
RESEARCH ARTICLE Open Access

Identifying Phenogroups in patients with
subclinical diastolic dysfunction using
unsupervised statistical learning
Yvonne E. Kaptein1,2*, Ilya Karagodin3, Hongquan Zuo4, Yu Lu4, Jun Zhang4, John S. Kaptein5 and
Jennifer L. Strande2,6

Abstract

Background: Subclinical diastolic dysfunction is a precursor for developing heart failure with preserved ejection
fraction (HFpEF); yet not all patients progress to HFpEF. Our objective was to evaluate clinical and
echocardiographic variables to identify patients who develop HFpEF.

Methods: Clinical, laboratory, and echocardiographic data were retrospectively collected for 81 patients without HF
and 81 matched patients with HFpEF at the time of first documentation of subclinical diastolic dysfunction. Density-
based clustering or hierarchical clustering to group patients was based on 65 total variables including 19
categorical and 46 numerical variables. Logistic regression analysis was conducted on the entire study population
as well as each individual cluster to identify independent predictors of HFpEF.

Results: Unsupervised clustering identified 3 subgroups which differed in gender composition, severity of cardiac
hypertrophy and aortic stenosis, NT-proBNP, percentage of patients who progressed to HFpEF, and timing of
disease progression from diastolic dysfunction to HFpEF to death. Clusters that had higher percentages of women
had progressively milder cardiac hypertrophy, less severe aortic stenosis, lower NT-proBNP, were diagnosed at an
older age with HFpEF, and survived to an older age. Independent predictors of HFpEF for the entire cohort
included diabetes, chronic kidney disease, atrial fibrillation, and diuretic use, with additional predictive variables
found for each cluster.

Conclusions: Cluster analysis can identify phenotypically distinct subgroups of patients with diastolic dysfunction.
Clusters differ in HFpEF and mortality outcome. In addition, the variables that correlate with and predict HFpEF
outcome differ among clusters.
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Background
Left ventricular (LV) diastolic dysfunction is characterized
by alterations in LV diastolic filling, and is a strong pre-
dictor of cardiovascular events including heart failure and
its subtype heart failure with preserved ejection fraction
(HFpEF) [1]. The prevalence of HFpEF has increased over
the past decades but the death rate has not changed sub-
stantially [1]. Several risk factors including age, obesity,
hypertension, diabetes mellitus, chronic kidney disease,
and coronary artery disease are implicated in the develop-
ment of diastolic dysfunction as well as HFpEF [1–3]. Im-
portantly, asymptomatic diastolic dysfunction precedes
the development of HFpEF; yet, not all patients with dia-
stolic dysfunction will progress to clinical or symptomatic
HFpEF, possibly due to the phenotypic heterogeneity of
this population. HFpEF is also a heterogeneous disease
with similar predisposing risk factors and associated co-
morbidities [2]. HFpEF suffers from lack of any standard-
ized therapies that effectively reduce mortality [2, 4–6]
and therefore, the prevention of HFpEF remains a goal.
This highlights the importance of understanding the risk
factors associated with progression from diastolic dysfunc-
tion to HFpEF, as a path towards improving prognostica-
tion of the disease, personalizing therapy, and ultimately
improving clinical outcomes, namely progression to clin-
ical HFpEF or overall mortality.
Machine learning can be used to apply computer ana-

lysis to large data sets to identify patterns and trends.
The goal of unsupervised machine learning, or cluster
analysis is to learn the relationships between variables
and uncover a hidden structure in the data set. It relies
on clustering and dimensionality reduction. Due to the
complexity of the data and heterogeneity of patients in
medicine, intuitively identifying groups with similar phe-
notypes can be difficult and therefore the ability to iden-
tify these groups using machine learning methods may
allow for more targeted diagnostics, therapeutic strat-
egies and prognostication. For example, unsupervised
machine learning has been previously used in research
to divide large heterogeneous populations of patients
into smaller unique phenogroups, including patients
with HFpEF [7, 8], patients with primary hypertension
(HTN) without heart failure [9], and mixed patient
groups with HFrEF and HFpEF combined [10, 11]. In
general, machine learning is a process that uses statis-
tical algorithms to allow computers to learn relation-
ships between objects or in these examples, patients,
based on degree of similarities or differences among any
number of categorical or quantitative variables, allowing
the learning algorithm to find structure or hidden pat-
terns in uncategorized data [12]. To our knowledge, un-
supervised learning has not previously been described in
the literature to analyze patients with asymptomatic dia-
stolic dysfunction.

Here we describe the use of unsupervised machine
learning and hierarchical clustering to identify subgroups
of patients with asymptomatic diastolic dysfunction who
have similar phenotypes. The intent was to cluster pa-
tients with similar physical and clinical characteristics
regardless of whether they progressed to HFpEF or
remained asymptomatic, following which the character-
istics of the clusters were to be examined. We identified
the features specific to each cluster and determined
those which are independently predictive of developing
HFpEF. We also evaluated the differences in phenotypes
among clusters, along with the differences between pa-
tients within each cluster who were known to progress
or not progress to clinical HFpEF. Lastly, we used sur-
vival curve analysis to identify differences in disease pro-
gression and mortality outcomes among clusters.

Methods
Study design and patient data collection
This was an Institutional Review Board approved study
conducted at the Medical College of Wisconsin and at
Froedtert Memorial Lutheran Hospital in Milwaukee,
WI. No informed consent was required. This is a
matched retrospective case-control study; subject
screening and selection was described in detail elsewhere
[13]. In brief, patients were first identified by screening
transthoracic echocardiograms (TTEs) obtained between
7/1/2003 and 7/1/2013 reporting diastolic dysfunction
and preserved ejection fraction (EF > 50%). Patients were
excluded if they had systolic dysfunction (EF < 50%),
valve abnormalities including severe aortic stenosis, se-
vere mitral regurgitation, annuloplasty, and/or biopros-
thetic valves, a heart transplant or non-diagnostic
echocardiograms.
The remaining patients were further sub-divided into

two groups: (1) those who had clinical heart failure dur-
ing the study period, and (2) those who remained in
asymptomatic diastolic dysfunction. Patients with clin-
ical heart failure were identified if their electronic health
record contained an ICD-9 diagnosis of congestive heart
failure along with clinical documentation of at least one
of the following signs or symptoms of heart failure:
shortness of breath, orthopnea, paroxysmal nocturnal
dyspnea, weight gain, or lower extremity edema. Patients
in Group 1 diagnosed with HFpEF were optimally
matched for age, gender, race, and body surface area
(BSA) with Group 2 patients who remained in asymp-
tomatic diastolic dysfunction. This ultimately yielded 77
matched pairs which were included in our study. Later,
an additional screen added 8 patients with diastolic dys-
function (half of which were known to develop HFpEF)
to the study population. It was impractical to extract
data for all patients initially screened for diastolic
dysfunction.
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Our study population therefore contained 162 patients,
all of whom had TTE evidence of diastolic dysfunction
and normal EF, but only half of whom progressed to de-
velop clinical HFpEF. TTE reports were retrospectively
screened to find the earliest documentation of diastolic
dysfunction prior to any diagnosis of HFpEF. Numerical
data from this earliest TTE were utilized, including sys-
tolic and diastolic blood pressure (SBP/DBP), and several
measured and calculated echocardiographic parameters
including degree of diastolic dysfunction. In addition,
numerous other qualitative and quantitative demo-
graphic and clinical data points were collected for each
patient for use in the unsupervised learning cluster ana-
lysis. Supplemental Table 1 contains the list of variables
used for clustering analysis and all authors have full ac-
cess to this data and take responsibility for its integrity
and the data analysis.
While gender, race, body surface area, and age of dia-

stolic dysfunction may play a role in progression to
HFpEF, these are factors that cannot be modified. This
study was intended to analyze variable factors that could
potentially be treated or controlled, and whether these
factors might differ for phenotypically different types of
patients. Matching of patients among the two cohorts
was done in order to discern the effect, if any, of variable
factors.
For subsequent analysis of mortality and survival out-

comes in all 162 patients, the cutoff date of 5/5/2018
was used to determine which patients were alive or de-
ceased at the time of data analysis. Patients were consid-
ered “deceased” if it was indicated in the chart that the
patient had died, if there was a date of death listed, or if
the most recent notes in the electronic health record in-
dicated a date of confirmed death. Otherwise, the most
recent notes were scanned for mention of a face-to-face
encounter with the patient, or a telephone conversation
with the patient or family member discussing further
plans of care, and this date was used as a “last known
alive” date for survival analysis.

