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Abstract 

Objectives:  To explore the lesion outline and thermal field distribution of radiofrequency ablation (RFA) and laser 
ablation (LA) in myocardial ablation in vitro.

Materials and methods:  Twenty-four fresh porcine hearts were ablated with RFA or LA in vitro. The radiofrequency 
electrode or laser fiber and two parallel thermocouple probes were inserted into the myocardium under ultra‑
sound guidance. The output power for RFA was 20 W/s and for LA was 5 W/s, and the total thermal energies were 
1200 J, 2400 J, 3600 J, and 4800 J. The range of ablation lesions was measured, and temperature data were recorded 
simultaneously.

Results:  All coagulation zones were ellipsoidal with clear boundaries. The center of LA was carbonized more obvi‑
ously than that of RFA. With the accumulation of thermal energy and the extended time, all the ablation lesions 
induced by both RFA and LA were enlarged. By comparing the increase in thermal energy between the two groups, 
both the short-axis diameter and the volume change showed significant differences between the 1200 J and 3600 J 
groups and between the 2400 J and 4800 J groups (all P < 0.05). Both the short-axis diameter and the volume of the 
coagulation necrosis zone formed by LA were always larger than those of RFA at the same accumulated thermal 
energy. The temperatures of the two thermocouple probes increased with each energy increment. At the same accu‑
mulated energy, the temperature of LA was much higher than that of RFA at the same point. The initial temperature 
increase at 0.5 cm of LA was rapid. The temperature reached 43 °C and the accumulated energy reached 1200 J after 
approximately 4 min. After that the temperature increased at a slower rate to 70  C. For the RFA at the point of 0.5 cm, 
the initial temperature increased rapidly to 30 °C with the same accumulated energy of 1200 J after only 1 min. In the 
range of 4800 J of accumulated thermal energy, only the temperature of LA at the point of 0.5 cm exceeded 60 °C 
when the energy reached approximately 3000 J.
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Introduction
Over the past decade, invasive therapeutic options for 
hypertrophic obstructive cardiomyopathy (HOCM), 
including surgical myectomy, alcohol septal ablation 
(ASA), radiofrequency catheter ablation (RFCA), dual-
chamber pacing and implantable cardioverter defibril-
lator (ICD), have been developed to improve clinical 
symptoms and to relieve left ventricular outflow tract 
(LVOT) obstruction [1–6]. Recently, a novel therapy 
of transthoracic echocardiography–guided percuta-
neous intramyocardial septal radiofrequency abla-
tion (PIMSRA) has been investigated [7, 8]. PIMSRA 
is a percutaneous intramyocardial, non-transaortic 
and non-transcoronary operation to reduce the LVOT 
obstruction. This procedure could avoid traditional 
sternotomy and damage to the conduction system, 
which is distributed underneath the endocardium. The 
treatment can effectively improve the hemodynamics 
and symptom of patients with HOCM during 6 months 
of follow-up [7]. To protect the conduction system, the 
investigators recommended maintaining a 3  mm-safe 
margin between the outline of the ablated zone and the 
endocardium of both left and right ventricle. Although 
an ECG monitor is used to demonstrate the change in 
rhythm or configuration, it is meaningful to pre-esti-
mate the range of coagulation necrosis ablation lesions.

Currently, this procedure is performed by ablating 
the hypertrophic interventricular septum (IVS) with a 
radiofrequency needle. Radiofrequency ablation (RFA) 
is a safe and effective treatment method for tumors, 
and it can obtain a definite and stable ablation bound-
ary [9, 10]. Unlike tumor ablation, cardiac ablation is 
concerned with safety boundaries to avoid injuring 
tracts. In addition to RFA, laser ablation (LA) can also 
obtain a definite ablation boundary, and this proce-
dure is usually used in small organs such as the thyroid 
and prostate [11, 12]. Moreover, the needle of LA is 
21-gauge, which is much finer than the 17-gauge needle 
used for RFA. This difference may result in less injury 
and bleeding. Numerous trials with different treat-
ment algorithms have confirmed the clinical effective-
ness and safety of LA in solid thyroid nodules or lesions 
with variable fluid components [12–14]. Therefore, LA 
might be a potential option for cardiac ablation.

In this study, we used porcine hearts to investigate the 
lesion outline and thermal field distribution of RFA and 
LA for myocardial ablation in vitro according to different 
thermal energies and power outputs.

Materials and methods
No institutional review board approval was necessary, as 
no human subjects participated in this study. Further-
more, animal committee approval was not necessary, as 
we used an in  vitro porcine heart model. Twenty-four 
fresh room-temperature porcine hearts were offered by 
the local butcher at the same vendor. The average weight 
of the porcine hearts was 500 ± 50 g.

