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Abstract

controls.

HFpEF cases.

Background: Heart failure (HF) with preserved ejection fraction (HFpEF) comprises nearly half of prevalent HF, yet is
challenging to curate in a large database of electronic medical records (EMR) since it requires both accurate HF diagnosis
and left ventricular ejection fraction (EF) values to be consistently =50%.

Methods: \We used the national Veterans Affairs EMR to curate a cohort of HFpEF patients from 2002 to 2014. EF values
were extracted from clinical documents utilizing natural language processing and an iterative approach was used to refine
the algorithm for verification of clinical HFpEF. The final algorithm utilized the following inclusion criteria: any International
(Classification of Diseases-9 (ICD-9) code of HF (428xx); all recorded EF 250%; and either B-type natriuretic peptide (BNP) or
aminoterminal pro-BNP (NT-proBNP) values recorded OR diuretic use within one month of diagnosis of HF. Validation of
the algorithm was performed by 3 independent reviewers doing manual chart review of 100 HFpEF cases and 100

Results: \We established a HFpEF cohort of 80,248 patients (out of a total 1,155,376 patients with the ICD-9 diagnosis of HF).
Mean age was 72 years; 96% were males and 12% were African-Americans. Validation analysis of the HFpEF algorithm had
a sensitivity of 88%, specificity of 96%, positive predictive value of 96%, and a negative predictive value of 87% to identify

Conclusion: We developed a sensitive, highly specific algorithm for detecting HFpEF in a large national database. This
approach may be applicable to other large EMR databases to identify HFpEF patients.
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Background

Heart failure with preserved ejection fraction (HFpEF) is in-
creasing in prevalence [1], and already constitutes nearly
50% of patients with with clinical heart failure (HF) [2].
Despite the mounting public health burden, morbidity and
mortality remain high because the exact pathophysiology of
this disease is not well understood. Although multiple clin-
ical trials have been conducted to examine the effects of
phamacological therapies to improve the morbidity and
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mortality associated with HFpEE, spironolactone is the only
specific therapy with a Class IIb (benefit = risk) indication
for this condition [3, 4]. One of the major limitations in
these clinical trials is the heterogeneity of HFpEF popula-
tion in terms of clinical presentation and outcomes. Large
electronic medical record (EMR) databases offer a rich re-
source for further research to advance the field of HFpEF;
however, this requires curation of a well validated cohort.
Current U.S. guidelines are broad in their definition of
HFpEE, generally requiring a definite HF diagnosis with left
ventricular ejection fraction (LVEF) of > 50% [3]. However,
asertaining this information from a large database is a
major challenge. The Veterans Affairs (VA) is at the fore-
front of the use of an EMR, which has allowed the creation
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of large, centralized derivative databases of both administra-
tive and clinical data. We hereby report on utilizing natural
language processing (NLP) extraction of LVEF values and
algorithm development and validation to derive an algo-
rithm that is able to curate a cohort of HFpEF from a large
national database.

Methods

The study was approved by the VA Boston Healthcare
System Human Subjects Subcommittee (IRB #2868). We
used the national VA database to develop a HFpEF co-
hort utilizing EMR data recorded between 1/1/2002 to
12/31/2014. The VA uses Veterans Information Systems
and Technology Architecture (VistA), which is a na-
tional integrated healthcare system with a comprehen-
sive EMR across all the VA healthcare facilities. The VA
has provided healthcare to millions of Veterans over the
last two decades in more than 1700 hospitals, clinics,
and nursing homes, with the majority of care recorded
through VistA. A NLP tool which has been well estab-
lished in VA database [5, 6], was used to extract EF
values from the VA Text Integration Ultilities (TIU) doc-
uments including history and physical examination
notes, progress notes, discharge summary notes, echo-
cardiography reports, nuclear medicine reports, cardiac
catheterization reports, and other cardiology notes. The
NLP application reported to have positive predicted
values of 0.968 to 1.000 and sensitivities of 0.801 to
0.899 to extract EF values when tested across multiple
data sources [6]. As published before [6], the following
search terms were used to extract the ejection fraction
(EF) values from TIU documents: “ventricle”,“ventricu-
lar”, “atrium”, “atria”, “echo”, “transthoracic”, “trans-
esophageal”, “TTE”, “TEE”, “EF”, or “ejection” and
“fraction”. Patterson et al. provided EF data which
showed in the Veterans Aging Cohort Study, that the
NLP system achieved F-scores of 0.872, 0.844, and 0.877
with precision of 0.936, 0.982, and 0. 969 to extract heart
function measurements including ejection fraction from
general clinic notes, echocardiogram reports, and radi-
ology reports respectively [6].