Unsupervised hierarchical clustering of patients
Unsupervised machine learning was used to group pa-
tients with asymptomatic diastolic dysfunction into clus-
ters with similar physical and clinical characteristics
without regard to either progression to HFpEF or mor-
tality outcomes. One patient with HFpEF was excluded
from clustering analysis due to significant outliers (left
ventricular outflow tract (LVOT) velocity max, LVOT
velocity mean, LVOT max gradient, and LVOT mean
gradient) which were 8 standard deviations larger than
the mean. We used either density-based clustering or
hierarchical clustering to group patients based on 65
total variables including 19 categorical and 46 numerical
variables (Supplemental Table 1). Heart failure and

survival data were excluded from the clustering analysis.
Each categorical variable was converted into a numerical
one through one-hot encoding. If the categorical data
contained multiple categories (i.e. Chronic kidney dis-
ease stage 1–5 and degree of diastolic dysfunction: mild,
moderate or severe) then these were treated as dichot-
omous data (yes or no) and then converted into numer-
ical data using one-hot encoding. Missing data points
were estimated and imputed using a singular value de-
composition technique for data analysis [14]. The
squared Euclidean distances between each pair of pa-
tients were calculated and put into a distance matrix,
which served as the input into the hierarchical clustering
algorithm. Two-, three-, four-, and five-cluster determi-
nations were achieved with each patient being assigned
to one of the clusters. To determine the optimal number
of clusters or phenogroups we performed a chi-square
analysis to look for significant differences between clus-
ters in each row. The resultant clusters were then statis-
tically analyzed for any differences in their variable
composition or phenotype, and heart failure and mortal-
ity outcomes. The purity of the clustering distribution
was calculated by determining the percentage of total
patients whose HFpEF outcome agreed with the majority
of patients in the cluster to which the patient was
assigned. Purity was calculated as:

purity ¼ 1
N

XK

k¼1

nk

where N is the total number of patients, k represents the
kth cluster, nk is the number patients in the kth cluster
that has the majority status in terms of presence or ab-
sence of heart failure [15].

Statistical analysis of data
Before clustering, logistic regression analysis was con-
ducted on the entire population to distinguish which
variables were predictors of HFpEF outcome. Univariate
logistic regression was used in all cases as a first deter-
mination of which variables were significant predictors
of progression. Those variables which were significant
predictors on their own were then progressively added
to the prediction. Whenever there was collinearity, the
variable with the most significance was retained and the
one with the lesser significance was discarded. The vari-
ables remaining after this process were all independent
of each other and were all statistically significant predic-
tors. With only a limited size dataset, only a limited
number of variables could be expected to be found
significant.
Two-fold cross validation of the predictive modeling

was performed. Each cohort was divided into two halves
by assigning alternating members of the cohort to either
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a discovery group or a validation group. Since sample
size was small, variables for the cross validation study
were assumed to be those found for the entire cohort.
Coefficients for the logistic regressions were recalculated
for the discovery group. Predictions were then made as
to whether each patient of the discovery cohort and of
the validation cohort was predicted to remain asymp-
tomatic or progress to HFpEF. Predictions for the valid-
ation group were compared to the predictions for the
discovery group. The process was repeated using the
second half as the discovery group and the first half as
the validation group.
Once clusters were identified, we examined the pheno-

typic variables within each group. Continuous data were
presented as mean +/− 95% confidence interval. Cat-
egorical variables were presented as a count or percent-
age. We compared differences between groups using
chi-square test for categorical variables and analysis of
variance (ANOVA) for continuous variables. Likewise,
the percentage of patients who remained asymptomatic
vs. those who developed HFpEF were also compared
among groups using chi-square test. If ANOVA showed
statistically significant differences in one variable among
several groups, then the Newman-Keuls multiple com-
parisons test or Duncan’s multiple comparisons test was
used when appropriate to find which cluster contained
the variable that was significantly different.
Each cluster contained patients that remained asymp-

tomatic or developed HFpEF. We compared differences
between these two subgroups within each cluster by
using chi-square test for categorical variables and
ANOVA for continuous variables. Logistic regression
was used to analyze the data for independent predictors
of HFpEF for each cluster.
Key prognostic factors such as age of diastolic dysfunc-

tion diagnosis, time interval between diagnosis of dia-
stolic dysfunction and HFpEF, age of HFpEF diagnosis,
time interval between diagnosis of HFpEF until death
due to all causes, and age at death were analyzed by
Kaplan-Meier survival curves to identify differences in
disease progression within and among clusters. For sur-
vival analysis, actual date of an event or last known date
without the event occurring were recorded (right cen-
sored data) using the cutoff date of 5/5/2018.
Statistics were performed using Microsoft Office Excel

2010 or Epistat version 5.3 (Epistat Services, Richardson
TX) and graphs were generated using SigmaPlot version
13, Systat Software Inc., San Jose, CA.

Results
Characteristics of the subclinical diastolic dysfunction
study population
We retrospectively enrolled 162 patients for our pheno-
grouping analysis. The patients were matched given that

half the patients were known to progress to HFpEF. The
goal was to identify phenogroups of patients with sub-
clinical diastolic dysfunction and to determine distin-
guishing characteristics that are predictive of
progression to HFpEF.
Demographic characteristics of the study cohort are

shown in Table 1, which compares patients who
remained in asymptomatic diastolic dysfunction to those
patients who progressed to HFpEF within the time
period of the study. Overall, patients were diagnosed
with subclinical diastolic dysfunction at age 70 ± 10 years
and of these, those patients who were known to develop
HFpEF were diagnosed at age 74 ± 10 years. The cohort
contained 67.9% female, and 77.8% white patients. Pa-
tients who progressed to HFpEF were more likely to
have a history of diabetes mellitus (DM), chronic kidney
disease (CKD), and atrial fibrillation (Afib), as well as the
use of digoxin and diuretics. In contrast, the use of al-
dosterone antagonists was more prevalent in the patient
cohort who remained in asymptomatic diastolic dysfunc-
tion. The N-terminal pro hormone BNP (NT-proBNP)
levels and degree of diastolic dysfunction severity also
differed between the cohort whoremained in asymptom-
atic diastolic dysfunction and the cohort who progressed
to HFpEF; the cohort who progressed to HFpEF had a
higher average NT-proBNP but contained more patients
with mild diastolic dysfunction.