RFA was performed by using the Cool-tip™ radi-
ofrequency system (Valleylab, Boulder, CO, USA). This 
system consists of the following components: an RF 
generator (maximum power: 200  W, electric current: 
480  kHz), a 17-gauge internally cooled monopolar elec-
trode with a 2-cm exposed tip, a peristaltic perfusion 
pump, and a 10-cm2 grounding pad. The porcine hearts 
were immersed in saline. The grounding pad was put at 
least 30 cm away from the electrode. A mechanical pump 
was used to cool the electrode with the internal circula-
tion of sterile saline (4  °C), and the flow rate of the cir-
culation was approximately 100  mL/min. During RFA, 
the electrode was placed 3 cm into the porcine heart. The 
output power was controlled at 20 W/s, with the ablation 
times were set as 1 min, 2 min, 3 min and 4 min.

The LA equipment was EchoLaser type X4 (Esaote 
Company, Florence, Italy) with a 300 μm plane-cut optic 
fiber sheathed by a 21-gauge PTC needle. It radiated 
laser light at a wavelength of 1064 nm. The PTC needle 
was inserted into the target position under the guidance 
of ultrasound, and then the core needle was pulled out. 
The fiber was inserted through the needle sheath into the 
same position. Then the PTC needle was withdrawn for 
5 mm, leaving the tip of the fiber in direct insert into the 
tissue. LA were lunched with an output power of 5  W, 
and the gross energies were set at 1200 J, 2400 J, 3600 J 
and 4800 J.

Before ablation, ultrasonography was used to guide the 
insertion of the electrode or laser fiber. The electrode or 
laser fiber was inserted into the thickest part (2–3 cm) of 
the interventricular septum of each porcine heart. Tem-
peratures were measured throughout each ablation by 

Conclusions:  Both RFA and LA were shown to be reliable methods for myocardial ablation. The lesion outline and 
thermal field distribution of RFA and LA should be considered when performing thermal ablation in the intramyocar‑
dial septum during hypertrophic obstructive cardiomyopathy.

Keywords:  Radiofrequency ablation, Laser ablation, Thermal field distribution, Hypertrophic obstructive 
cardiomyopathy, In vitro
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using a SENDAE SD-TC02B thermal monitor (Sun-Gun 
Automation Engineer Company, Guangzhou, China). 
Two thermocouple probes were implanted at the same 
depth parallel to the needle at distances of 5  mm and 
10  mm (Fig.  1a, b). Only the thermocouple tip could 
measure the temperature that the thermocouple tip was 
monitored by using real-time ultrasound imaging to 
guarantee its position. The temperature data were col-
lected every 10 s for the entirety of each ablation.

Each post-ablation coagulation specimen was sec-
tioned along the electrode shaft. The coagulative necrosis 

zone along the needle insertion axis was considered as 
the long-axis diameter, while the short-axis diameter 
was measured perpendicular to the long-axis diameter 
(Fig.  1c). According to previous experiments, the diam-
eters of short-axis were usually symmetrical in this 
in  vitro experiment. Thus, the short-axis diameter was 
used twice for the volume calculations. The coagula-
tion volume (V) was calculated by using the formula 
for ellipsoids: V = (π × long-axis diameter × short-axis 
diameter × short-axis diameter)/6 [15]. Measurements 
were performed only on the central zone of coagulative 

Fig. 1  a Photograph shows radiofrequency ablation (triangle) in porcine heart. Two thermocouple probes (asterisk) were placed at the same depth 
parallel to the needle at distances of 5 mm and 10 mm to monitor the local tissue temperature during the procedure. b Photograph shows laser 
ablation (arrowhead) in porcine heart. Two thermocouple probes (asterisk) were placed at the same depth parallel to the needle at distances of 
5 mm and 10 mm to monitor the local tissue temperature during the procedure. c The coagulation necrosis zones of radiofrequency ablation. The 
long-axis diameter (a) and short-axis diameter (b) are shown. d The coagulation necrosis zones of laser ablation. The center of laser ablation was 
carbonized more obviously than that of radiofrequency ablation
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necrosis, which consisted of a central charring zone and a 
white coagulation zone. Two individuals (WL, JL) work-
ing in consensus measured all ablation zone. All of the 
operations described above were performed three times 
in each group.

Statistical analysis
Data analysis was performed with SPSS 22.0 software 
(Inc., Chicago, IL). The results are presented as the 
mean ± SEM (standard error of the mean). Comparisons 
between two groups were statistically analyzed using a 
two-sided Student’s t test, and statistical studies between 
multiple groups were analyzed using multiway analysis 
of variance (ANOVA). The temperature rise curves were 
plotted in Origin software (Origin Lab, version 8.5). The 
method of repeated measurement and variance analysis 
was used. All data with P values less than 0.05 indicated 
statistically significant differences.

