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Abstract

Background: The current diagnostic methods and treatments still fail to lower the incidence of anthracycline-
induced cardiotoxicity effectively. In this study, we aimed to (1) analyze the cardiotoxicity-related genes after breast
cancer chemotherapy in gene expression database and (2) carry out bioinformatic analysis to identify cardiotoxicity-
related abnormal expressions, the biomarkers of such abnormal expressions, and the key regulatory pathways after
breast cancer chemotherapy.

Methods: Cardiotoxicity-related gene expression data (GSE40447) after breast cancer chemotherapy was acquired
from the Gene Expression Omnibus (GEO) database. The biomarker expression data of women with chemotherapy-
induced cardiotoxicity (group A), chemotherapy history but no cardiotoxicity (group B), and confirmatory diagnosis
of breast cancer but normal ejection fraction before chemotherapy (group C) were analyzed to obtain the mRNA
with differential expressions and predict the micro RNAs (miRNAs) regulating the differential expressions. The miRanda
formula and functional enrichment analysis were used to screen abnormal miRNAs. Then, the Gene Ontology (GO)
analysis was adapted to further screen the miRNAs related to cardiotoxicity after breast cancer chemotherapy.

Result: The data of differential analysis of biomarker expression of groups A, B, and C using the GSE40447-related gene
expression profile database showed that there were 30 intersection genes. The differentially expressed mRNAs were
predicted using the miRanda and Target Scan software, and a total of 2978 miRNAs were obtained by taking the
intersections. Further, the GO analysis and targeted regulatory relationship between miRNA and target genes were
used to establish miRNA-gene interaction network to screen and obtain seven cardiotoxicity-related miRNAs with
relatively high centrality, including hsa-miR-4638-3p, hsa-miR-5096, hsa-miR-4763-5p, hsa-miR-1273 g-3p, hsa-miR6192,
hsa-miR-4726-5p and hsa-miR-1273a. Among them, hsa-miR-4638-3p and hsa-miR-1273 g-3p had the highest centrality.
The PCR verification results were consistent with those of the chip data. There are differentially expressed miRNAs in
the peripheral blood of breast cancer patients with anthracycline cardiotoxicity. Among them, hsa-miR-4638-3p and
hsa-miR-1273 g-3p are closely associated with the onset of anthracycline cardiotoxicity in patients with breast cancer.
The signaling pathway is mainly concentrated in TGF-3 signaling pathway and adhesion signaling pathway.

Conclusions: Changes in expression of hsa-miR-4638-3p and hsa-miR-1273 g-3p may contribute to the detection of

anthracyclines induced cardiac toxicity, and their potential function may be related to TGF-{3 signaling pathway and
adhesion signaling pathway.
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Background

Combined treatment based on anthracyclines, such as
doxorubicin, epirubicin, and pirarubicin, is usually the
standard regimen for the first-line treatment of breast
cancer. It has definite therapeutic effect and is indispens-
able. However, cardiotoxicity is the most serious side effect
of anthracyclines. Both clinical research and practical obser-
vations have shown that cardiotoxicity induced by anthra-
cyclines is often progressive and irreversible [1, 2]. Cardiac
injury might occur even when anthracyclines are used for
the first time. Therefore, it is particularly important to
actively prevent the cardiotoxicity induced by anthracy-
clines. Currently, the therapeutic effect on patients with
anthracycline-induced cardiotoxicity is highly limited.
The current diagnostic methods and treatment levels
still fail to lower the incidence of anthracycline-induced
cardiotoxicity effectively. This is because anthracycline-
induced cardiotoxicity is a complicated, multifactorial,
and multistep biological process. The existing research
achievements are not sufficient to fully reveal the
mechanism of its incidence and development. It is
important to identify methods for the early specific
diagnosis and effective prognosis.