Risk predictors of developing HFpEF in patients with
subclinical diastolic dysfunction
For the entire 162 patient cohort, four categorical vari-
ables (history of DM, CKD, AFib, and diuretic use) were
found to be independent and statistically significant (p <
0.05) positive predictors of development of clinical
HFpEF while adjusting for other factors. Using logistic
regression, the probability (P) of a patient in our popula-
tion developing heart failure, based on the presence or
absence of these four factors while adjusting for other
factors is:

P¼ 1

1þe 1:94 − 0 or 1:14ð ÞDM − 0 or 1:37ð ÞCKD − 0 or 1:08ð ÞAFib − 0 or 1:39ð ÞDiureticð Þ

Coefficients for category variables are interpreted as 0
if the patient has a negative history, or the indicated
value in the above equation if the patient has a positive
history. We have complete data for these four variables
in 151 patients and these patients have an incidence of
HFpEF of 53.0%. Therefore, a prediction probability (P)
greater than 53.0% predicts the development of HFpEF,
and a P less than this predicts the patients will remain
asymptomatic. The sensitivity and specificity for this
prediction was 74 and 79%, respectively. The presence of
any one of these four variables increased the odds of de-
veloping HFpEF by 3–4-fold, and the presence of all four
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Table 1 Population Demographics

Patient Characteristics Subclinical Outcomes

Diastolic Dysfunction
Total Cohort
(n = 162)

Subclinical
Group 1
(n = 81)

HFpEF
Group 2
(n = 81)

p-value*
Group 1 vs.
Group 2

Age at diagnosis of Diastolic
Dysfunction

69.6 ± 10.1 68.8 ± 9.9 70.5 ± 10.3 0.289

Gender (% female) 67.9% 67.9% 67.9% 1.000

Race (% White, remainder Black) 77.8% 77.8% 77.8% 1.000

Weight (lb) 194.9 ± 59.3 193.5 ± 53.5 196.4 ± 64.9 0.757

Height (in) 65.6 ± 4.2 65.6 ± 4.1 65.6 ± 4.4 0.985

Body surface area (m2) 1.95 ± 0.28 1.95 ± 0.27 1.95 ± 0.30 0.987

Interval until diagnosis of HFpEF (years) N/A N/A 5.4 ± 2.8

Age at diagnosis of HFpEF N/A N/A 74.0 ± 10.5

Age at death OR last known alive 76.8 ± 10.3 76.0 ± 9.9 77.6 ± 10.7 0.319

Mortality, n (%) 66 (40.1) 26 (32.1) 40 (49.4) 0.038

NT-Pro B-type natriuretic peptide (pg/mL) (n) 8178 ± 14,346 (72) 2148 ± 3026 (21) 10,661 ± 16,341 (51) 0.021

Diastolic Dysfunction Severity (n) (n = 162) (n = 81) (n = 81)

Mild: E/A < 1, average e’≤ 9 cm/s 28 (17.3%) 7 (8.6%) ↓ 21 (25.9%) ↑ 0.011

Moderate: E/A≥ 1, average e’≤ 9 cm/s 125 (77.2%) 68 (84.0%) 57 (70.4%)

Severe: E/A≥ 2, average e’≤ 9 cm/s 9 (5.6%) 6 (7.4%) ↑ 3 (3.7%) ↓

Degree of cardiac hypertrophy (n) (n = 152) (n = 77) (n = 75)

None 90 (59.2%) 51 (66.2%) ↑ 39 (52.0%) ↓ 0.053

Mild 26 (17.1%) 15 (19.5%) 11 (14.7%)

Moderate 14 (9.2%) 4 (5.2%) ↓ 10 (13.3%) ↑

Severe 22 (14.5%) 7 (9.1%) ↓ 15 (20.0%) ↑

Chronic Kidney Disease Stage (n) (n = 147) (n = 70) (n = 77)

Glomerular filtration rate (GFR) 0.100

Stage 1–2 GFR > 60 mL/min/1.73m2) 63 (42.9%) 34 (48.6%) 29 (37.7%)

Stage 3a (GFR 45–59 mL/min/1.73m2) 32 (21.8%) 18 (25.7%) 14 (18.2%)

Stage 3b (GFR 30–45mL/min/1.73m2) 26 (17.7%) 8 (11.4%) 18 (23.4%)

Stage 4 (GFR 15–30 mL/min/1.73m2) 11 (7.5%) 6 (8.6%) 5 (6.5%)

Stage 5a (GFR < 15, mL/min/1.73m2) 15 (10.2%) 4 (5.7%) 11 (14.3%)

History of co-morbidities, (n) n = 151 to 157 n = 75 to 76 n = 76 to 81

Hypertension 81.5% 76.3% 86.4% 0.154

Diabetes 42.0% 27.6% 55.6% < 0.001

Chronic kidney disease 44.2% 25% 62.5% < 0.001

Alcohol use 53.6% 58.7% 48.7% 0.286

Tobacco use 56.1% 57.9% 54.4% 0.785

Coronary artery disease 51.3% 42.7% 59.3% 0.056

Cerebral vertebral accident/
transient ischemic attack

18.1% 13.3% 22.5% 0.203

Atrial fibrillation 29.3% 19.7% 38.3% 0.018

Medication Use by Class (n) n = 154 to 155 n = 73 to 74 n = 81

Beta blockers 68.2% 63.0% 72.8% 0.257

Calcium channel blockers 27.3% 28.8% 25.9% 0.831

ACE inhibitors 23.4% 17.8% 28.4% 0.174

Angiotensin blockers 18.2% 15.1% 21.0% 0.458
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variables increased the odds of developing HFpEF by 154-
fold relative to the absence of all these factors in patients
with underlying diastolic dysfunction. Therefore, if an indi-
vidual patient in our population had 2 or more of these fac-
tors, then P would be > 53% and this patient would be
predicted to be in the group that progressed to heart failure.

Hierarchical clustering of patients with subclinical
diastolic dysfunction into Phenogroups
After identifying the characteristics that predict the devel-
opment of HFpEF in our cohort of patients with asymp-
tomatic diastolic dysfunction, we then used unsupervised
clustering to subdivide these patients into smaller groups
with similar phenotypes. The goal was to examine the rela-
tionships between variables that group patients with similar
phenotypes and which would then predict risk of

developing HFpEF. Using the 65 variables (Supplemental
Table 1) the 162 patients were subdivided using either
hierarchical-based or density-based clustering analysis into
various permutations of 2, 3, 4, and 5 groups, all with vary-
ing percentages of patients who developed HFpEF. With an
increasing number of defined clusters, the larger clusters
were effectively subdivided into smaller groups. Since there
are no definitive criteria for determining the ideal number
of clusters, we compared the percentages of patients in each
cluster who developed clinical HFpEF, as a method of
screening which clusters may have distinct phenotypes. We
found the largest intergroup difference in proportion of pa-
tients that developed heart failure with the hierarchical 3-
cluster grouping, which contained a high frequency HF
group (71%), an intermediate frequency HF group (59%),
and a low frequency HF group (42%) (p = 0.058) (Fig. 1).

