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Abstract

Background: Coronary artery disease (CAD) and plasma lipid levels are highly correlated, indicating the presence of
common pathways between them. Nevertheless, the molecular pathways underlying the pathogenic comorbidities
for both traits remain poorly studied. We sought to identify common pathways and key driver genes by performing
a comprehensive integrative analysis based on multi-omic datasets.

Methods: By performing a pathway-based analysis of GWAS summary data, we identified that lipoprotein
metabolism process-related pathways were significantly associated with CAD risk. Based on LD score regression
analysis of CAD-related SNPs, significant heritability enrichments were observed in the cardiovascular and digestive
system, as well as in liver and gastrointestinal tissues, which are the main regulators for lipid level.

Results: We found there existed significant genetic correlation between CAD and other lipid metabolism related
traits (the smallest P value < 1 × 10− 16). A total of 13 genes (e.g., LPA, APOC1, APOE and SLC22A3) was found to be
overlapped between CAD and plasma lipid levels. By using the data-driven approach that integrated transcriptome
information, we discovered co-expression modules associated prominently with both CAD and plasma lipids. With
the detailed topology information on gene-gene regulatory relationship, we illustrated that the identified hub
genes played important roles in the pathogenesis of CAD and plasma lipid turbulence.

Conclusion: Together, we identified the shared molecular mechanisms underlying the correlation between CAD
and plasma lipid levels.
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Background
Coronary artery disease (CAD) is one of the leading causes
of death globally [1]. Plasma lipid levels, including low-
density lipoprotein (LDL) cholesterol, high-density lipopro-
tein (HDL) cholesterol, triglycerides and total cholesterol,
are all associated with regulation of the risk for CAD. Fur-
ther, The INTERHEART study indicated that 45% of heart

attacks in Western Europe are due to abnormal blood
lipid levels [2].
CAD and blood lipid levels are both heritable, with the

genetic contribution estimated to be 40–60%. Genome-
wide association studies (GWAS) have successfully iden-
tified more than hundreds of risk loci for CAD and
plasma lipid levels [3–6]. Importantly, several genetic
studies also suggest the existence of shared polygenic
pleiotropy between CAD and blood lipids [4, 7, 8]. For
example, the genes APOA5, TRIB1 and APOC3, which
were significantly associated with plasma lipids, also
showed prominent risk to CAD [9, 10]. However, due to
lack of multi-dimensional data integration analysis, the
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underlying mechanistic insights into the pathogenesis of
comorbidity remain largely unknown.
In recent years, large-scale genetic association studies

have yielded new insights into the genetic architecture of
CAD and blood lipid levels, which enabled us to investi-
gate the genetic etiology of comorbidity. As the fact that
pleiotropy is pervasive, many relevant diseases or traits are
commonly associated with the same underlying causal
variants. The emerging challenge in today research is how
to interpret the functional effects of common genetic sig-
nals between diseases and their risk factors. In addition,
the cell-type-specific regulatory elements that control spe-
cific cell functions also increase the difficulties to identify
key disease pathways and processes.
In the current investigation, we conducted a systematic

analysis with the goal of revealing the underlying genetic
architecture of CAD and shared gene regulatory network
with plasma lipids using large-scale GWAS summary and
gene expression data. By performing a transcriptome ana-
lysis in three relevant tissues, we modeled co-expression
networks and identified common trait-associated modules
shared between CAD and plasma lipids. Finally, we inte-
grated topological gene regulatory networks to identify
hub connected genes for both traits.

Methods
GWAS summary data sets
Dataset #1 for coronary artery disease
We obtained summary statistics from a large GWAS meta-
analysis comprising more than 120,000 cases and 339,115
controls (Additional file 2: Table S1) [11]. Complete GWAS
summary statistics were downloaded from the CARDIo-
GRAMplusC4D Consortium website (http://www.cardio-
gramplusc4d.org/data-downloads/).

Dataset #2 for plasma lipid levels
We obtained a published GWAS meta-analysis associ-
ation data for lipid levels from Center for Statistical
Genetics. This study was a joint analysis that examined
188,577 individuals that were genotyped with two plat-
forms from multiple studies [12]. Complete GWAS sum-
mary statistics were downloaded from the website
(http://csg.sph.umich.edu/willer/public/lipids2013/).