Results
The coagulation necrosis zones in the porcine hearts 
after ablation were pale and hard. The ablation zone was 
almost ellipsoidal with a clear boundary and did not 
include the undesired extension of coagulation along 
the needle shaft. The center of LA was carbonized more 
obviously than that of RFA (Fig. 1d).

The comparison of lesion outlines between the two 
ablation modes
The size changes, including the long-axis diameter, short-
axis diameter and volume, after thermal ablation under 
different thermal energies induced by LA and RFA are 
shown in Table 1. All the long-axis diameters, short-axis 
diameters and volumes of both thermal methods were 
enlarged with increasing thermal energy.

For LA, the smallest ablation lesion was 1.3 ± 0.3 cm3 
in volume, with a long-axis diameter of 2.1 ± 0.1 cm and 
a short-axis diameter of 1.1 ± 0.1 cm at 1200 J, while the 
largest ablation lesion was 5.3 ± 0.2 cm3 in volume, with 
a long-axis diameter of 2.5 ± 0.1  cm and a short-axis 

diameter of 2.1 ± 0.1 cm at 4800 J. The long-axis diameter 
at 1200 J was 2.1 ± 0.1 cm, which was significantly differ-
ent from that of the 4800 J group (2.5 ± 0.1 cm, P < 0.05). 
The short-axis diameter changed significantly between 
1200  J (1.1 ± 0.1  cm) and 3600  J (1.9 ± 0.1  cm) and 
between 2400  J (1.5 ± 0.1  cm) and 4800  J (2.1 ± 0.1  cm) 
(all P < 0.05). The volume change was significantly differ-
ent between all the groups (all P < 0.05) (Fig. 2). For RFA, 
the smallest ablation lesion was 0.3 ± 0.0 cm3 in volume, 
with a long-axis diameter of 1.2 ± 0.1  cm and a short-
axis diameter of 0.6 ± 0.0 cm at 1200 J, while the largest 
ablation lesion was 2.2 ± 0.2 cm3 in volume, with a long-
axis diameter of 2.3 ± 0.0  cm and a short-axis diameter 
of 1.4 ± 0.1 cm at 4800 J. By comparing the increases in 
thermal energy between the two groups, the long-axis 
diameter change was statistically significant only between 
1200 and 4800 J; the short-axis diameter and the volume 
change showed significant differences between 1200 and 
3600 J and between 2400 and 4800 J (Fig. 3). At the same 
accumulated thermal energy, LA had a larger long-axis 
diameter than RFA at 1200 J and 4800 J. Both the short-
axis diameter and volume of the coagulation necrosis 
zone formed by LA were always larger than those of RFA 
at each accumulated thermal energy (Fig. 4).

Temperature measurement evaluation
The average temperature measurements of the two ther-
mocouple probes are shown in Fig.  5. The temperature 
increased with each energy increment. The temperature 
near the antenna at 0.5 cm showed a higher and greater 
change than that near the far-field region at 1.0 cm due 
to the localization of heating. In contrast, the tempera-
ture curves in the region far from the antenna were much 
smoother, since thermal conduction led to the rise in 
temperature. At the same accumulated energy, the tem-
perature of LA was much higher than that of RFA at the 
same point. Interestingly, the initial temperature increase 
of LA at 0.5  cm was rapid. The temperature reached 
43  °C at an accumulated energy of 1200 J after approxi-
mately 4 min. And after that, the temperature increased 

Table 1  The long-axis diameter, short-axis diameter and  volume change of  coagulations at  different thermal energy 
by laser ablation and radiofrequency ablation

Energy (J) LA RFA

Long-axis 
diameter (cm)

Short-axis 
diameter (cm)

Volume (cm3) Long-axis 
diameter (cm)

Short-axis 
diameter (cm)

Volume (cm3)

1200 2.1 ± 0.1 1.1 ± 0.1 1.3 ± 0.3 1.2 ± 0.1 0.6 ± 0.0 0.3 ± 0.0

2400 2.2 ± 0.1 1.5 ± 0.1 2.4 ± 0.5 2.2 ± 0.1 0.8 ± 0.1 0.8 ± 0.1

3600 2.4 ± 0.1 1.9 ± 0.1 4.2 ± 0.1 2.3 ± 0.1 1.1 ± 0.1 1.5 ± 0.1

4800 2.5 ± 0.1 2.1 ± 0.1 5.3 ± 0.2 2.3 ± 0.0 1.4 ± 0.1 2.2 ± 0.2
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at a slower rate from 43 °C to 70 °C. For the RFA at the 
point of 0.5  cm, the initial temperature rose rapidly to 
30  °C with the same accumulated energy of 1200 J after 
only 1  min, after which the temperature nearly pla-
teaued. It is worth noting that in the range of 4800  J of 

accumulated thermal energy, only the temperature of LA 
at the point of 0.5  cm exceeded 60  °C when the energy 
reached approximately 3000 J.

