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Abstract

Background: Data on left ventricular (LV) function in patients with neurocardiogenic syncope (NS) is conflicting in
adults and lacking in children. The aim of this study was to analyze LV myocardial performance in children with NS
at rest and during head-up tilt-table (HUTT) testing.

Methods: This is the first study to combine HUTT and speckle-tracking echocardiography (STE) in children with NS.
43 consecutive normotensive pediatric patients with NS (mean age 13.9 + 2.6 years, 51% female) and 41 sex- and
age-matched healthy controls were included in the study. The study groups consisted of 21 patients with a positive
HUTT reaction (HUTT+) and 22 with a negative HUTT reaction (HUTT-). STE was used to analyze peak systolic LV
myocardial strain and strain rate.

Results: Conventional echocardiographic parameters were similar in all analyzed groups. When compared to
healthy controls, children with NS had depressed levels of circumferential strain rate (p =0.032) and significantly
depressed longitudinal strain rate (p < 0.001) at rest. Interestingly, during HUTT testing LV global strain and strain
rate were similar in both groups. LV strain rate was lowest in HUTT+ followed by HUTT- and control subjects both
at rest and during HUTT.

Conclusions: Resting LV longitudinal strain rate is attenuated in children with NS, especially in those with a positive
HUTT response. This is further evidence that NS patients feature altered cardiac mechanics rendering them prone to
vasovagal perturbations that can ultimately result in collapse.

Trial registration: Witten/Herdecke University ethics committee clinical study number: UWH-73-2014.
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Background

Syncope is a sudden, brief loss of postural tone and con-
sciousness followed by spontaneous recovery [1]. Up to
15% of children experience an episode of syncope to the
end of adolescence [2, 3]. While a few underlying etiolo-
gies include potentially life-threatening cardiogenic con-
ditions such as cardiac arrhythmia and structural heart
disease, most cases of syncope are of benign origin.
Vasovagal syncope - also known as situational, reflex or
neurocardiogenic syncope (NS) - is the most common
cause of pediatric syncope accounting for more than
50% of cases [4—6]. The development of effective therap-
ies for NS is hindered by the vague and yet conflicting
knowledge of the underlying pathophysiologic processes.
Sympathetic failure/withdrawal is thought to play a role
leading to decreased cardiac contractility and peripheral
vascular tone [7]. The “ventricular hypothesis” on the
other hand is based on an increase in left ventricular
(LV) contractility — i.e. due to ventricular underfilling,
sympathetic overactivity or hypovolemia. This may result
in LV mechanoreceptor activation, the Bezold-Jarisch re-
flex, which in turn causes systemic hypotension, periph-
eral vasodilation and severe bradycardia [8]. However,
the origin of the precipitating hemodynamic changes
and the specific underlying pathomechanisms resulting
in vasovagal syncope in children yet remain a subject of
considerable speculation.

Advanced echocardiography techniques — including
tissue-Doppler echocardiography (TDI) and speckle-
tracking echocardiography (STE) — are promising modal-
ities for the real-time quantitative evaluation of myocar-
dial performance without the disadvantages of adverse
effects or high costs. Based on TDI studies, cardiac me-
chanics such as left atrial and LV filling and contractility
are postulated to be altered in neurocardiogenic syncope
in adults [9, 10]. STE is reproducible tool for the detection
of myocardial strain and strain rate [11, 12]. It has been
successfully used to detect subclinical myocardial dysfunc-
tion in a variety of clinical settings such as arterial hyper-
tension [13], systemic inflammatory disease [14], diabetes
mellitus [15] and short-term alterations of glucose metab-
olism [16]. In 2013, the “ventricular theory” was funda-
mentally questioned by Goel et al. as they reported a
paradoxical decrease of LV strain in adults with neurally
mediated syncope and a positive head-up tilt-table
(HUTT) exam utilizing STE [17]. However, echocardio-
graphic assessment of cardiac strain was not performed at
the same time as tilt-testing and LV strain rate — which,
other than strain, is less dependent of cardiac loading
conditions and therefore a better parameter to reflect
LV contractility [18] - was not measured. This is the
first study utilizing speckle-tracking imaging to shine
a light on real-time cardiac mechanics in HUTT test-
ing in children with vasovagal syncope.
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Methods