During recent years, the use of high-throughput
methods to detect gene expression has become a com-
mon practice. Microarray chip technology can quantify
tens of thousands of gene transcript information simul-
taneously. The gene expression omnibus Gene Expres-
sion Omnibus (GEO) is currently the largest public
high-throughput molecular abundance expression data-
base globally. It mainly stores gene expression data. The
GEO allows researchers to upload, download, save, and
retrieve different types of genomic data.

In the present study, we aimed to (1) analyze the
cardiotoxicity-related genes after breast cancer chemo-
therapy in gene expression database and (2) carry out
bioinformatic analysis to identify cardiotoxicity-related
abnormal expressions, the biomarkers of such abnormal
expressions, and the key regulatory pathways after breast
cancer chemotherapy.

Methods

Data mining and analysis

GEO database mining and chip dataset acquisition

The microarray expression profile dataset GSE40447 de-
posited by McBCaffrey et al [3], was downloaded from the
Gene Expression Omnibus (GEO) database (https://www.
ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE40447).  The
chip was from the Affymetrix human genome U133A plat-
form, containing 22,283 gene probes. and included patients
with confirmatory diagnosis of breast cancer: women with
anthracycline-induced cardiotoxicity, chemotherapy history
but no cardiotoxicity, and normal ejection fraction before
chemotherapy. According to the test results, the raw data
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in these chips were divided into group A (female breast
cancer patients with anthracycline-induced cardiotoxicity),
group B (female breast cancer patients with chemotherapy
history but no cardiotoxicity), and group C (female breast
cancer patients with normal ejection fraction before
chemotherapy, that is Group D in the original text [3]).

Data preprocessing and differential expression analysis

For each sample in GSE40447 data, the gene expression
value of all the probes was reduced to a relatively absolute
average gene expression value. Subsequently, we estimated
the missing data and carried out quantile normalization of
the data. The R-value of the differentially expressed genes
was determined. To avoid false positive results caused by
multiple test problems, Benjamin Hochberg method was
used to correct the primary P-value to the False Discovery
Rate (FDR). The FDR < 0.05 was adopted as the cut off.

GO analysis and DEGs analysis

For GSE40447 data, The Gene Ontology (GO) analysis
is used to generate a dynamic controlled vocabulary
(character table) that can be applied to all studies on
eukaryotic genomes. It is often used to study and analyze
large-scale genome and transcriptome data [4]. The Dif-
ferentially Expressed Genes (DEGs) data were divided
into two groups—the up-regulated and down-regulated
groups based on gene overexpression [5]. Subsequently,
the GO analysis was performed using the gene set ana-
lysis toolkit. The difference was considered statistically
significant when P < 0.05.

Enrichment analysis

Regarding the functional annotation of Differentially
Expressed Genes (DEGs) in GSE40447 data, the enrich-
ment expression of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway has been defined by KAAS
[6]. The difference was considered statistically significant
when P < 0.05.

miRNAs expression detection by real-time quantitative PCR
Our laboratory research sample: 20 patients and 40 sam-
ples (20 before and 20 after chemotherapy) of frozen
blood of patients with breast cancer that was collected
before and after chemotherapy respectively and stored in
low-temperature refrigerators (- 80°C) were randomly
sampled from the First Affiliated Hospital and Third Af-
filiated Hospital of Jinzhou Medical University from May
2017 to August 2018. The purpose of this study was to
compare the results of our selected study samples with
online available published data.

Reagents: The miRcuit hsa-miRNA isolation kit (Cat#
DP501), miRcuit hsa-miRNA First-Strand cDNA Synthe-
sis Kit (Cat# KR201) and miRcuit hsa-miRNA Detection
Kit (SYBR Green) (Cat# FP401) was purchased from
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TransGen Biotech (Beijing,China); Water-DEPC treated
from Beijing Solarbio Science & Technology Co., Ltd.
(Beijing,China); and the miRNA primers were designed
and synthesized by Changchun Jing Mei Biological
Engineering Co. Ltd. (Changchun, China).