HFpEF algorithm inclusion crtieria consisted of (1)
International Classification of Disease-Ninth Revision
(ICD-9) codes diagnosis of HF (any 428.xx), (2) either
B-type natriuretic peptide (BNP) or aminoterminal
pro-BNP (NT-proBNP) values recorded OR diuretic
usage within one month of HF diagnosis, (3) availability
of echocardiogram in our system, and (4) having all re-
corded EF values >50%. We excluded patients with con-
strictive pericarditis (ICD9 code 425.1) and hypertrophic
cardiomyopathy (ICD9 code 423.2) and any previous
history of HE. We specified the criteria of all EF values
>50% to ensure a cohort of definite HFpEF through the
period of study. As shown in fig. 1, there were 1,155,376
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Use criteria to capture true heart failure cases using
structured and unstructured elements

Un-blinded analysis of 75 cases by a single physician
to assess crude accuracy rates

Further refinement of algorithm if accuracy is less
than 90%

Final algorithm with un-blinded crude
accuracy of more than 90%

!

Blinded validation analysis

Fig. 1 Algorithm development, refinement, and validation

patients with any HF diagnosis from ICD9 code 428.xx.
Refining the criteria for usage of a diuretic and elevation
of BNP markers within 6 months of HF diagnosis
resulted in 696,951 patients. The criteria were further
refined for diuretic usage or BNP/pro BNP lab test
within 1 month of HF diagnosis, as this might be repre-
sentative of true recent HF diagnosis. Using data ex-
tracted from by the NLP tool, we then confirmed all
recorded LVEF values >50% from TIU documents, leav-
ing our cohort to be 98,709 patients.

Figure 1 shows the steps of the algorithm used for
HFpEF development and refinement that led to valid-
ation. The final algorithm (Fig. 2) was designed using an
interative process of designing a “draft” algorithm based
on clinical and diagnostic criteria followed by rapid val-
idation of a small number of charts and further refine-
ment of the algorithm (Fig. 1). One independent
physician (J.J.) initially validated 75 cases curated using
the final algorithm to ensure that the algorithm was ac-
curate enough for assessment by blinded validation.

We used clinical trials definition to validate definite
and probable HF cases [7]. Definite HFpEF was de-
fined as presence of at least one symptom, two signs,
along with definite treatment of HF with diuretics/
other HF-specific therapies and all recorded LVEF
values >50%. Probable HFpEF was defined as presence
of one symptom and one sign, along with definite evi-
dence of treatment of HF, or two signs along with
definite evidence of treatment and all recorded LVEF
values 250%. Likely HFpEF was defined as the pres-
ence of documentation of clinical diagnosis and con-
tinuing treatment of HF in physician notes but the
absence of the documentation of the episode of HF
with accompanying symptoms and signs likely due to
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Fig. 2 Algorithm developed to create a cohort of patietns with heart failure with preserved ejection fraction. *Abbreviations: VINCI, VA Informatics
and Computing Infrastructure; ICD-9, International Classification of Diseases-9; BNP, B-type natriuretic peptide; HFpEF, heart failure with preserved
ejection fraction; EF, ejection fraction; ProBNP, aminoterminal pro-BNP; TIU, Text Integration Utilities

the episode occuring in a medical facility outside the
VA system, and all recorded LVEF values =50%. No
HFpEF was defined as cases where there was no
documentary evidence of HF.

Symptoms of HF included non-exertional and exer-
tional dyspnea, orthopnea, paroxysmal nocturnal dys-
pnea, fatigue, decreased exercise capacity, and rapid
increase in weight, edema, or abdominal girth. Signs in-
cluded rapid weight loss on diuretics, elevation of jugu-
lar venous pressure, edema, elevation of BNP/
NT-proBNP, pulmonary edema/rales, any radiologic evi-
dence of HF (chest X-ray evidence of congestion or
pleural effusion, ultrasound or CT evidence of pleural
effusion), hemodynamic measurements showing elevated

filling  pressures, of ascites
hepatomegaly.

Cases for chart review were randomly selected from
the algorithm derived HFpEF cohort. Controls were ran-
domly selected from a cohort who had a procedure code
for echocardiogram in the medical records between
2002 and 2014 but no ICD-9 code for HF. Three inde-
pendent reviewers (Y.P., T.I, and A.O.) completed the
chart review of 100 cases and 100 controls in a blinded
fashion, with each chart reviewed by two reviewers. Any
discrepancies between the reviewers were addressed by
further discussion and a consensus was achieved.