Transcriptome data sets
There were three gene expression datasets obtained from
Gene Expression Omnibus (GEO) database (Additional
file 2: Table S2). For GSE30169, we filtered samples
treated with 40 μg/ml oxidized 1-palmitoyl-2-arachido-
noyl-sn-glycero-3-phosphatidylcholine (Ox-PAPC), which
left 307 remaining normal primary human aortic endothe-
lial cells. For GSE7965, adipose tissue samples from 701
individuals were included in the analysis. For GSE24335,

651 samples with expression profile of liver tissue were in-
cluded in the analysis.

Gene set analysis by GWAS summary statistics
We used the Multi-marker Analysis of GenoMic Annota-
tion (MAGMA) [13] to test for enrichment of well-
documented gene-sets, including data sources from KEGG,
GO, BioCarta [14], and Reactome [15], with CAD. The
SNPs were assigned to all protein-coding genes (or within a
region extended − 30 kb upstream and + 10 kb downstream
of the gene) based on the autosome of NCBI 37.3 coordi-
nates. After SNP annotation, there were 18,410 genes con-
taining SNPs in genotype data. For the gene set analysis, we
restricted the analysis to 4608 pathways comprising 5–300
genes. MAGMA’s built in empirical multiple testing
corrections were used to correct raw P values with 10,
000 permutations.

Partitioning heritability for CAD loci by cell-type-specific
annotation
The polygenic contributions for cell-type-specific functional
elements were estimated by linkage disequilibrium (LD)
score regression analysis [16]. For CAD summary data, only
common SNPs (MAF > 1%) presented in the HapMap ver-
sion 3 data set were included in analysis model. LD scores
were calculated by the 1000 Genomes Project Phase 1 EUR
reference panel. As described by Finucane et al. [16], we
first created a “full baseline model” with a total number of
53 overlapping functional categories. For cell type specific
analysis, we used annotations from ten groups, including ad-
renal/pancreas, central nervous system (CNS), cardiovascular,
connective/bone, gastrointestinal, immune/hematopoietic,
kidney, liver, skeletal muscle, and others.

Tissue/cell-type expression enrichment analysis
DEPICT analysis (Data-Driven Expression-Prioritized In-
tegration for Complex Traits) [17] was used to test for
enrichment of tissues or cell types where CAD-related
gene are highly expressed. Firstly, we used PLINK v1.07
[18] to identify independent SNPs with P value less than
1 × 10− 5 from CAD GWAS summary, LD information
was provided by the 1000 Genomes Project Phase 1 EUR
reference panel. Then, we took advantage of the build-in
data sets from DEPICT consisting of 209 tissue/cell
types assembled from 37,427 human microarray samples
for expression enrichment analysis.

Genetic correlation analysis
We used the LD score regression method [19, 20] to profile
the pattern of genetic correlations between CAD and lipid
metabolism related traits, including low-density lipoprotein
(LDL) cholesterol, high-density lipoprotein (HDL) choles-
terol, triglycerides, total cholesterol, BMI, and waist-hip ra-
tio. Quality control steps were adopted from LD scores
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default procedures, including imputation quality > 0.9 and
MAF > 0.1. Moreover, all SNPs retained to analysis were
merged to SNPs in HapMap 3 reference panel.

Building gene co-expression network modules
CAD and lipid metabolism related tissues (including liver,
aortic endothelial cells and adipose) transcriptome data
were obtained from GEO datasets (https://www.ncbi.nlm.
nih.gov/gds/) (Additional file 2: Table S2). Low-expressed
and non-varying genes in each dataset were filtered to
avoid noise, results in an average of 12,000 genes to be in-
cluded in the following analysis. We applied the Weighted
Correlation Network Analysis (WGCNA) [21] to con-
struct gene co-expression modules. A number of 30 were
set for minimum module size. We chose 0.1 as cut line in
the dendrogram to merge similar modules (corresponding
to correlation of 0.9).

Identification of co-expression modules with over-
representation of genetic association signals
We conducted Marker Set Enrichment Analysis (MSEA) to
identify genetically perturbed co-expression modules for
each phenotype using the Mergeomics pipeline [22, 23].
For the current analysis, MSEA takes three elements into
workflow: (1) summary data for each GWAS (CAD, HDL,
LDL, TC, TG, BMI, and WHRadjBMI); (2) assignment of
SNPs to their corresponding genes; (3) functionally related
gene sets generated from co-expression module.