Instruments: The Nanodrop 2000 ultra-micro spectro-
photometer (Thermo, USA), Stepone quantitative PCR
instrument (ABI, USA); and Bioptic Qsep100 automatic
nucleic acid analyzer (BiOptic, Taiwan).

RT and g-PCR detection of miRNA expression

The miRNA extracted from the plasma were reverse tran-
scribed into ¢cDNA according to the instructions provided
in the Takara reverse transcription kit. The corresponding
RT primers were then added. The subsequent quantitative-
polymerase chain reaction (q-PCR) was carried out using
the SYBR Green PCR kit with the synthesized cDNA as the
template. The reaction conditions were as follows: denatur-
ing at 94 °C for 2 min, followed by heating at 94 °C for 20s
and 60 °C for 34 s with a total of 40 cycles. Using U6 as the
reference, the Ct value, dissolution curve, and amplification
curve of the samples were analyzed after the experiment.
The following primer sets were used for RT-PCR:
miR4638-3P:.TGGACACCGCTCAGCCGG; miR1273g-3P:
ACCACTGCACTCCAGCCTGAG; U6 CTCGCTTCGG
CAGCACA.

Statistical analyses

The SPSS 17.0 statistical software was used for data ana-
lysis. The measurement data with normal distribution
are expressed as mean + standard deviation (X+ SD),
and paired ¢ test was used for comparison between
groups. The measurement data with non-normal distri-
bution are expressed as median (interquartile range,
IQR), and Wilcoxon rank sum test was used for com-
parison between groups. The x> test was used to com-
pare the enumeration data between the groups. The
difference was statistically significant when P < 0.05.

Results

DEGs and analysis of their biological functions

A total of 19 cases (5 cases for group A, 10 cases for
group B, and 4 cases for group C) were found to be
qualified for the study after strict filtering and screening
of the GSE40447 data. Among the three groups, the 19
blood samples were assessed. Compared with that of
group B, group A had 2282 DEGs, including 1321 up-
regulated DEGs and 961 down-regulated DEGs. Com-
pared with that of group C, group A had 1195 DEGs,
including 752 up-regulated DEGs and 443 down-
regulated DEGs. Compared with that of group C, group
B had 1718 DEGs, including 525 up-regulated DEGs and
1193 down-regulated DEGs. The DGE analysis among
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groups A, B, and C showed that there were 30 intersec-
tion genes (Table 1).

GO and signaling pathway analyses

The GO analysis of the 30 intersection genes from the
three groups revealed that the biological functions of
these genes mainly included cell-cell adhesion, response
to toxic substance, and lipid catabolic process (Fig. 1).
The cellular components mainly included cytosol, nu-
clear speck, and cell-cell adhesion junction (Fig. 2). The
molecular functions included cadherin binding involved
in cell-cell adhesion and phospholipid binding (Fig. 3).
The signaling pathways found in the KEGG database
showed that these target genes are mainly distributed in
the hippocampus-dependent long-term potentiation and
long-term depression pathways, intercellular gap junc-
tion pathway, gonadotropin-releasing hormone signal
transduction pathway, and circadian entrainment path-
way (Fig. 4).

The differentially expressed mRNA was predicted
using the miRanda and TargetScan software, and 2978
miRNAs were obtained by taking the intersections. After
comparing groups A, B, and C, the genes with significant
differences between group A and groups B and C
(PHLDB2, LINC01590, SMIMS8, CENPT, VPS53, ITGBS,
TTC26, PGM5-AS1, GKAP1, ZNF736, and GPATCH?2)
were selected for miRNA prediction. A total of 908 miR-
NAs were predicted.