After manually reviewing the medical records for the

200 randomly selected patients, sensitivity, specificity,

and presence or
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positive and negative predictive values were calculated
to determine the ability of the algorithm to identify cases
and controls relative to identification through manual
chart review, which was considered the gold standard [8,
9]. Our final algorithm considered those manually classi-
fied as “likely HFpEF” as having a true diagnosis of
HFpEE, but summary statistics were also calculated con-
sidering only “definite HFpEF” and both “definite
HEpEF” and “probable HFpEF” as true HFpEF cases. All
analyses were peformed using SAS Enterprise Guide 7.1
(SAS institute Inc., Cary, NC).

Results

Comparison between algorithm-defined and manually
reviewed cases and controls is shown in Table 1. The
manual chart review confirmed 96/100 of cases and 87/
100 of controls identified by our algorithm. Validation
analysis (Table 1) showed that our algorithm had 88%
sensitivity, 96% specificity, 96% positive predictive value
(PPV), and 87% negative predictive value (NPV) to iden-
tify HFpEF cases from the EMR database. As mentioned
in the Methods section, we included definite, probable,
and likely HFpEF as true cases for our final algorithm.
In our validation analysis, none of the cases validated
belonged to the “no HFpEF” category. Interestingly 13
controls were identified as HFpEF; this may be second-
ary to the fact that our controls were derived from a co-
hort of subjects who had echocardiograms on file and
thereby likely to have a diagnosis of HFpEF as a reason
for performance of the echocardiogram. If only chart re-
view defined “definite HFpEF” cases are included as true
cases, the algorithm has 93% sensitivity, 74% specificity,
67% PPV, and 95% NPV. Finally, if chart review defined
“definite” and “probable” HFpEF cases are considered
true cases, the algorithm has 86% sensitivity, 78% speci-
ficity, 75% PPV, and 88% NPV.

Table 2 demonstrates key demographics and clinical
characteristics of our HFpEF cohort. Mean age was 72.5 +
11.3  years. 96.5% were men and 12% were
African-Americans. As would be expected, more than
50% had hypertension, and there was a high prevalence of

Table 1 Comparison of 100 cases and 100 controls between
algorithm-defined and manual chart review for HFpEF validation

Algorithm
Case Control Total
Manual Chart Review  Case Definite HFpEF 67 5 72
(Gold Standard) Probable HFpEF 8 7 15
Likely HFpEF 21 1 22
Control  No HFpEF 4 87 91
Total 100 100 200

*Abbreviations: HF heart failure, HFpEF heart failure with preserved
ejection fraction
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atrial fibrillation, chronic obstructive pulmonary disease,
chronic kidney disease, diabetes, peripheral vascular dis-
ease, and coronary artery disease. About two-thirds of the
cohort were treated with renin-angiotensin system inhibi-
tors, and 7.5% were on spironolactone.

Discussion

In a national cohort of VA patients, we demonstrated
the feasibility of using NLP and EMR data to curate a
HFpEF cohort with high specificity. Combining struc-
tured elements (i.e. ICD9 code, clinical characteristics)
captured from EMR with a NLP tool to capture LVEF
from unstructured data, our algorithm was able to rap-
idly and accurately curate HFpEF from a large EMR
database. Our approach led to the creation of a cohort
of veterans with HFpEF which allows for investigation of
clinical predictors and outcomes in HFpEF.

Since HFpEF diagnosis requires clinical symptoms and
signs inclusive of laboratory data and radiographic images
and documentation of EF, correctly identifying HFpEF pa-
tients in a large cohort could be extremely challenging.
This is a major limitation for population-based HFpEF re-
search. The recent American College of Cardiology
(ACC)/American Heart Association (AHA) guidelines
suggested various cutpoints of EF values to diagnose dif-
ferent types of HF; including HFpEF with EF > 50%, heart
failure with reduced ejection fraction (HFrEF) with EF <
40%, HF with intermediate EF with EF 40-50%, and HF
with recovered EF whose values were <40% in past but
has now become >50% [3]. To our knowledge, no previ-
ous HFpEF database has tried to validate HFpEF patients
in a large database as per 2013 ACC/AHA guidelines
thereby excluding people with HF with intermediate EF
and HF with recovered EF. Hence our algorithm is able to
predict HFpEF patients with reasonable accuracy while ex-
cluding patients with HF with intermediate EF and HF
with recovered EF, due to our ability to extract all re-
corded LVEF values from EMR.