Table 1 Population Demographics (Continued)

Patient Characteristics Subclinical Outcomes

Diastolic Dysfunction
Total Cohort
(n = 162)

Subclinical
Group 1
(n = 81)

HFpEF
Group 2
(n = 81)

p-value*
Group 1 vs.
Group 2

Digoxin 5.8% 0.0% 11.1% 0.009

Diuretics 52.6% 35.6% 67.9% < 0.001

Aldosterone antagonist 11.7% 19.2% 4.9% 0.013

n = total number of patients in each cohort or n = number of patients with available data
*categorical values are presented as counts and percentages; continuous variables are presented as mean ± 95% confidence interval
↑ indicates higher than expected by chance
↓ indicates lower than expected by chance

Fig. 1 Diagram illustrating hierarchical clustering into 2, 3, 4 or 5 clusters. The original population of 161 asymptomatic diastolic dysfunction
patients was repeatedly subdivided into smaller clusters based on phenotypic similarities with numbers in bold indicating the number of patients
assigned to each cluster. Numbers in parentheses indicate the percentage of patients within the clusters who progress from diastolic dysfunction
to HFpEF. Chi-squared p values indicate the probability of whether the frequency of HFpEF is the same among the clusters
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This grouping was chosen for further statistical analysis for
the following reasons: [1] it contained a high frequency
HFpEF group and a low frequency HFpEF group with the
fewest number of clusters, [2] subdivision into further
groups yielded non-significant differences in HF frequency
among the clusters, [3] division into four clusters did not
yield groups with higher or lower frequency of HF (only
groups with intermediate frequency of HF), and [4]
simplicity of analysis: fewer clusters would be more
ideal for extracting statistically relevant conclusions
due to sample size. Cluster purity for 3 hierarchical
clusters was found to be 59%.

Comparison of characteristics among phenogroups
Hierarchical clustering yielded three groups of patients
with distinct phenotypic differences: Cluster A (n = 7);
Cluster B (n = 59); and Cluster C (n = 95). The differ-
ences between these clusters are shown in Table 2. Vari-
ables which showed statistical differences (p < 0.05) are
shown as well as those which approach significance (p <
0.10). When there was a difference among clusters, sec-
ondary analysis was used to determine which clusters
differed from each other.
Cluster A (n = 7) had the highest frequency of patients

with subclinical diastolic dysfunction who progressed to
HFpEF (71.4%) and the lowest percentage of females
(42.9%). This cluster was characterized as having severe
cardiac hypertrophy and moderate aortic stenosis. All
the patients in this group had some degree of cardiac
hypertrophy (mild, moderate, or severe), with signifi-
cantly more patients having severe cardiac hypertrophy
than expected. In addition, Cluster A patients tended to
have the highest NT-proBNP and the highest LV systolic
function as determined by ejection fraction, fractional
shortening, and stroke volumes when compared to the
other groups. Interpretation of results for Cluster A may
be unreliable due to the small size of this cluster and are
presented for comparative purposes only.
Cluster B (n = 59) had an intermediate frequency of

patients with diastolic dysfunction who progressed to
HFpEF at 59.3%. In this group 52.5% were female, and
47.5% were male. These patients tended to be taller,
heavier, and with the largest body surface area (p < 0.10
for each). They had mild to moderate cardiac hyper-
trophy and mild aortic stenosis. 58.9% of patients had
some degree of cardiac hypertrophy, with significantly
more patients having severe cardiac hypertrophy and
fewer patients with no cardiac hypertrophy than ex-
pected. This cluster averaged mid-range NT-proBNP
levels and had more patients with severe CKD.
Cluster C (n = 95) had the lowest frequency of patients

with diastolic dysfunction that developed HFpEF (42.1%)
and was comprised mostly of females (78.9%) who
tended to be physically smaller than those patients in

Cluster B based on height, weight, and BSA (p < 0.10 for
each). This group, on average, had neither cardiac hyper-
trophy nor aortic stenosis. Of these patients, only 25%
had some degree of cardiac hypertrophy, with fewer pa-
tients than expected having severe cardiac hypertrophy.
NT-proBNP levels were the lowest in this group and pa-
tients overall had milder stages of CKD. This group still
had preserved LV systolic function but closer to the
lower limits of normal based on fractional shortening,
LV volumes and stroke volumes.

Intracluster analysis of patients who develop HFpEF vs.
those who remain in asymptomatic diastolic dysfunction
Each of the 3 clusters contained patients who developed
HFpEF and those who remained asymptomatic. Therefore,
we analyzed which variables significantly differed between
outcomes within each cluster (Table 3). Some variables dis-
tinguish those who remained asymptomatic from those who
progressed to HFpEF in only one of the clusters whereas
other factors distinguish those who remained asymptomatic
from those who progressed in multiple clusters.
Within cluster A, decreased aortic distensibility was seen

in the group that progressed to HFpEF. In patients within
cluster B, chronic kidney disease, diabetes and use of beta
blockers and diuretics were seen in the group that devel-
oped HFpEF. These patients also had lower values for
LVOT max gradient, and lower velocities and gradients
across the aortic valves as well as decreased aortic distensi-
bility. They had increased LV internal dimension, a higher
pulse pressure, increased arterial stiffness, and increased
arterial elastance. Patients in cluster B who remained
asymptomatic were more likely to be taking aldosterone
antagonists. Patients within cluster C who developed HFpEF
were more likely to have a history of chronic kidney disease,
coronary artery disease, atrial fibrillation, digoxin and di-
uretics use. They also were more likely to have echocardio-
graphic parameters consistent with increased systolic LV
posterior wall thickness (LVPWs) and decreased LV systolic
and diastolic volumes (LVESV and ESVI, and LVEDV and
EDVI) along with lower diastolic blood pressure.
Within each cluster, logistic regression was used to

identify which factors were significant and independent
predictors of those who remain in asymptomatic dia-
stolic dysfunction and those who progressed to HFpEF.
There were too few patients in Cluster A to determine

variables which were significant predictors of HFpEF via
logistic regression. In Cluster B, diabetes, chronic kidney
disease, diuretics use, aortic valve (Ao V2) max gradient
(in mmHg), and diastolic wall strain (as fraction) were
found to be independent predictors of progression to
HFpEF while adjusting for other factors, (SN/SP 76.5/
71.4%, at cutoff of P = 61.8% representing HFpEF fre-
quency for the 55 of 59 patients with complete data for
these variables).

Kaptein et al. BMC Cardiovascular Disorders          (2020) 20:367 Page 7 of 15



Table 2 Phenotypic Comparisons Among Clusters
Cluster A
(n = 7)

Cluster B
(n = 59)

Cluster C
(n = 95)

P value

HFpEF % (n) 71.4% (7) 59.3% (59) 42.1% (95) 0.058

Gender Male/Female (n) 4 / 3 (7) 28↑ / 31↓(59) 20↓ / 75↑ (95) 0.001

Chronic Kidney Disease (n) (5) (50) (91) 0.031

Stage 1–2 0 ↓ 18 44

Stage 3a 1 8 23

Stage 3b 3 ↑ 10 13

Stage 4 1 5 5

Stage 5a 0 9 ↑ 6

NT-Pro B-type natriuretic peptide, pg/ml (n) 22,211 ± 63,387 (3) 13,816 ± 7801 (26) 3850 ± 2027 (42) 0.035§

Echocardiography
Two-Dimensional Measurements

LV posterior wall in diastole, cm (n) 1.37 ± 0.38 (7) 1.27 ± 0.06 (59) 1.06 ± 0.04 (95) < 0.001*

LV posterior wall in systole, cm (n) 2.00 ± 0.48 (7) 1.91 ± 0.09 (58) 1.61 ± 0.05 (89) < 0.001*

Ventricular septal wall diastole, cm (n) 1.44 ± 0.35 (7) 1.28 ± 0.06 (59) 1.1 ± 0.04 (95) < 0.001*

LV mass, g (n) 276.09 ± 104.71 (7) 236.22 ± 18.15 (56) 162.75 ± 8.21 (89) < 0.001*