Fig. 2  The changes in the a long-axis diameter, b short-axis diameter 
and c volume after myocardial ablation with different laser ablative 
energies. *The results between the different energies are significantly 
different (P < 0.05)

Fig. 3  The changes in the a long-axis diameter, b short-axis diameter 
and c volume after myocardial ablation with different radiofrequency 
ablative energies. *The results between the different energies are 
significantly different (P < 0.05)
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Discussion
In this study, with increasing accumulated thermal 
energy, both the long-axis diameter and short-axis 

diameter were enlarged, especially for the short-axis 
diameter of RFA that reached 14 mm and that of LA that 
reached 21 mm, which included the standard of ablation 
for ventricular septal thickness (≥ 15  mm). The size of 
the ablation lesions formed by LA was larger than that 
formed by RFA under the same output energy, showing 
a greater efficiency accomplished by LA than by RFA in 
our settings (< 4800 J). In terms of the thermal distribu-
tion, the temperature of the far-field region was lower 
and increased more slowly compared with that of the 
central zone for both LA and RFA. Moreover, the tem-
perature of the LA group was always higher than that of 
the RFA group at the same point under the same output 
energy, which also suggested that LA might be more effi-
cient than RFA under the same energy consumption.

Minimally invasive thermal ablation of lesions has 
become common since the advent of modern guidance 
method [16]. Percutaneous thermal ablation is initially 
used for the treatment of small, unresectable tumors or 
for patients who are poor surgical candidates [17–20]. 
As technology advances and more exploration, thermal 
ablation will no longer be confined to the treatment of 
tumors but will be used in other tissues and organs as 
the lung and heart. RFA is the most widely used abla-
tion method, especially for the therapy of hepatocel-
lular carcinoma (HCC) [21]. The heating principle of 
RFA is that the radiofrequency electrode generates an 
electric field with a high-frequency alternating current. 
Frictional heating was generated when the ions in the 
tissue attempt to follow the changing directions of the 
alternating current. LA is another minimally invasive 
local-ablative technique which is less investigated and 
used compared to RFA. However, some published data 

Fig. 4  Graphs show the a long-axis diameter, b short-axis diameter 
and c volume of the coagulation zone with laser ablation and 
radiofrequency ablation at the same energy. Error bars = 95% 
confidence interval. *The results between the two ablation systems 
are significantly different (P < 0.05)

Fig. 5  Graphs show the temperature curves of the thermal 
distribution at different energies with laser ablation (black curves) and 
radiofrequency ablation (red curves)
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have shown that LA is equivalent to RFA in terms of 
both tumor control and long-term outcomes for the 
percutaneous treatment of HCC [22–24]. The principle 
of LA is based on the spontaneous emission of char-
acteristic photons by excited atoms and light energy 
produced by laser equipment from electrical energy 
acting on tissues to generate heat. The local tempera-
ture could rise to above 200  °C, which cause the local 
tissue coagulated, became necrotic, charred, or even 
vaporized. However, because the light of laser is easily 
scattered and absorbed, this modality has limited tissue 
penetration and hence the ablation areas is very small 
of approximately 1–2 cm2. Under these conditions, LA 
is typically used in the field of small organs such as thy-
roid, prostate and nerves [25–29]. Therefore, LA has 
advantages in terms of laser precision and efficiency. 
Additionally, multiple laser fibers can be used together 
on account of their single tenuous type to improve 
effectiveness and adapt to a wide range.

We compared the ablative effects of LA and RFA of 
the myocardium in  vitro. Similar results have not been 
reported in previous studies. However, there are several 
limitations in this study. First, this study used healthy 
porcine hearts as models that were different in terms 
of disease, thickness and biological structure. This may 
confine the use of single needle and single ablation, and 
the low output power was set during radiofrequency 
ablation. Second, this experiment only discussed the 
effectiveness of ablation of the myocardium in  vitro, 
and neither live animal models nor HCOM patients 
were involved. As a result, some important factors were 
ignored, such as blood perfusion, myocardial motion and 
the heat sink effect. Furthermore, we did not perform 
pathologic studies to confirm that the ablations were 
complete, and the thermal field had limitations in terms 
of identifying incomplete ablations. Therefore, the results 
of this study can provide a restricted reference for animal 
models and HOCM patients in vivo, and more intensive 
exploration should be demonstrated.

Conclusions
This study reports that the thermal ablation techniques 
RFA and LA are technically feasible and promising 
approaches for the treatment of HOCM because of their 
controlled and effective necrosis and the relatively secure 
temperature changes. We found that LA had better abla-
tion efficiency than RFA in the ablation zone range and 
resulted in temperature changes with limited thermal 
output energy. Certainly, long-term investigations and 
experiments, especially in  vivo assessments of animal 
models and HOCM patients, should be implemented.
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