Similar approaches have been used to curate HF co-
horts from EMR databases. For example, Bielinski and
colleagues developed a tool to identify HF cases differen-
tiated as HFpEF and HFrEF in an EMR database [10]. In
this tool, HF was diagnosed using either ICD9 code of
428.0 or extracting the word “HF” from the problem list
in clinical notes. NLP is a unique and novel tool that
automatically extracts structured or semi-structured in-
formation from free text and has been used very com-
monly for clinical research [11]. Utilizing NLP to extract
LVEF values from clinical documents and algorithms in-
corporating demographics, comorbidities, laboratory,
and medications can assist better phenotyping of HFpEF
in a large EMR database. In the above-mentioned study,
HF was differentiated further into HFrEF and HFpEF
using a NLP tool that extracted LVEF values from
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Table 2 Characteristics of heart failure with preserved ejection
fraction cohort
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Table 2 Characteristics of heart failure with preserved ejection
fraction cohort (Continued)

HFpEF Cohort

HFpEF Cohort

N = 80,248 N = 80,248
Demographics Angiotensin converting enzyme (%) 522
Age (years) 725 (11.3) Angiotensin receptor blocker (%) 116
Male (%) 96.5 Beta blocker (%) 595
Black or African American (%) 123 Calcium channel blocker (%) 403
Body mass index (kg/m2) (%) Anticoagulants (%) 154
Underweight (< 18.5) 1.5 Antiplatelets (%) 116
Normal (18.5-24.9) 174 Digoxin (%) 9.0
Overweight (25.0-29.9) 27.0 Loop diuretics (%) 69.9
Obese (30.0-34.9) 237 Thiazide (%) 16.2
Morbidly obese (= 35.0) 303 Statins (%) 539
Clinical parameters Nitrates (%) 16.2
Heart rate (beats per minute) 76.2 (16.0) Spironolactone (%) 75
Systolic blood pressure (mmHg) 137.9 (234) *Missing values: Race-5275; body mass index-6991; heart rate- 3681; Systolic
) ) blood pressure- 4259; Diastolic blood pressure-4259; Serum sodium-13,623;
Diastolic blood pressure (mmHg) 730(132) Serum potassium-13,192; Hemoglobin-33,786; Serum BUN-17,050; BNP-59,469;
Mean LVEF (%) 599 (5.9) proBNP-76,896; Serum creatinine-14,085; eGFR-14,085; LDL cholesterol-47,133;
o HDL cholesterol-47,052; Triglycerides-46,795; Total cholesterol-45,165;
Laboratory parameters *Abbreviations: HFpEF heart failure with preserved ejection fraction, LVEF left
. . ventricular ejection fraction, BNP B-type natriuretic peptide, eGFR estimated
Serum sodium unit (mmol/L) 1388 (3.7) glomerular filtration rate
Hemoglobin (gm/dL) 124 (2.2)
BNP (pg/mL) 3135 (252.2) radiology reports. EF values were averaged from multiple
proBNP (pg/mL) 3974 (292.6) measurements. In contrast to this, our algorithm also
Serum creatinine (mg/dL) 14 (1.0) adds clinical characteristics such as usage of diuretics or
eGFR (ml/min/1.73m?) 60.7 (249) an e?e\./ated BNP/NTproBNP value to ensure ?ertltude
s fassium " 4205 of clinical heart failure. Furthermore, our algorithm en-
erum potassium (mmao . . .

P sured that all measured LVEF values were >50% which
Serum BUN (mg/dL) 233(105) ensured that our cohort did not have any overlap with
LDL cholesterol (mg/dL) 895 (35.2) HFrEF or with the category of subjects who previously
HDL cholesterol (mg/dL) 406 (14.0) had lower LVEF or those who developed HFrEF during
Triglycerides (mg/dL) 1434 (99.5) the course of follow-up in the database. Kottke et al.
Total cholesterol (mg/dL) 1574 (45.1) used a series of iterative algorithms to identify coronary
c it and HF events from EMR [12] They used Intelligent

omaorpiaities . . . .
Medical Objects, Inc. interface terminology (IMO terms)
Atrial fibrillation (%) 266 to classify coronary heart disease and HF, as major
Stroke (%) 62 EMRs including Epic, Cerner, and NextGen incorporates
Hypertension (%) 884 IMO terms in theirs software. They showed that IMO,
Chronic liver disease (%) 50 which is a more detailed coding system that tracks to
Chronic obstructive pulmonary disease (%) 47.1 ICD-‘9,‘ ICD_IQ’ ) and Systematized ) Nomend?ture of

o ) Medicine — Clinical Terms along with troponin levels

Chronic kidney disease (%) 264 X
and echocardiograhy data, has near perfect agreement to
. 0 . . ,
Diabetes (%) e classify cases with Cohen’s k 0.99 (95%CI 0.98-1.00).
Hyperlipidemia (%) 663 Our database consists of Computerized Patient Record
Peripheral vascular disease (%) 276 System software (universal EMR used in nationwide VA
Coronary artery disease (%) 455 hospitals), which allowed us to uniformly extract vari-
Sleep apnea (%) 164 ablés .from clinical documen.tatlons.
Listory of dial infarction () 845 Similar to ours, other algorithms have been developed for
IStory of myocardial Infarction . . .. . . .
yormy ’ various other clinical variables. Electronic Medical Records
PCI/CABG (%) 52