LV mass index, g/m2 (n) 142.97 ± 44.83 (7) 114.72 ± 8.89 (56) 86.87 ± 4.07 (89) < 0.001†

Cardiac Hypertrophy Severity (n) (7) (56) (89) < 0.001

None (count, %) 0 0.0% ↓ 23 41.1% ↓ 67 75.3% ↑

Mild (count, %) 3 42.9% 9 16.1% 14 15.7%

Moderate (count, %) 1 14.3% 8 14.3% 5 5.6%

Severe (count, %) 3 42.9% ↑ 16 28.6% ↑ 3 3.4% ↓

Fractional shortening, % (n) 41.44 ± 11.63 (7) 34.34 ± 2.77 (57) 33.33 ± 1.83 (93) 0.027‡

LV ejection fraction, % (n) 65.6 ± 8.08 (6) 60.23 ± 1.9 (49) 60.68 ± 1.18 (77) 0.024||

LV end-diastolic volume, mL (n) 133.09 ± 48.09 (6) 97.77 ± 10.17 (50) 75.41 ± 5.19 (81) < 0.001†

End-diastolic volume index, mL/m2 (n) 70.35 ± 18.22 (6) 47.26 ± 4.61 (50) 40.23 ± 2.45 (81) < 0.001†

LV end-systolic volume, mL (n) 45.79 ± 23.32 (7) 40 ± 4.46 (49) 29.94 ± 2.41 (79) 0.003*

End-systolic volume index, mL/m2 (n) 23.75 ± 10.06 (7) 19.30 ± 1.94 (49) 15.93 ± 1.14 (79) 0.001 *

Relative Wall thickness (n) 0.60 ± 0.19 (7) 0.55 ± 0.04 (58) 0.49 ± 0.02 (95) 0.080

Left atrium linear dimension, cm (n) 4.24 ± 0.9 (7) 4.24 ± 0.16 (59) 3.80 ± 0.11 (94) 0.044 #

Doppler Measurements

Mitral peak E velocity, cm/s (n) 118.02 ± 17.42 (7) 111.79 ± 8.29 (56) 98.4 ± 4.8 (95) 0.081

Mitral peak A velocity, cm/s (n) 102.83 ± 40.87 (6) 89.7 ± 9.51 (55) 78.75 ± 4.58 (94) 0.064

Stroke volume LVOT, mL (n) 97.19 ± 35.38 (7) 83.97 ± 5.34 (28) 72.05 ± 5.73 (35) 0.003*

Stoke volume index LVOT, mL/m2 (n) 52.56 ± 20.84 (7) 41.61 ± 3.24 (26) 37.87 ± 3.23 (35) 0.002**

LVOT velocity max, cm/s (n) 137.59 ± 37.81 (7) 114.64 ± 5.67 (59) 103.51 ± 3.43 (94) < 0.001†

LVOT velocity mean, cm/s (n) 95.76 ± 25.68 (7) 78.75 ± 3.96 (59) 70.24 ± 2.22 (93) < 0.001†

LVOT max gradient, mmHg (n) 8.15 ± 3.83 (7) 5.53 ± 0.53 (57) 4.39 ± 0.29 (87) < 0.001†

LVOT mean gradient, mmHg (n) 4.39 ± 1.91 (7) 2.93 ± 0.28 (57) 2.28 ± 0.14 (87) < 0.001†

Aortic valve velocity max, cm/s (n) 364.35 ± 58.11 (7) 215.16 ± 16.83 (59) 174.47 ± 8.48 (94) < 0.001†

Aortic valve velocity mean, cm/s (n) 243.57 ± 48.05 (7) 149.42 ± 12.01 (59) 118.26 ± 5.39 (93) < 0.001†

Aortic valve max gradient, mmHg (n) 55.99 ± 18.79 (7) 20.17 ± 3.06 (59) 12.97 ± 1.26 (93) < 0.001†

Aortic valve mean gradient, mmHg (n) 28.18 ± 10.8 (7) 10.9 ± 1.71 (59) 6.63 ± 0.61 (93) < 0.001†

Categorical values are presented as counts and percentages; continuous variables are presented as mean ± 95% confidence interval. LV left ventricle, LVOT LV
outflow tract
n = total number of patients in each cohort or n = number of patients with available data
↑ or ↓indicates higher or lower than expected by chance
*Clusters A & B differ from Cluster C (Newman-Keuls/Duncan’s)
† All Clusters differ from each other (Newman-Keuls)
‡ Only Cluster A differs from Cluster C (Duncan’s)
|| Only Cluster A differs from Cluster B (Duncan’s)
# ANOVA is significant but multiple comparisons (Newman-Keuls and Duncan’s) show all clusters overlap each other
** Clusters B & C differ from Cluster A (Newman-Keuls)
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Table 3 Differences in variables between the two outcomes of developing HFpEF versus remaining asymptomatic within each
cluster

Cluster A

Subclinical DD (n = 2) HFpEF (n = 5) p value*

Aortic distensibility 0.00293 ± 0.00773 (n = 2) 0.00103 ± 0.00062 (n = 4) 0.016

Cluster B

Subclinical DD (n = 24) HFpEF (n = 35) p value*

Co-morbidities

Chronic kidney disease|| 27% (n = 22) 69% (n = 35) 0.006

Diabetes 27% (n = 22) 66% (n = 35) 0.011

Medication Use by Class

Aldosterone antagonists 29% (n = 21) 6% (n = 35) 0.048

Beta blockers 48% (n = 21) 80% (n = 35) 0.026

Diuretics|| 29% (n = 21) 60% (n = 35) 0.045

Echocardiographic Parameters

LV Internal dimension in systolic (cm) 2.84 ± 0.28 (n = 23) 3.23 ± 0.23 (n = 35) 0.036

LV Outflow Tract max gradient (mmHg) 5.8 ± 0.86 (n = 23) 5.34 ± 0.69 (n = 34) 0.049

Aortic Valve velocity max (cm/sec) 235.82 ± 31.84 (n = 24) 201 ± 18.04 (n = 35) 0.041

Aortic Valve velocity mean (cm/sec) 163.64 ± 22.82 (n = 24) 139.68 ± 12.89 (n = 35) 0.049

Aortic Valve max gradient (mmHg) 24.43 ± 5.98 (n = 24) 17.24 ± 3.03 (n = 35) 0.020

Aortic Valve mean gradient (mmHg) 13.22 ± 3.39 (n = 24) 9.32 ± 1.67 (n = 35) 0.024

Vascular parameters

Pulse pressure (mmHg) 65.57 ± 6.49 (n = 14) 82.79 ± 9.87 (n = 18) 0.004

Arterial stiffness (mmHg/mL/m2) 1.61 ± 0.3 (n = 11) 2.24 ± 0.42 (n = 14) 0.013

Arterial elastance (mmHg/mL) 1.47 ± 0.21 (n = 11) 1.87 ± 0.28 (n = 14) 0.021

Aortic distensibility (1/mmHg) 0.00291 ± 0.00088 (n = 14) 0.00189 ± 0.00059 (n = 18) 0.047