To analyze the miRNA-target gene regulatory network,
the targeted regulatory relationship between the miRNA
and target genes was used to construct the miRNA-gene
interaction network. According to the screening results
based on score > 175, Energe<- 35, the predicted miRNAs
of the above genes included hsa-miR-4638-3p, hsa-miR-
5096, hsa-miR-4763-5p, hsa-miR-1273 g-3p,hsa-miR6192,
hsa-miR-4726-5p, and hsa-miR-1273a. They had higher
centrality toward the genes VPS53, PHLDB2, GPATCH?,
ITGBS, ZNF736, TTC26 and CENPT. Among them, hsa-
miR-4638-3p and hsa-miR-1273 g-3p exhibited the high-
est centrality (Table 2).

hsa-miR-4638-3p and hsa-miR-1273 g-3p were analyzed
for intersection of target genes and signaling pathways.
There were 1947pcs of intersection genes of hsa-
miR4638-3p and hsa-miR-1273 g-3p for signaling pathway
analysis. TGF-p signaling pathway and adhesion signaling
pathway were involved in cardiotoxicity, and 45pcs of
intersection genes were closely related to these two path-
ways. ROCK1 and MAPK]1 are two key genes in the path-
way (Fig. 5).

PCR verification

Demographic and baseline cardiovascular parameters are
shown in Table 3.Taking U6 as the internal reference,
for statistical convenience, the expression level of hsa-
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Table 1 List of intersection genes with differential gene
expression in groups A, B, and C

Number Gene symbol Avs. B FC Avs. C FC Bvs. CFC
1 MAPK1 133 1.39 —1.46
2 NPHP3 133 1.34 149
3 ARL17A -1.62 -1.67 141
ARL178B -1.62 -1.67 141
LOC100294341 -1.62 -1.67 141
LOC100996709 -1.62 -167 141
4 MBP 151 1.55 143
5 RABGAP1L -1.23 -1.28 -1.55
6 PHLDB2 -1.51 1.24 1.69
7 PECAM1 135 1.26 142
8 PVT1 -1.35 =127 -123
9 ITGB8 141 -1.37 -1.41
10 LIPJ 1.30 1.26 1.29
M ATXN2L 1.62 1.63 —144
12 TCEB3 148 145 -142
13 CTIF 157 142 122
14 OSBPLTA 147 129 -137
15 LINC01590 -1.65 1.45 1.58
SMIM8 -1.65 1.45 1.58
16 PLCB1 1.22 1.29 1.56
17 CENPT 1.37 -1.37 -1.35
18 ENGASE 1.27 1.68 133
19 FAM27B 136 222 1.64
FAM27C 136 222 1.64
LOC102725186 1.36 222 1.64
LOC105379444 1.36 222 1.64
20 SPTBN1 -1.56 -133 1.54
21 VPS53 1.29 -1.58 -1.31
22 RNF34 132 1.54 -1.36
23 PGM5-AST -1.31 2.00 1.34
24 FGFR10P2 —147 -2.28 —227
25 GKAP1 -1.67 1.42 1.29
26 ZNF736 -1.79 1.27 1.36
27 TTC26 -1.79 142 1.73
28 TSHZ2 -1.79 -2.20 - 1.66
29 DUSP8 1.39 147 1.30
30 GPATCH2 -1.6 1.24 1.29

Note: group A: female breast cancer patients with anthracycline-induced
cardiotoxicity; group B (female breast cancer patients with chemotherapy history
but no cardiotoxicity; group C: female breast cancer patients with normal ejection
fraction before chemotherapy. Bold font indicates that the trends of the gene in
group A were opposite to those in groups B and C. Red represents up-regulation of
group A genes and down-regulation of groups B and C genes; green represents
down-regulation of group A genes and up-regulation of groups B and C genes

FC Fold Change, PHLDB2 pleckstrin homology like domain family B member 2,
LINC01590 long intergenic non-protein coding RNA 1590, SMIM8 small integral
membrane protein 8, CENPT centromere protein T, VPS53 VPS53 subunit of
GARP complex, ITGB8:integrin subunit beta 8, TTC26 tetratricopeptide repeat
domain 26, PGM5-AS1:PGM5 antisense RNA 1, GKAP1 G kinase anchoring
protein 1; ZNF736:zinc finger protein 736; GPATCH2:G-patch domain containing 2;
Entries in boldface font indicates that the trends of the gene in group A were
opposite to those in groups B and C
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miR-4638-3p and hsa-miR-1273 g-3p in the peripheral
blood was calculated by the 27 method. Their expres-
sion levels relative to that of U6 were converted to Log,
ACt values. The expression of hsa-miR-4638-3p and
hsa-miR-1273 g-3p in the peripheral blood of the 20
subjects is presented in Table 4.