Identification of hub genes using weighted key driver
analysis (wKDA)
The Mergeomics pipeline offers a function to detect key
drivers and hub genes using detailed topology informa-
tion on gene regulatory relationships [23]. We used
GIANT networks [24] from three tissues (aorta, adipose
and liver), which provide detailed interactions between
genes according to independent gene expression datasets
and protein interaction information. All genes in the
CAD-associated module that also showed nominal sig-
nificance in lipid metabolism related traits (P < 0.1) were
mapped into GIANT networks with edges information,
which support tissue-specific function interactions.

Results
CAD associated pathways are enriched in lipoprotein
metabolism processes
To reveal the genetic architecture of CAD, we first per-
formed pathway analysis to test the associations of prede-
fined functional gene-sets, including KEGG, GO, BioCarta,
and Reactome (see Methods for details). 4608 pathways
with a size 5–300 genes per pathway were retained for
downstream analyses in consideration of appropriate speci-
ficity and high efficiency. After corrections for multiple
testing by permutation tests, 12 significant enriched

pathways with corrected P value < 0.05 were identified
(Additional file 2: Table S3). The top ranked pathway was
collagen type IV (P = 1.32 × 10− 09), consisting of 6 genes
coding type IV collagen proteins. Notably, two-thirds of
pathways reached significant associations involved in lipo-
protein metabolism and cholesterol and triglyceride
homeostasis. These pathways contained 10 common genes,
i.e., LDLR, LPA, PLG, APOE, LIPA, LPL, APOB, ABCG8,
ABCG5, APOC4 (Additional file 2: Table S4), that were sig-
nificantly associated with CAD (P < 2.72 × 10− 06) by using
the MAGMA analysis.

CAD related SNPs/genes were functionally annotated at
liver and gastrointestinal tissues
We applied stratified LD score regression to estimate the
global enrichment of heritability contributed by CAD re-
lated risk SNPs in 53 genomics features annotated from
10 cell type groups. Large and significant enrichments
were observed for the cardiovascular and digestive
systems. For cardiovascular tissues, 11.1% SNPs explained
an estimated 52.0% SNP-heritability (P = 1.12 × 10− 08 for
enrichment analysis). Liver and gastrointestinal tissues
showed 4.63 and 3.49 fold enrichment (P < 1 × 10− 06;
Fig. 1), respectively. The significant heritability enrichment
contributed by liver and gastrointestinal tissues was in line
with our GWAS-based pathway analysis, highlighting that
lipoprotein metabolism and cholesterol and triglyceride
homeostasis contribute a genetic risk to CAD. Further-
more, DEPICT framework identified multiple tissues in
the digestive system where genes from CAD-associated
loci were highly expressed (Fig. 2; Additional file 2: Table
S5). Although the significance level failed to pass multiple
tests correction, we observed a significant enrichment of
digestive system among all tissues/cell-type (14/42, Fish-
er’s exact P = 0.03).

Genetic correlations between CAD and lipid metabolism
related traits
Our pathway and functional enrichment analysis empha-
sized the crucial role of liver and gastrointestinal tissues
in the pathology of CAD. These tissues are the main
ones for producing various lipids in blood, which include
low-density lipoprotein (LDL) cholesterol, high-density
lipoprotein (HDL) cholesterol, triglycerides, and total
cholesterol; all of them have been demonstrated to be
risk factors for CAD. Thus, the shared genetic and mo-
lecular regulatory mechanisms between CAD and lipid
metabolism related traits were warranted to be studied.
We also downloaded GWAS summary data for four

blood lipid level measurements from the Center for Stat-
istical Genetics (see Methods). Moreover, BMI and
waist-hip ratio GWAS data from Genetic Investigation
of ANthropometric Traits (GIANT) were also included.
Genetic correlations were calculated between CAD and
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Fig. 1 Heritability enrichment of cell type groups and SNPs and genes related to CAD functioned in cardiovascular and digestive tissues. Vertical
axis represents enrichment fold that calculated by proportion of heritability divided by proportion of SNPs

Fig. 2 DEPICT identifies Cardiovascular and Digestive system where genes from CAD-associated loci are highly expressed. Each sector represents
an organ tissue, bar length indicates the Log2(P-value) for that cell type or tissue
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all six traits using LD Score regression. Significant gen-
etic correlations were found between CAD and all the
other investigated traits with smallest P value less than
1 × 10− 16. We found that CAD was negatively associated
with HDL-C (r = − 0.30), but showed positive correla-
tions with LDL-C, TC, TG, BMI and WHRadjBMI
(Fig. 3).