Cluster C

Subclinical DD (n = 55) HFpEF (n = 40) p value*

Co-morbidities

Atrial fibrillation 19% (n = 52) 45% (n = 40) 0.015

Chronic kidney disease|| 25% (n = 52) 55% (n = 40) 0.007

Coronary artery disease 40% (n = 52) 65% (n = 40) 0.033

Medication use

Digoxin 0% (n = 51) 13% (n = 40) 0.033

Diuretics|| 38% (n = 50) 73%(n = 40) 0.002

Echocardiographic Parameters

LV Posterior Wall in Systole (cm) 1.56 ± 0.06 (n = 50) 1.67 ± 0.1 (n = 39) 0.041

LV End-diastolic volume (mL) 80.37 ± 7.41 (n = 48) 68.2 ± 6.47 (n = 33) 0.021

End-diastolic volume index (mL/m2) 42.78 ± 3.44 (n = 48) 36.52 ± 3.14 (n = 33) 0.012

LV End-systolic volume (mL) 32.12 ± 3.37 (n = 48) 26.56 ± 3.08 (n = 31) 0.024

End-systolic volume index (mL/m2) 17.06 ± 1.57 (n = 48) 14.19 ± 1.47 (n = 31) 0.013

Vascular parameters

Diastolic blood pressure (mmHg) 75.85 ± 3.37 (n = 33) 68.82 ± 6.34 (n = 17) 0.030

Only variables which differed between the subclinical diastolic dysfunction (DD) group and group that progressed to HFpEF are shown
Categorical values are presented as counts and percentages; continuous variables are presented as mean ± 95% confidence interval; *p value = asymptomatic vs.
HFpEF outcome
n = total number of patients in each cohort or n = number of patients with available data; || Chronic kidney disease and diuretics differ between Subclinical DD
and HFpEF groups in more than one cluster
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In Cluster C, independent predictors of progression to
HFpEF were found to be chronic kidney disease, di-
uretics use, age at diagnosis of diastolic dysfunction, and
indexed end-systolic volume (ESVI) while adjusting for
other factors; (SN/SP = 80.6/77.3%, at cutoff of P = 41.3%
representing HFpEF frequency for the 75 of 95 patients
with complete data for these variables).

P¼ 1

1 þ e 3:12 − 0 or 1:23ð ÞCKD − 0 or 1:79ð ÞDiuretic − 0:06�Ageþ0:17�ESVIð Þ

Two-fold cross validation of the HFpEF outcome
predictive modeling (supplementary table 2)
All predictions for HFpEF outcome, based on a discov-
ery cohort and then applied to both the discovery and
validation cohorts, were greater than a random outcome
of 50%. In general, the predictions for the discovery co-
horts were slightly higher than the predictions for the
validation cohorts. The lowest predictions were found
when optimum predictive parameters for cluster B were
applied to cluster C and vice versa. Within the same
population (entire group, cluster B or cluster C) the dis-
covery cohort can reasonably predict HFpEF outcome
for the validation cohort. However, using cluster B
population to predict cluster C population (or vice versa)
yields poorer predictions. This indicates that the predic-
tions should be used for populations with similar charac-
teristics to that used for deriving the predictions.

Kaplan-Meier estimates of events
Kaplan-Meier analysis was performed to compare the
clusters for different time to events. When comparing
among the three clusters, differences were found and are
shown in Fig. 2. The small sample size of Cluster A may
limit the significance of the findings from this cluster. No
significant within-cluster differences were found when
stratified by gender, presence or absence of LVH, or for
remaining asymptomatic vs. progression to HFpEF.
Patients in Clusters A, B, and C developed diastolic

dysfunction at similar ages (Cluster A: median age 71.6
years, Cluster B: median age 67.9 years, and Cluster C:
median age 72.9 years; Cluster B vs. C, p = 0.5712). There
were no differences in age of diastolic dysfunction diag-
nosis when stratifying each cluster by gender, by pres-
ence of LVH, or by HFpEF outcome (data not shown).
The three clusters progressed from diastolic dysfunction

to HFpEF at different rates (Fig. 2, A1). Cluster A pro-
gressed to HFpEF the fastest (median 1.7 years), Cluster
B progressed at an intermediate rate (median 5.3 years),
and Cluster C progressed the slowest (median 9.4 years;
Cluster B vs. C, p = 0.0035). The same trend was seen
when the patients from each cluster were stratified by
gender. Females in Cluster B develop HFpEF in a statis-
tically shorter timeframe than females in Cluster C
(Fig. 2, B1) whereas the males in Clusters B and C show
no statistical difference in time interval of developing
HFpEF (Fig. 2, C1).
All patients in Cluster A had some degree of LVH,

thus comparison among the clusters based on the ab-
sence or presence of LVH (Fig. 2, D and E) is applicable
only to Clusters B and C. Patients in clusters B devel-
oped HFpEF at the same rate whether or not they had
LVH. Only those without LVH showed a difference be-
tween clusters B and C (Fig. 2, D1 and E1). When the
patients who are known to develop HFpEF are separately
analyzed for the time interval of progressing from
asymptomatic diastolic dysfunction to HFpEF, there is
no significant differences whether they are in Cluster A,
B or C (Fig. 2, F1 and G1).
Clusters also differed in age of diagnosis of HFpEF

(Fig. 2, A2). Cluster A developed HFpEF at the youngest
age (median age 73.9 years), Cluster B at an intermediate
age (median age 78.6 years), and Cluster C the oldest
(median age 86.3 years; Cluster B vs. C, p = 0.0033).
Figure 2, B2 shows statistically significant differences
between females in Cluster B vs. Cluster C which were
not seen in the male cohort (Fig. 2, C2). Patients without
LVH differed in age of HFpEF diagnosis depending on
whether they were in Cluster B or Cluster C. This
contrasts with the patients who had LVH (Fig. 2, E2)
who had a non-significant median difference in age when
diagnosed with HFpEF. In general, when considering only
those who progress to HFpEF, the age at HFpEF diagnosis
does not differ significantly between the three clusters
(Fig. 2, F2). None of the patients with diastolic dysfunc-
tion who remained asymptomatic throughout the duration
of the study developed HFpEF and Fig. 2, G2.
The three clusters differed significantly in age at death

(Fig. 2, A4). Patients in Cluster A died at the youngest
age (median age 78.5 years), Cluster B at an intermediate
age (median age 84.3 years), and cluster C at the oldest
age (median age 88.2 years; Cluster B vs. C, p = 0.0524).
When stratifying by gender, (Fig. 2, B4 and C4), females

P¼ 1

1þe 4:44 − 0 or 2:30ð ÞDM − 0 or 2:30ð ÞCKD − 0 or 2:28ð ÞDiureticþ0:11�Ao V2 max gradient − 13:29�Diastolic wall strainð Þ
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Fig. 2 Summary of significant Kaplan-Meier differences among Clusters. Kaplan-Meier estimates for the (1) time (years) from the initial diagnosis
of subclinical diastolic dysfunction (DD) to HFpEF (left column), (2) age of HFpEF diagnosis, (3) time (years) from the development of HFpEF to
death from all causes, and (4) age of death (right column). Each graph shows comparisons among the three Clusters A (black), B (red), and C
(green). Kaplan-Meier analysis was performed on the (A) entire cohort, (B) female only cohort (C) male only cohort (D) all patients without left
ventricular (LV) hypertrophy (E) all patients with LV hypertrophy (F) all patients who developed HFpEF and (G) all patients who remained with
subclinical diastolic dysfunction (DD). P values = Cluster B versus Cluster C
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in Cluster B died at a younger age than females in Cluster C
(median age of death 76.7 years vs. 88.4 years, p= 0.0595).
Males in Cluster B and Cluster C did not differ and had
similar median ages of death when compared to the entire
cohort (males + females). In addition, when stratifying by
the absence or presence of LVH (Fig. 2, D4 and E4), there
was no difference in age at death between Cluster B and
Cluster C for patients without LVH. In contrast, those
patients with LVH in Cluster B died at a younger age than
those in Cluster C (median age of death 81.2 years vs. 89.0
years, p= 0.0137).
The time to progress from first being diagnosed with

HFpEF to death is only applicable to those patients who
developed HFpEF. The median time for progression
from HFpEF to death due to all causes for Cluster A pa-
tients was 3.0 years, for Cluster B was 3.6 years, and for
Cluster C was 5.4 years; Cluster B vs. C, p = 0.3245 (Fig.
2, A3). The time interval between diagnosis of HFpEF
and all-cause death did not differ when stratifying the
clusters by gender (Fig. 2, B3 and C3) or LVH (Fig. 2,
D3 and E3). This suggests that survival time after diag-
nosis of HFpEF is independent of any differences in as-
sociated comorbidities.