Discussion

The mechanism of anthracycline-induced cardiotoxicity
has not been fully understood. The existing evidences
reveal that it is directly related to the free radicals pro-
duced by anthracyclines [7, 8]. Unlike their mechanism
of anti-tumor activity, the main mechanisms of
anthracycline-induced cardiotoxicity involve iron-
mediated production of reactive oxygen species (ROS)
and the promotion of myocardial oxidative stress.
Anthracyclines chelate iron ions and trigger the gener-
ation of oxygen free radicals, especially the hydroxyl
free radicals, resulting in lipid peroxidation of myocar-
dial cell membrane, myocardial mitochondrial DNA
damage, etc. [9, 10]. The other mechanisms include
the formation of toxic drug metabolites, inhibition of
nucleotide and protein synthesis, release of vasoactive
amines, suppression of specific gene expression,
impairment of mitochondrial membrane binding, ag-
gregation of creatine kinase activity, induction of apop-
tosis, interference of intracellular calcium homeostasis,
changes in respiratory chain proteins, induction of ni-
tric oxide synthase, enhancement of mitochondrial
cytochrome C release, etc. [11, 12]. Other studies have
shown that anthracyclines can lead to myocardial cell
damage, inducing cardiac mitochondrial diseases and
impairment of mitochondrial DNA and the respiratory
chain in chronic cardiomyopathy [13-15]. However, a
solution to this problem is yet to be identified. One of
the main reasons behind this is that the mechanism of
pathogenesis of anthracycline-induced diseases is not
fully understood. Modern medical studies have shown
that it is difficult to fully explain the origin and devel-
opment of a disease using the results regarding a single
gene or signaling pathway. High-throughput biological
detection technology, or gene chip detection technol-
ogy, can obtain a large amount of gene expression
information simultaneously. We can understand the
biological molecules in living cells and their interac-
tions by analyzing such gene expression information
through bioinformatic methods. This way, the key
factors involved in the pathogenesis of diseases can be
identified, which can serve as references for target
design in clinical treatment [16].

Recent studies have shown that miRNA is involved in
the processes of regulating the growth and development,
mechanical remodeling, and electrical remodeling of the
heart and is closely related to heart diseases [17]. The
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overexpression of miRNA-1 and miRNA-133 can inhibit et al. [21] showed that miRNA-1 can also act This en-
cardiomyocyte hypertrophy [18]. Up-regulated miRNA-  hances the release of calcium ions and promotes cardiac
21 due to myocardial emergency can lead to fibroblast arrhythmogenesis. Wijnen et al. [22] evaluated the role
proliferation and myocardial interstitial fibrosis via [19].  of miRNA in myocardial fibrosis using a specific miRNA
miRNA-29, miRNA-133, and miRNA-30 have also been transgenic mouse model and methods such as the loss-
proved to be involved in cardiac fibrosis [20]. Terentyev  of-function and gain-of-function.
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Table 2 miRNA prediction of genes with significant differences
between group A and groups B and C

