975, 
and GSE2240. Results of the proteomic study were submitted as supplemen-
tary material.

Ethics approval and consent to participate
The proteomic study was approved by the Ethics Committee of the Second 
Xiangya Hospital of Central South University. The research was carried out 
in accordance with the World Medical Association Declaration of Helsinki. 
Informed written consent was obtained from all patients.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Cardiovascular Medicine/Cardiac Catheterization Lab, Second 
Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, 

https://doi.org/10.1186/s12872-020-01819-0
https://doi.org/10.1186/s12872-020-01819-0
https://www.ncbi.nlm.nih.gov/geo


Page 9 of 10Liu et al. BMC Cardiovasc Disord           (2021) 21:52 	

Changsha 410011, Hunan Province, People’s Republic of China. 2 Department 
of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 
Province, People’s Republic of China. 

Received: 26 May 2020   Accepted: 9 December 2020

References
	1.	 Kirchhoff P, Benussi S, Kotecha D. 2016 ESC Guidelines for the manage-

ment of atrial fibrillation developed in collaboration with EACTS. Eur 
Heart J. 2016;37(38):2893–962.

	2.	 Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin 
EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, Forouzanfar MH, 
Naghavi M, Mensah GA, Ezzati M, Murray CJ. Worldwide epidemiology 
of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 
2014;129(8):837–47.

	3.	 Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological 
mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 
2011;91(1):265–325.

	4.	 Loris N, Sheryl B, Alessandra L. Combining multiple approaches for gene 
microarray classification. Bioinformatics. 2012;8:1151–7.

	5.	 Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, 
Farber CR, Sinsheimer J, Kang HM, Furlotte N, Park CC, Wen PZ, Brewer H, 
Weitz K, Camp DG 2nd, Pan C, Yordanova R, Neuhaus I, Tilford C, Siemers 
N, Gargalovic P, Eskin E, Kirchgessner T, Smith DJ, Smith RD, Lusis AJ. 
Comparative analysis of proteome and transcriptome variation in mouse. 
PLoS Genet. 2011;7(6):e1001393.

	6.	 Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madu-
gundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-
Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George 
B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad 
S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu 
A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, 
Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, 
Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang T-C, Zhong J, Wu X, Shaw 
PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, 
Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, 
Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr 
CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A. A draft map 
of the human proteome. Nature. 2014;509(7502):575–81.

	7.	 Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conduct-
ing a meta-analysis of gene expression microarray datasets. PLoS Med. 
2008;5(9):e184.

	8.	 Steenman M. Insight into atrial fibrillation through analysis of the coding 
transcriptome in humans. Biophys Rev. 2020;12(4):817–26.

	9.	 Sühling M, Wolke C, Scharf C, Lendeckel U. Proteomics and transcriptom-
ics in atrial fibrillation. Herzschrittmachertherapie Elektrophysiologie. 
2018;29(1):70–5.

	10.	 Roselli C, Rienstra M, Ellinor PT. Genetics of atrial fibrillation in 2020: 
GWAS, genome sequencing, polygenic risk, and beyond. Circ Res. 
2020;127(1):21–33.

	11.	 Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix 
GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

	12.	 Audrey K, Robert G, Wolfgang H. arrayQualityMetrics—a bioconduc-
tor package for quality assessment of microarray data. Bioinformatics. 
2008;3:415–6.

	13.	 Liao Y, Smyth G, Shi W. The R package Rsubread is easier, faster, cheaper 
and better for alignment and quantification of RNA sequencing reads. 
Nucleic Acids Res. 2019;47(8):e47.

	14.	 Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, 
Morgan M, Carey V. Software for computing and annotating genomic 
ranges. PLoS Comput Biol. 2013;9(8):e1003118.

	15.	 Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies 
and modeling interstudy variation. Bioinformatics (Oxford, England). 
2003;19:i84-90.

	16.	 Cox J, Mann M. MaxQuant enables high peptide identification rates, 
individualized p.p.b.-range mass accuracies and proteome-wide protein 
quantification. Nat Biotechnol. 2008;26(12):1367–72.

	17.	 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
Benner C, Chanda SK. Metascape provides a biologist-oriented resource 
for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

	18.	 Lei Y, Liu H. Feature selection for high-dimensional data: a fast correlation-
based filter solution, machine learning. In: Proceedings of the twentieth 
international conference (ICML 2003), August 21–24, 2003, Washington, 
DC, USA, 2003.

	19.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 
The WEKA data mining software: an update. SIGKDD Explor Newsl. 
2009;11(1):10–8.

	20.	 Naorem LD, Muthaiyan M, Venkatesan A. Integrated network analysis and 
machine learning approach for the identification of key genes of triple-
negative breast cancer. J Cell Biochem. 2019;120(4):6154–67.