Discussion
In this retrospective study of 162 patients with asymp-
tomatic diastolic dysfunction who were matched by
known outcome (remaining asymptomatic vs. developing
HFpEF), we used unsupervised machine learning to de-
termine whether patients could be clustered into groups
of similar phenotypes which would be predictive of de-
veloping HFpEF. In this process, we found (1) patients
with asymptomatic diastolic dysfunction were a hetero-
geneous group with different risk profiles (2) all clusters
contained some patients who would progress to develop
HFpEF (3) the identified phenogroups had differential
outcomes, indicating different risk profiles and clinical
trajectories (4) certain co-morbidities were risk factors
for developing HFpEF across the entire cohort and other
risk factors for developing HFpEF were restricted to spe-
cific clusters/phenogroups and (5) the time interval be-
tween developing HFpEF and death was similar
regardless of cluster assignment (data not shown).to
This study showed that it was feasible to subdivide
asymptomatic diastolic dysfunction patients, who have
not yet progressed to clinical HFpEF, early in the disease
process into smaller more homogeneous phenogroups
with well-defined risk factors for progression to HFpEF
and different clinical trajectories. This approach may be
useful to identify those patients with subclinical diastolic
dysfunction who are at higher risk and who may benefit
from tailored preventive strategies.
Our population of patients with subclinical diastolic

dysfunction has similar demographic features and

comorbidities compared to patients with HFpEF [2–6,
16, 17]. Compared to the Meta-analysis Global Group in
Chronic Heart Failure, our patients were also older when
diagnosed with HFpEF (74 vs. 71 years old), are more
often female (68% vs. 50%), and have a higher prevalence
of multiple systemic pro-inflammatory non-cardiac co-
morbidities including obesity or metabolic syndrome,
HTN, DM, and CKD [16].
To the best of our knowledge, our study is the first

analysis to evaluate clinical characteristics through logis-
tic regression in order examine predictors of HFpEF in
patients with subclinical diastolic dysfunction. One
strength of our study was to use a retrospective data set
in which the outcomes of progressionto clinical HFpEF
were known, but clinical and echocardiographic data
prior to this progression were available for analysis and
allowed for matching of patients with asymptomatic dia-
stolic dysfunction but different outcomes.
For our entire cohort, a history of diabetes, CKD, atrial

fibrillation, and diuretic use were found to be independ-
ent positive predictors of progression from subclinical
diastolic dysfunction to HFpEF. HTN was the most
prevalent co-morbidity in our population of patients
with subclinical diastolic dysfunction. Therefore, al-
though HTN is not a discriminating predictor of which
patients will develop HFpEF, it is a common risk factor
for the development of both diastolic dysfunction and
HFpEF.
It has been suggested that the pathophysiology of the

development of diastolic dysfunction and progression to
HFpEF is closely linked to systemic inflammation from
the presence of the non-cardiac comorbidities (obesity/
metabolic syndrome, HTN, DM, CKD, anemia, COPD)
[3]. Increased levels of the proinflammatory cytokines
IL-1β and IL-12 have been shown to be associated with
HFpEF [18]. Chronic systemic inflammation causes cor-
onary microvascular endothelial inflammation, leading
to interstitial fibrosis and cardiac hypertrophy [2, 3],
which ultimately leads to diastolic dysfunction and de-
velopment of HFpEF. Recently, Spiesshoefer et al. 2019,
have speculated that respiratory muscle function may be
affected in HFpEF by inflammatory markers [19], how-
ever these were not measured in our study. Arterial
HTN is the most prevalent comorbidity in HFpEF, and
is thought to induce HFpEF through microvascular in-
flammation [3]. This is in contrast to prior paradigms of
HFpEF that suggested longstanding HTN caused HFpEF
through myocardial afterload excess. This is also dis-
tinctly separate from the mechanism of eccentric LV re-
modeling and dilatation in HFrEF that is caused by
cardiomyocyte loss from ischemia, infection, and toxicity
[3]. Hence, HFpEF is more likely to be a non-ischemic
cardiomyopathy, whereas HFrEF is more likely ischemic
in etiology. These systemic non-cardiac comorbidities
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that are believed to contribute to HFpEF are the same
comorbidities found to be predictive of HFpEF in our
population, and more prevalent in the cohort that pro-
gressed to HFpEF. This may be further evidence that
early recognition, diagnosis and treatment of these co-
morbidities may delay or prevent disease progression.
Our study was also unique by using logistic regression

to identify variables that were independent positive pre-
dictors for the development of HFpEF within each clus-
ter. Predictions for clusters are more specific than those
for the entire population since clusters represent pa-
tients with similar features. Predictions are tailored for
the specific phenotype of each cluster. Once the three
clusters were identified, the variables that remained in-
dependent positive predictors for development of HFpEF
were CKD and diuretic use in Clusters B and C, and dia-
betes in Cluster B. In patients with subclinical diastolic
dysfunction, early recognition and treatment of diabetes,
CKD, and HTN may delay progression to clinical
HFpEF, and presence of these comorbidities as well as
atrial fibrillation and diuretic requirement may be used
to prognosticate the risk of disease progression.
Despite the lower risk of death in HFpEF (regardless

of age, gender, and etiology of HF) compared to patients
with HFrEF, those with HFpEF still have high absolute
mortality, and unfortunately do not benefit from neuro-
hormonal antagonists (i.e. beta blockers, angiontensin
converting enzyme (ACE) inhibitors, angiotensin recep-
tor blockers (ARBs), mineralocorticoid receptor antago-
nists, ARB-neprilysin inhibitors) or intracardiac devices
as well as do patients with HFrEF [2, 4, 5, 16]. Given the
lack of standardized and effective therapies for treatment
of diastolic dysfunction and HFpEF, the subclassification
into smaller homogeneous subgroups of patients with
diastolic dysfunction at risk for developing HFpEF may
be the first step to conduct future studies that look at
phenotypic differences in response to medical therapy,
which could further lead to individualized treatment and
improved prognosis of the disease.
Other investigators have used machine learning or

cluster analysis to identify subgroups of patients with
distinct phenotypes that differ in their risk profiles and
survival outcomes [7–11]. These researchers have stud-
ied heterogeneous populations of patients with primary
HTN and the absence of HF [9], HFpEF alone [7, 8], and
mixed populations of HFrEF and HFpEF combined [10,
11]. However, to our knowledge, ours is the first study
to use hierarchical clustering to identify subgroups of
patients with subclinical diastolic dysfunction. Clustering
of our cohort of patients resulted in three groups with
distinct phenotypes and different disease trajectories and
prognosis. Cluster A was a smaller (n = 7) high-risk
group with the highest frequency of HFpEF, lowest per-
centage of females, presence of severe cardiac