CAD and lipid metabolism related traits shared common
genetic association signals
To further reveal the underlying biological mechanisms of
the comorbidity between CAD and plasma lipid levels, we
made a direct comparison using gene-based association sig-
nals. Gene-based association signals of genes that showed
significant associations with CAD (P < 2.72 × 10− 6) were
compared to that of nominally significant genes related to
plasma lipid levels (P < 0.05, Fig. 4). We discovered that 13
genes overlapped across all five phenotypes (Gene set #1 in
Additional file 2: Table S6). Notably, the common signals,
including APOC1, APOE, and APOB, of the apolipoprotein
family, which were highly expressed in the liver and played
crucial roles in lipoprotein metabolism. The PLG gene en-
codes a secreted blood zymogen that is primarily expressed
in liver tissue, and abnormality of this gene contributes sus-
ceptibility to thrombophilia [25].
In addition, we compared significantly CAD-enriched

pathways (FDR < 0.05) with enriched pathways related to
plasma lipid levels. Among these 12 top enriched path-
ways for CAD, 11 also showed significances among
plasma lipid level traits (P < 0.05). Of them, three enriched
pathways, including cholesterol homeostasis, chylomicron

mediated lipid transport, and lipoprotein metabolism,
maintained statistical significance after multiple testing
corrections across all five traits (Table 1). Importantly,
there were 6 genes (6/13) that belong to the shared Gene
set #1 that also appeared in these common pathways.
Furthermore, we sought to determine whether the 13

shared genes from gene-based analysis were significantly
overrepresented in these common pathways. A random re-
sampling of the same number of genes for the shared genes
was conducted 10 million times. All genes within our pre-
defined pathways (N = 16,994) served as the pool for our
randomization test. After the randomization trials, we ob-
served no instances of any overlap greater than the real one
that contains 6 overlaps (Additional file 2: Table S7).

Identification of co-expression modules genetically
associated with CAD and blood lipid levels
We investigated the expression profiles of co-expression
modules that associated with genetic markers in various
tissues relevant to CAD and lipid metabolism by Marker
Set Enrichment Analysis (MSEA). Briefly, co-expression
networks were constructed using transcriptome datasets
from liver, aortic, endothelial cells and adipose, respect-
ively (Additional file 1: Figures S1, S2, and S3). The
identified modules were used as functionally related
gene sets to enter into MSEA and the significance of en-
richment of a co-expression module to potential func-
tional disease SNPs defined by GWAS was assessed
using Chi-square-like statistics. For each tissue or cell
type, we prioritized common modules that not only sig-
nificantly associated with CAD (FDR < 0.05), but also

Fig. 3 Genetic correlation between CAD and six other phenotypes (BMI, WHRadjBMI, HDL, LDL, TC, and TG). Red color represents for positive
correlations and blue color represents negative correlations

Chen et al. BMC Cardiovascular Disorders          (2019) 19:310 Page 5 of 10



associated with at least one blood lipid traits (Fig. 5). In
Aortic endothelial cells (Fig. 5a), two modules were sig-
nificantly associated with CAD (PTurquoise = 3.51 × 10− 4,
PYellow = 0.013). Turquoise additionally associated with
HDL (P = 2.35 × 10− 6), LDL (P = 3.74 × 10− 4), TC (P =
6.04 × 10− 5) and TG (P = 2.12 × 10− 3). In adipose tissue,
a light yellow module was associated with both CAD
and BMI (Fig. 5b), and a blue module was associated
both CAD and HDL (Fig. 5b). One module reached sig-
nificance in liver tissue (Fig. 5c).