Medications

and Genomics (eMERGE) ePhenotyping algorithms were
developed using a similar iterative approach, where each
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clinical disorder algorithm goes through a series of itera-
tions until the algorithm performs to a desired criteria.
These algorithms have been successfully utilized to define
phenotypes in various clinical disorders including cataract
[13], dementia [14], type 2 diabetes [15, 16], diabetic retin-
opathy [14], resistant hypertension [14], peripheral arterial
disease [14], and primary hypothyroidism [17]. The
eMERGE network have also developed automated pheno-
typing algorithms that can be deployed to rapidly identify
diabetic and/or hypertensive chronic kidney disease cases
and controls in EMRs using diagnostic codes, laboratory re-
sults, medication and blood pressure records, and textual
information extracted from clinical notes, with positive pre-
dictive values of 96% and negative predictive values of 93%
[18]. Adding NLP tools or some form of automated
free-text narrative to extract data from clinical notes in
EMR has also shown to improve the positive predictive
value and sensitivity to accurately classify other medical co-
morbidities including psoriatric arthritis [19] and asthma
[20]. The online natural language processing case finding
algorithm was shown to be effective in identifying uncodi-
fied diabetes cases in Maine Health Information Exchange
EMR database; indicating a strong potential for application
of this method to achieve a more complete ascertainment
of diagnosis of diabetes mellitus [15]. A multi-modal strat-
egy like ours consisting of structured database querying,
natural language processing on free-text documents, and
optical character recognition on scanned clinical images,
was also used to result in >95% positive predictive value
for identifying cataract cases [13]. The usage of medications
and laboratory data used to treat and diagnose the clinical
disorder respectively improves the positive predictive value,
as shown in Chung et al. to identify rheumatoid arthritis in
admininstrative and claim databases [21], in Levine et al. to
identify skin and soft tissue infections in a primary care set-
ting [22], and in Corey et al. to identify non alcoholic fatty
liver disease disease in Research Patient Data Registry at
Partners Healthcare [23].

Our cohort is similar to other published epidemio-
logical and clinical trial cohorts like Treatment of Pre-
served Cardiac Function Heart Failure with an
Aldosterone Antagonist (TOPCAT) [24], Organized Pro-
gram to Initiate Lifesaving Treatment in Hospitalized
Patients with Heart Failure (OPTIMIZE-HF) [25], and
Acute Decompensated HEart Failure National REgistry
(ADHERE) [26] cohorts, however few differences exists.
Our VA cohort is predominantly male, and has more ex-
tensive comorbidity including a higher prevalence of
hypertension and diabetes, in comparison to OPTIMIZE
and ADHERE cohorts.

Limitations and strengths
There were limitations in our algorithm. We may not
have included all patients with HFpEF as we required
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stringent inclusion criteria, but this approach allowed us
to more confidently identify true HFpEF patients. We
did not have detailed echocardiographic parameters ex-
cept EF values to characterize diastolic HF and its sever-
ity, although recent ACC/AHA guidelines [3] do not
require these parameters in HFpEF classification. Care
received outside of VA medical centers may not have
been completely captured in this database, though the
inclusion of data derived from Centers for Medicare &
Medicaid Services enabled us to capture the vast major-
ity of events in those over 65 years old. Events in vet-
erans who were less than 65 years of age and ineligible
for Medicaid could have been missed. Nonetheless, there
were many strengths in this large cohort including a very
refined HFpEF cohort with availability of clinical param-
eters to define HF and all patients having EF >50% at
any time period during the follow up. We were able to
exclude anyone with HFrEF, HF with intermediate EF,
and HF with recovered EF. We included patients diag-
nosed with HF in ambulatory care setting; and as per
Koudstaal et al. patients admitted to hospital with wors-
ening HF but not known with HF in primary care have
the worse prognosis and management compared to
when they are known to have HF in an ambulatory care
setting [27]. This will help us to phenotype HFpEF pa-
tients in real word setting; a problem which previous
clinical trials failed to address.

Conclusion

In conclusion, using a combination of structured, clinical
parameters, and unstructured data, we have curated a
well-refined algorithm to identify HFpEF patients to
facilitate population-based research in HFpEF.
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