Gene Symbol miRNA Score Energe
VPS53 hsa-miR-4638-3p 193 —45.14
hsa-miR-5096 191 -38.75
hsa-miR-7851-3p 184 —32.95
hsa-miR-4763-5p 183 -38.27
hsa-miR-2110 178 -34.93
hsa-miR-1200 176 -29.67
hsa-miR-619-5p 175 -33.81
ITGB8 hsa-miR-4729 179 -22.78
hsa-miR-1208 177 —26.73
hsa-miR-1273e 176 -29.11
hsa-miR-136-3p 175 =218
PHLDB2 hsa-miR-1273 g-3p 195 —43.01
hsa-miR6192 175 -36.3
GPATCH2 hsa-miR-1273 g-3p 195 -41.57
hsa-miR-1273a 183 -3132
ZNF736 hsa-miR-3189-3p 175 -31.94
TTC26 hsa-miR-1273a 187 -36.01
CENPT hsa-miR-4726-5p 175 -35.1

Note:group A: female breast cancer patients with anthracycline-induced
cardiotoxicity; group B: female breast cancer patients with chemotherapy
history but no cardiotoxicity; group C: female breast cancer patients with
normal ejection fraction before chemotherapy. Bold font indicates that the
trends of the gene in group A were opposite to those in groups B and C. Red
represents up-regulation of group A genes and down-regulation of groups B
and C genes; green represents down-regulation of group A genes and up-
regulation of groups B and C genes

Entries in boldface font indicates that the trends of the gene in group A were
opposite to those in groups B and C

In the present study, we used the raw data of
GSE40447 gene chip in the GEO database and adopted
software packages to analyze differentially expressed
miRNAs. The DGE analysis between group A and
groups B and C showed that there were 30 intersection
genes. With further analysis of the biological functions
and signaling pathways, it was found that the main func-
tions of the differentially expressed miRNA-mRNA in-
cluded cell-cell adhesion, response to toxic substance,
and lipid catabolic process. Their cellular components
mainly included cytosol, nuclear speck, and cell-cell ad-
hesion junction. The genes VPS53, ITGBS, ZNF736, and
TTC26 play important roles in cholesterol transport in
cardiac cells, mediating the interaction between cell-cell
and cell-extracellular matrix, regulate transcription, and
transport proteins [23-25]. Among them VPS53 and
PHLDB2, GPATCH?2, ITGBS, ZNF736, TTC26 exhibited
opposite expressions in groups A, B, and C. This sug-
gests that VPS53 and PHLDB2, GPATCH?2, ITGBS,
ZNF736, TTC26 might have opposite effects on some
processes of the disease. The molecular functions
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included cadherin binding involved in cell-cell adhesion
and phospholipid binding. The signaling pathways found
in the KEGG database showed that these target genes
were mainly distributed in the hippocampus-dependent
long-term potentiation and long-term depression path-
ways, intercellular gap junction pathway, gonadotropin-
releasing hormone signal transduction pathway, and cir-
cadian entrainment pathway. The biological functions of
miRNA were mainly realized through the regulation and
control of their target genes. The analysis of the func-
tions of these differentially expressed miRNAs revealed
that hsa-miR-4638-3p, hsa-miR-5096, hsa-miR-4763-5p,
hsa-miR-1273 g-3p, hsa-miR6192, hsa-miR-4726-5p, and
hsa-miR-1273a have higher centrality. This indicates that
these miRNA targets are extensive, including oncogenes,
tumor suppressor genes, signal transduction genes, and
cell cycle regulation genes. Therefore, target gene pre-
diction can provide a theoretical basis for further target
gene verification experiments and avoid blind obedience.
Further analysis of the miRNA-target gene regulatory
network also showed that the miRNAs such as hsa-miR-
4638-3p and hsa-miR-1273 g-3p had the highest central-
ity to the surrounding target genes, suggesting that they
are the core regulatory miRNAs. The PCR results were
consistent with the predicted results. The results of
clinical sample validation showed that there was a sig-
nificant difference between hsa-miR4638-3p and hsa-
1273 g-3p before and after anthracycline chemother-
apy. According to GO annotation and signal pathway
analysis, Rho Associated Coiled-coil Containing Pro-
tein Kinase 1(ROCK1) and Mitogen-Activated Protein
Kinase 1(MAPK1) are two key genes in the pathway,
which may regulate the cardiac toxicity of anthracy-
cline drugs through TGF-f signaling pathway and ad-
hesion signaling pathway. Rho-Associated Coiled-
Protein Kinase (ROCK) has serine/threonine protein
kinase activity. It is a Rho-binding protein associated
with apoptosis, which is also the main molecule of
the Rho family. The Ras Homolog C/Rho-Associated
Coiled-Protein Kinase (RHO/ROCK) pathway plays an
important role in mediating various cellular functions,
including contraction, actin cytoskeleton, cell adhesion
and movement, proliferation, cytokinesis, and gene
expression, all of which are involved in the pathogen-
esis of cardiovascular disease [26, 27]. RHO/ROCK
specific inhibitors show promise in the prevention of
heart disease. ROCKI is activated after cardiomyo-
cytes are treated with doxorubicin in vitro, and RHO/
ROCK inhibitors can prevent doxorubicin cardiotoxi-
city [28]. ROCK1 mediates autophagy dysregulation
and apoptosis in adriamycin cardiotoxicity, and pro-
motes cardiac remodeling and reverse dysfunction
[29]. MAPK1 activation provides a possible mechan-
ism to prevent doxorubicin-induced cardiomyocyte
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injury [30-32]. These findings suggested that whether
specific miRNAs inhibitors or activators, specific path-
way inhibitors or activators can be used to alleviate
cardiotoxicity caused by anthracyclines; whether cer-
tain natural compounds can achieve heart protection
by regulating specific miRNAs and target gene expres-
sion; Whether the detection of heart-specific miRNA
in plasma can be used to identify patients with sub-
clinical cardiotoxicity and prevent severe complica-
tions of anthracycline drugs. Therefore, miRNAs have
considerable research value in cardiotoxicity caused
by anthracyclines.