Prioritization of hub genes for common modules
The common co-expression module identified above
mainly provided expression patterns without detailed
topology information on gene-gene regulatory relation-
ship. By applying a wKDA analysis that integrates
GIANT network, we prioritized hub genes within the
common modules in three relevant tissues. Together,
our analysis identified 571, 2843, and 3016 significantly
changed genes with FDR < 0.01 in adipose, aortic endo-
thelial cells and liver tissue, respectively. Of them, we

Fig. 4 UpSetR plot shows the overlap of significantly genes discovered from MAGMA gene-based analysis between CAD and four lipid
metabolism related traits

Table 1 Common pathways between CAD and plasma lipid levels

Pathway name P-CAD P-HDL P-LDL P-TC P-TG

Positive regulation of cholesterol storage 3.99 × 10−09 8.07 × 10−22 9.38 × 10−03 4.45 × 10− 03 2.03 × 10− 12

Apolipoprotein binding 1.10 × 10−06 8.25 × 10−29 1.82 × 10−05 1.99 × 10− 18 5.35 × 10− 09

low-density lipoprotein particle 8.32 × 10−09 2.13 × 10− 05 1.23 × 10− 10 8.16 × 10− 06 2.10 × 10− 03

Lipoprotein catabolic process 2.72 × 10− 09 9.06 × 10− 12 3.30 × 10− 12 6.44 × 10− 11 1.12 × 10− 07

Chylomicron 2.31 × 10− 06 3.32 × 10−11 6.99 × 10− 10 5.61 × 10− 07 9.59 × 10− 21

Cholesterol homeostasis* 9.61 × 10− 08 4.83 × 10− 17 6.99 × 10− 15 3.49 × 10− 26 4.17 × 10− 12

Reverse cholesterol transport 4.13 × 10− 06 3.76 × 10− 23 8.02 × 10−05 1.25 × 10− 20 2.54 × 10− 07

Triglyceride homeostasis 3.65 × 10− 07 3.32 × 10− 18 6.03 × 10− 06 5.40 × 10− 10 2.23 × 10−20

Lipase 6.16 × 10− 07 2.82 × 10− 12 2.99 × 10− 02 1.22 × 10− 05 1.77 × 10− 08

Chylomicron mediated lipid transport* 4.81 × 10− 06 6.34 × 10− 14 5.37 × 10−12 1.72 × 10− 17 1.16 × 10− 18

Lipoprotein metabolism * 7.59 × 10− 08 1.10 × 10− 17 6.29 × 10−11 8.01 × 10− 19 2.25 × 10− 18

The asterisk (*) marked pathways maintained significance after multiple testing corrections across all five traits
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revealed 245 key drivers (KDs) that showed significance
in all three tissues for both CAD and plasma lipid asso-
ciated modules (Additional file 2: Table S8).

Discussion
The present study systematically investigated the molecu-
lar links between CAD and plasma lipid levels by integra-
tion of GWAS signals with gene expression data. Our
results showed that the genetic contribution of CAD is
heavily concentrated in cell-type-specific regulatory re-
gions of the cardiovascular and digestive systems, the sites
of regulating plasma lipid level. Common genes and path-
ways were used to detect the effects of pleiotropy within
the comorbidity between the two traits of interests. Data
driven analysis of transcriptome sequences in three rele-
vant tissues modeled co-expression networks that were
significantly associated with both CAD and plasma lipids.
A gene regulatory network helped to prioritized hub genes
that were strongly connected in sub-networks.
Previous studies [26–28] have documented multiple

lines of evidences to support the comorbidity between
dyslipidemia and cardiovascular disease. The seminal find-
ing of Framingham Heart Study showed that plasma chol-
esterol concentration was associated with potential CAD
risk. The following randomized controlled trail (RCT) also

demonstrates the causal relationship between CAD and
plasma lipid levels. Evidence from human genetic studies
identified loss-of-function mutations in the LDLR genes to
be associated with high level of plasma LDL-C and prema-
ture CAD. Genes that modulate plasma triglyceride levels
have been associated with CAD risk. Combined, these
genetic findings suggest that lipoprotein and
triglyceride-rich lipoproteins contribute to CAD. All
these abovementioned gene have also been detected in
our analysis, which provides an independent support to
those reported findings.
In the current study, our findings provided further evi-

dence of the underlying genetic link between CAD and
plasma lipoproteins. The top enriched pathways detected
in this study included lipoprotein catabolism process, posi-
tive regulation of cholesterol storage, lipoprotein metabol-
ism, and cholesterol and triglyceride homeostasis. Notably,
8 out of 11 pathways that passed significance after correc-
tions for multiple tests were found to be involved in the
regulation of plasma lipids levels. Besides the cardiovascu-
lar system, we detected enrichments in liver and gastro-
intestinal tissues. In addition, DEPICT also indicated
digestive system, including upper gastrointestinal tract,
stomach, intestine small, hepatocytes, liver, ileum, and
cecum, as the most relevant tissues where CAD risk genes