hypertrophy, moderate AS, and highest NT-proBNP.
The group size was not powered to reach statistical sig-
nificance when comparing survival analysis with other
clusters, though based on trends we suspect that this
group would have the poorest disease trajectory. Cluster
B (n = 59) was a moderate-risk group with an intermedi-
ate frequency of HFpEF, intermediate percentage of fe-
males, presence of mild to moderate cardiac
hypertrophy, mild AS, mid-range NT-proBNP, and more
severe CKD. This cluster did more poorly than cluster C
in terms of shorter time to progress from diastolic dys-
function to HFpEF, younger age at diagnosis of HFpEF,
and age of death. Cluster C (n = 95) was a low-risk group
with the lowest prevalence of HFpEF, highest percentage
of females, no cardiac hypertrophy, no AS, lowest NT-
proBNP, and milder CKD stages. This cluster had the
best prognosis in terms of disease progression. The pri-
mary reason for Cluster C having an overall slower pro-
gression from diastolic dysfunction to HFpEF and later
age at HFpEF diagnosis is due to this group having a lar-
ger percentage of patients that never progress to HFpEF;
for those patients who do progress in Cluster B and
Cluster C, time to progression and age at diagnosis of
HFpEF was not different. In general, cluster differences
regarding survival curve disease trajectories were likely
due to global phenotypic differences between these clus-
ters, rather than any distinguishing variable. Gender did
not contribute to rate of disease progression, and the
outcome of whether patients developed HFpEF was not
related to age at diagnosis of diastolic dysfunction or age
at death.
Katz et al. [9] used hierarchical clustering to divide

1273 patients with primary HTN into two clinically dis-
tinct subgroups, in order to study the phenotypes of pa-
tients who might be at higher risk for developing
HFpEF, although this outcome was never followed.
Common comorbidities included obesity, diabetes, CAD,
and CKD, with several of these being more prevalent in
the higher-risk group, which is similar to our findings.
On average, both groups had an elevated E/e’ ratio sug-
gesting diastolic dysfunction, though diastolic dysfunc-
tion was not specifically evaluated and may not have
been present in all patients; patients also had zero to
mild LVH based on LVMI. This population may be the
most similar to our study population of patients with
subclinical diastolic dysfunction, although it is difficult
to compare their results to ours given different variables
used to define phenogroups, and that survival analysis
was not conducted.
Shah et al. [7] used hierarchical clustering to subdivide

397 patients with HFpEF into three phenotypically
distinct subgroups that differed in risk profiles based
on outcomes of cardiovascular or heart failure
hospitalization and death. The highest-risk group had
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the highest prevalence of atrial fibrillation and CKD,
and highest NT-proBNP whereas the moderate-risk
group had the highest prevalence of diabetes. This is simi-
lar to the analysis done by Kao et al. [8] which used latent
class analysis to divide 4113 patients with HFpEF enrolled
in the I-PRESERVE (Irbesartan in Heart Failure with
Preserved Ejection Fraction) study into 6 phenotypically
distinct subgroups differing in all-cause mortality and car-
diovascular hospitalization outcomes. The two highest-
risk subgroups were characterized by a high prevalence of
atrial fibrillation, CKD, diabetes and obesity. In our study
of patients with subclinical diastolic dysfunction, the pres-
ence of atrial fibrillation, CKD, and diabetes were predict-
ive of progression to HFpEF in the entire cohort
regardless of clustering results. We also found that be-
tween clusters, NT-proBNP levels were correlated with
the frequency of patients who progressed from subclinical
diastolic dysfunction to HFpEF. Our study did not look at
obesity but matched patients for BSA which would de-
crease the contribution of BSA to HFpEF progression.
Ahmad et al. [10] and Horiuchi et al. [11] both used

K-means clustering to analyze a mixed population of
HFrEF and HFpEF. Ahmad et al. [10] subdivided a larger
population of 44,886 patients from the Swedish Heart
Failure Registry into 4 subgroups that differed significantly
in terms of 1-year survival and response to medication class
(diuretics, ACE-Inhibitors, beta blockers, and nitrates).
Their cluster with the largest percentage of patients with
preserved EF > 50% shared features similar to our popula-
tion, but in this cluster only 34% of patients had HFpEF. In
addition, The Ahmad et al. [10] study grouped the entire
population a second time by LVEF values, and those pa-
tients with LVEF > 50% again shared these features—older
age, female predominance, more likely to have a non-
ischemic cause of cardiomyopathy, and a high prevalence
of comorbidities (HTN, atrial fibrillation, CKD, aortic sten-
osis, and diabetes). We did not include malignancy, anemia,
and COPD in our data sets which were included in the
analysis from the Swedish Heart Failure Registry. These
patients were least often treated with neurohormonal
therapies (beta blockers, ACE-Inhibitors) and implanted
device therapies (ICD, cardiac resynchronization therapy-
defibrillator). Horiuchi et al. [11] studied a smaller popula-
tion of 345 consecutively admitted patients with acute heart
failure hospitalized in the cardiovascular intensive care unit,
with similar findings.
In brief, the previous studies [7–11] subclassified their

patient populations into smaller phenotypically distinct
groups with unique clinical trajectories in terms of out-
comes and response to various treatments. Direct com-
parison with our results is difficult due to the differences
in initial patient population, the variables available and
used for clustering, the distinguishing variables that
define each phenogroup, and the variation in outcome

measures used to risk-stratify phenogroups and report
survival analysis.

Limitations
This is a retrospective study with a relatively small co-
hort with some data being incomplete. Missing data
points had to be imputed using a singular value decom-
position technique in order to be able to perform the
clustering. Analysis of the clusters however used only
the available data. Because of the small study population,
we were unable to a priori divide the population into a
test cohort and a validation cohort. In this study we de-
termined predictors for progression from diastolic dys-
function to HFpEF based on a population in which 50%
of the patients progressed. The coefficients for the logis-
tic regressions would not apply to other populations and
would depend on the HFpEF prevalence in the popula-
tion being studied. Thus, the applicability of cluster ana-
lysis to clinical practice is limited at this time. However,
the variables which we found to be correlated with, and
predictive of HFpEF outcome, are likely to be similar to
those that would be found for other populations. Levels
of inflammatory cytokines, which may play a role in the
development of HFpEF were not available for this study.

Summary and conclusion
We have shown that cluster analysis can separate pa-
tients with diastolic dysfunction into different pheno-
typic subgroups which differ in HFpEF and mortality
outcomes and have different variables correlated with
and predictive of HFpEF outcome. Our findings may be
applicable to other populations, as the characteristics of
our patients with diastolic dysfunction are similar to
those described in the literature for patients with HFpEF.
Confirmation of these findings could be done using a valid-
ation cohort of patients with diastolic dysfunction who
could be sorted into our pre-defined clusters using super-
vised machine learning, and their characteristics and disease
trajectories compared to those of our study population.
Future clinical trials may be designed to evaluate

response to therapies in phenotypically different sub-
populations of patients with diastolic dysfunction or
HFpEF. Additionally, future clinical trials may also be
designed to study prevention of development of
HFpEF in patients with diastolic dysfunction. Cluster
analysis may be useful to indicate early in the disease
process which patients are at highest risk of progressing to
clinical heart failure, and may be an important first step in
studying which therapy may lead to the best response for
a particular phenogroup. Ultimately, we hope that this
method will help identify high-risk patients and may help
with selecting individualized treatment modalities that are
effective in preventing disease progression and improving
morbidity and mortality.
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