Table 3 Classification and Baseline Values of Patients

Group A (after C (before P Value
chemotherapy) chemotherapy)

N 20 20

Age (median, range) 54 (35-75) 54 (35-75) NS

Ejection Fractions, 48 68 P <0.001

EF (median)

Hypertension 0 0 NS

Diabetic 0 0 NS

Note:Group A: anthraycline based chemotherapy induced cardiotoxicity; group
C:breast cancer patients ejection fraction before starting chemotherapy

The present study had some limitations. Based on the
results of bioinformatic analysis, we can predict numer-
ous target genes. However, there are also some false pos-
itives; therefore, its accuracy needs further validation by
molecular biology experiment, in order to identify the
real target genes of each miRNA and to verify the exact
role played by miRNA in the development and incidence
of anthracycline-induced cardiac toxicity. In the verifica-
tion experiment, The number of cases collected in this
experiment is small, and the experimental results have
certain limitations. The reliability of the data needs to be
further expanded to confirm the sample size.

Table 4 Expression level of hsa-miR-4638-3p and hsa-miR-1273
g-3p in the peripheral blood of each group (Log, “Ct value)

Mean value (X +SD)

Group N hsa-miR-4638-3p hsa-miR-1273 g-3p
A 20 1294072 1004020
C 20 266+ 138" 048+017"

P= 0000 P=0.000

Note: paired t test was adopted: "P < 0.05. Group A: anthraycline based
chemotherapy induced cardiotoxicity; group C:breast cancer patients ejection
fraction before starting chemotherapy

SD Standard Deviation, X sample mean
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Conclusion

Collectively, the current study identified two pivotal
miRNAs, hsa-miR-4638-3p and hsa-miR-1273 g-3p,
They are closely related to the cardiotoxicity induced by
anthracyclines. Functional enrichment analysis indicated
that mainly included cell-cell adhesion, response to toxic
substance, and lipid catabolic process. However, the
results of the present study are based entirely on
bioinformatics analyses and lack in vivo and in vitro
experimental evidence. Further research is required
to delineate their potential roles in Anthracycline
Cardiotoxicity.
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