Fig. 5 CAD associated modules show significances among lipid metabolism related traits in relevant tissues. a for aortic endothelial cell; b for
adipose tissue; c for liver tissue. Red box corresponds FDR < 0.05 and pink box corresponds P value < 0.1
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highly expressed. These findings were consistent with a re-
cent GWAS study using UK biobank samples [29].
Moreover, we found significant genetic correlations

between CAD and plasma lipids based on LD score re-
gression analysis. Our results showed that CAD was
negatively correlated with HDL-C and positively corre-
lated with LDL-C. HDL-C particles remove fats and
cholesterol from cells; individuals with higher levels of
HDL-C are less likely to suffer from cardiovascular dis-
eases [30]. Inversely, LDL-C particles used as a risk fac-
tor for CAD; individuals with lower levels of LDL-C are
more likely to reduce the risk of major coronary events
and coronary death [31–33]. A recent epidemiology
study using 4205 new-onset patients with stable CAD in
Chinese population discovered that plasma HDL-C
levels appear to be a predicator of coronary severity [34].
LDL-C and triglyceride-rich lipoproteins were previously
treated as casual biomarkers for CAD [35].
One of the main findings in the current study pinpointed

common genes and pathways implicated in the comorbidity
between CAD and plasma lipids level. Our gene-based ana-
lysis found that LDLR, APOB, and PCSK9 were significantly
associated with both CAD and LDL-C. These three genes
participate in the cellular LDL particle uptake, promote
degradation of LDL particles, and reduce the risk of CAD
[36]. The detected shared pathways unveiled by our system-
atic analysis included lipoprotein metabolism processes,
which also provide evidence of the shared genetic vulner-
ability between the two traits of interests.
The systematically integrative pipeline by using multi-

omics data could help us to better understand the bio-
logical mechanisms of complex diseases or comorbidities.
The computational pipeline of Mergeomics combines
disease-related genetic association data with pre-defined
sets of connected genes to identify key drivers that are
enriched for genes in the cellular regulatory network [13].
By identifying genetically-driven CAD and plasma lipids
modules independently, we found that CAD related mod-
ules also exhibited significance in plasma lipids. Import-
antly, the CAD associated gene sets coincidently linked
with plasma lipids in a tissue specific manner. The com-
bination of univariate association signals with expression
data in relevant tissues made the shared regulatory net-
work more explicit.
By applying a comprehensive network modeling system,

we identified several critical key modulators that have
highly pathogenic potential for CAD. These key-drivers
(KDs) were enriched in both CAD and plasma lipids asso-
ciated co-expression modules, which were tissue-specific
regulated. Further, we presented the sub-networks where
KDs regulated many known disease genes for both CAD
and plasma lipids. The gene-gene interactions or networks
modules, which constructed from other independent stud-
ies, implied more comprehensive conditions that to unveil

biological insights [37, 38]. We identified common KDs in
three CAD-relevant tissues, indicating the crucial role of
these genes implicated in the comorbidity of between
CAD and plasma lipid levels.
There are several limitations in the current study. First,

the data-driven analysis was constrained by the current
available functional datasets. For the missing information,
we expected further investigation from additional relevant
tissues with multidimensional functional annotation data.
Second, the inferred gene-gene interactions derived from
KDs in our subnetworks need further experimental valid-
ation at various levels. The regulatory effects of KDs on
neighboring genes warrant future investigation using inde-
pendent in vivo and in vitro systems.

Conclusions
In sum, the current study revealed the genetic landscape
of CAD with functional enrichment of risk loci in lipo-
protein metabolism processes and relevant tissues and
cell types. Through integrative genetic and expression
data, we identified the shared pathogenesis of CAD and
plasma lipid traits, including common genes, pathways,
and key molecular drivers. This systematic approach
provides novel insight into basic pathogenic mechanism
for cardiometabolic diseases and relevant comorbidities.
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