	21.	 Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer 
K, Bleich M, Kääb S, Hinterseer M. Reprogramming of the human atrial 
transcriptome in permanent atrial fibrillation: expression of a ventricular-
like genomic signature. Circ Res. 2005;96(9):1022–9.

	22.	 Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, John-
ston D, Roselli E, Gillinov AM, McCurry K, Moravec C. Left atrial tran-
scriptional changes associated with atrial fibrillation susceptibility and 
persistence. Circ Arrhythm Electrophysiol. 2015;8(1):32–41.

	23.	 Liu Y, Shi Q, Ma Y, Liu Q. The role of immune cells in atrial fibrillation. J Mol 
Cell Cardiol. 2018;123:198–208.

	24.	 Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial 
metabolism and tissue perfusion as determinants of electrical and struc-
tural remodelling in atrial fibrillation. Cardiovasc Res. 2016;109(4):527–41.

	25.	 Liu Y, Bai F, Liu N, Ouyang F, Liu Q. The Warburg effect: a new insight into 
atrial fibrillation. Clin Chim Acta Int J Clin Chem. 2019;499:4–12.

	26.	 Bai F, Tu T, Qin F, Ma Y, Liu N, Liu Y, Liao X, Zhou S, Liu Q. Quantitative 
proteomics of changes in succinylated proteins expression profiling in 
left appendages tissue from valvular heart disease patients with atrial 
fibrillation. Clin Chim Acta. 2019;495:345–54.

	27.	 Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT, Chen WJ. Transforming growth 
factor-beta-mediated CD44/STAT3 signaling contributes to the develop-
ment of atrial fibrosis and fibrillation. Basic Res Cardiol. 2017;112(5):58.

	28.	 Chen WJ, Chang SH, Chan YH, Lee JL, Lai YJ, Chang GJ, Tsai FC, Yeh YH. 
Tachycardia-induced CD44/NOX4 signaling is involved in the develop-
ment of atrial remodeling. J Mol Cell Cardiol. 2019;135:67–78.

	29.	 Rao F, Zhang K, Khandrika S, Mahata M, Fung MM, Ziegler MG, Rana BK, 
O’Connor DT. Isoprostane, an “intermediate phenotype” for oxidative 
stress heritability, risk trait associations, and the influence of chromogra-
nin B polymorphism. J Am Coll Cardiol. 2010;56(16):1338–50.

	30.	 Zhang K, Rao F, Wang L, Rana BK, Ghosh S, Mahata M, Salem RM, 
Rodriguez-Flores JL, Fung MM, Waalen J, Tayo B, Taupenot L, Mahata SK, 
O’Connor DT. Common functional genetic variants in catecholamine 
storage vesicle protein promoter motifs interact to trigger systemic 
hypertension. J Am Coll Cardiol. 2010;55(14):1463–75.

	31.	 Liang Y, Bradford WH, Zhang J, Sheikh F. Four and a half LIM domain 
protein signaling and cardiomyopathy. Biophys Rev. 2018;10(4):1073–85.

	32.	 Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C. Nitric 
oxide synthase inhibition and oxidative stress in cardiovascular diseases: 
possible therapeutic targets? Pharmacol Ther. 2013;140(3):239–57.

	33.	 Liang X, Zhang Q, Wang X, Yuan M, Zhang Y, Xu Z, Li G, Liu T. Reactive oxy-
gen species mediated oxidative stress links diabetes and atrial fibrillation. 
Mol Med Rep. 2018;17(4):4933–40.

	34.	 Suffee N, Moore-Morris T, Farahmand P, Rucker-Martin C, Dilanian G, Fra-
det M, Sawaki D, Derumeaux G, LePrince P, Clement K, Dugail I, Puceat M, 
Hatem SN. Atrial natriuretic peptide regulates adipose tissue accumula-
tion in adult atria. Proc Natl Acad Sci USA. 2017;114(5):E771-e780.

	35.	 Fan J, Zou L, Cui K, Woo K, Du H, Chen S, Ling Z, Zhang Q, Zhang B, Lan 
X, Su L, Zrenner B, Yin Y. Atrial overexpression of angiotensin-converting 
enzyme 2 improves the canine rapid atrial pacing-induced structural and 
electrical remodeling. Basic Res Cardiol. 2015;110(4):45.

	36.	 Kerkela R, Ilves M, Pikkarainen S, Tokola H, Ronkainen VP, Majalahti T, 
Leppaluoto J, Vuolteenaho O, Ruskoaho H. Key roles of endothelin-1 and 
p38 MAPK in the regulation of atrial stretch response, American journal of 
physiology. Regul Integr Comparat Physiol. 2011;300(1):R140–9.

	37.	 Cheng W, Zhu Y, Wang H. The MAPK pathway is involved in the regulation 
of rapid pacing-induced ionic channel remodeling in rat atrial myocytes. 
Mol Med Rep. 2016;13(3):2677–82.



Page 10 of 10Liu et al. BMC Cardiovasc Disord           (2021) 21:52 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	38.	 Lu E, Wolfreys FD, Muppidi JR, Xu Y, Cyster JG. S-Geranylgeranyl-L-
glutathione is a ligand for human B cell-confinement receptor P2RY8. 
Nature. 2019;567(7747):244–8.

	39.	 Li W, Wu ZQ, Zhang S, Cao R, Zhao J, Sun ZJ, Zou W. Augmented 
expression of gamma-glutamyl transferase 5 (GGT5) impairs testicular 
steroidogenesis by deregulating local oxidative stress. Cell Tissue Res. 
2016;366(2):467–81.

	40.	 Dhingra R, Gona P, Wang TJ, Fox CS, D’Agostino RB Sr, Vasan RS. Serum 
gamma-glutamyl transferase and risk of heart failure in the community. 
Arterioscler Thromb Vasc Biol. 2010;30(9):1855–60.

	41.	 Sharma A, Ghatge M, Mundkur L, Vangala R. Translational informatics 
approach for identifying the functional molecular communicators link-
ing coronary artery disease, infection and inflammation. Mol Med Rep. 
2016;13:3904–12.

	42.	 Staerk L, Preis SR, Lin H, Lubitz SA, Ellinor PT, Levy D, Benjamin EJ, 
Trinquart L. Protein biomarkers and risk of atrial fibrillation: the FHS. Circ 
Arrhythm Electrophysiol. 2020;13(2):e007607.

	43.	 Busch M, Kruger A, Gross S, Ittermann T, Friedrich N, Nauck M, Dorr M, 
Felix SB. Relation of IGF-1 and IGFBP-3 with prevalent and incident atrial 
fibrillation in a population-based study. Heart Rhythm. 2019;16(9):1314–9.

	44.	 Bang ML, Chen J. Roles of nebulin family members in the heart. Circ J Off 
J Jpn Circ Soc. 2015;79(10):2081–7.

	45.	 Vasilescu C, Ojala TH, Brilhante V, Ojanen S, Hinterding HM, Palin E, Alast-
alo TP, Koskenvuo J, Hiippala A, Jokinen E, Jahnukainen T, Lohi J, Pihkala 

J, Tyni TA, Carroll CJ, Suomalainen A. Genetic basis of severe childhood-
onset cardiomyopathies. J Am Coll Cardiol. 2018;72(19):2324–38.

	46.	 Collins KB, Kang H, Matsche J, Klomp JE, Rehman J, Malik AB, Karginov AV. 
Septin2 mediates podosome maturation and endothelial cell invasion 
associated with angiogenesis. J Cell Biol. 2020;219(2):e201903023.

	47.	 Vazquez A, Grochola LF, Bond EE, Levine AJ, Taubert H, Müller TH, Würl P, 
Bond GL. Chemosensitivity profiles identify polymorphisms in the p53 
network genes 14-3-3tau and CD44 that affect sarcoma incidence and 
survival. Can Res. 2010;70(1):172–80.

	48.	 Franzini-Armstrong C, Protasi F, Tijskens P. The assembly of calcium release 
units in cardiac muscle. Ann N Y Acad Sci. 2005;1047:76–85.

	49.	 Zhang JC, Wu HL, Chen Q, Xie XT, Zou T, Zhu C, Dong Y, Xiang GJ, Ye L, 
Li Y, Zhu PL. Calcium-mediated oscillation in membrane potentials and 
atrial-triggered activity in atrial cells of Casq2(R33Q/R33Q) mutation mice. 
Front Physiol. 2018;9:1447.

	50.	 Mercuro G, Bassareo P, Deidda M, Cadeddu C, Barberini L, Atzori L. 
Metabolomics: a new era in cardiology? J Cardiovasc Med (Hagerstown, 
Md). 2011;12(11):800–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Microarray data collection and preprocessing
	Microarray meta-analysis using GeneMeta
	Proteomics study
	Pathway enrichment analysis
	Cross-validation between the transcriptomic and proteomic study
	Feature selection and classification algorithm

	Results
	Microarray data description and preprocessing
	Identification of DEGs
	Results of proteomic study
	Pathway enrichment analysis and visualization
	Cross-validation
	Performance evaluation of AF classifier

	Discussion
	Conclusions
	Acknowledgements
	References