Study population

In this prospective study, we altogether enrolled 84 children
— 43 consecutive normotensive pediatric patients aged 13.9
+ 2.6 years (51% female) with a history of vasovagal syncope
and 41 healthy sex- and age-matched controls (13.3 3.
1 years, 53% female) without medical problems and with a
normal transthoracic echocardiogram. A priori, the study
group was further sub-categorized according to their
HUTT exam reaction. Inclusion criteria for the study group
were a typical history of NS, age < 18 years and a written in-
formed consent signed by the patient and their legal guard-
ian. Moreover, the presence of any acute or chronic
condition that might affect the cardiovascular system (e.g.
infections, metabolic conditions such as diabetes mellitus,
inflammatory disease, renal disease), ECG abnormalities,
chronic medication use and the lack of cooperation to par-
ticipate in this voluntary HUTT study were strict exclusion
criteria. 60 patients were excluded from the study due to
various reasons: 53 were incompliant regarding the HUTT
challenge, 2 patients were obese (BMI > 30), 2 had insuffi-
cient image quality at baseline and in 3 patients the con-
tinuous ECG signal was corrupted due to technical
difficulties which made consecutive speckle tracking post-
processing impossible. The study was carried out in accord-
ance with the declaration of Helsinki’s ethical principles for
medical research involving human subjects and approved
by the Witten/Herdecke University ethics committee (clin-
ical study number: 73/2014).

Conventional echocardiography

The study took place in a calm room with dimmed lights
and at normal room temperature. We performed a com-
prehensive spectral and color flow Doppler echocardio-
graphic study in all included children according to the
current guidelines of the American Heart Association
[19]. We used an S5-1 Sector Array transducer (Sector
1-5 MHz) and the commercially available ultrasound
device iE33 by Phillips Ultrasound Inc., USA. Echocar-
diographic images were acquired using a standardized
protocol. First, the images and cine loops were digitally
recorded in the apical 4-, 3- and 2-chamber views, the
parasternal long axis view and in two short axis views at
the mitral level and at the level of the papillary muscles.
Subsequently, the raw data was transferred to a separate
offline workstation for later analysis. XCelera Version 3.
1.1.422 by Phillips Ultrasound Inc., USA was used for
conventional echocardiographic parameter analyses. M-
mode images were recorded and analyzed according to
the standardized American Society Echocardiography
(ASE) protocol [20]. For the assessment of LV diastolic
function pw-Doppler and pw-TDI were utilized and E/
A-ratio, E/E’-ratio and mitral deceleration time were
measured as previously described [21]. Z-scores were
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used to evaluate all conventional echocardiographic pa-
rameters [22].

Speckle tracking echocardiography

STE was performed using standard cross-sectional 2D
grayscale LV B-mode images to measure strain and
strain rate as described previously by our group [23].
Briefly, circumferential strain and strain rate were mea-
sured in the standard parasternal short-axis at the papil-
lary muscle plane and longitudinal strain and strain rate
were measured in standard apical 4-chamber view.
Frame rate was adjusted to 60-90 frames/second and
three to five consecutive cardiac cycles synchronized to
a continuous ECG were recorded. Caution was paid to
minimize artifacts during echocardiographic image ac-
quisition. QLAB Version 10 was used on an off-line
workstation to postprocess the anonymized digitally
stored DICOM data. Importantly, all involved echocar-
diographic examiners and interpreters were blinded to
the study group status of each participant. Throughout,
we verified tissue tracking quality frame-by-frame, in
real-time and full thickness coverage of the entire myo-
cardial wall from the endocardial to the epicardial con-
tours was readjusted by hand, where necessary.

Head-up tilt-table challenge

To unmask potential abnormalities in myocardial per-
formance that might remain undiscovered at rest and to
study cardiac mechanics during HUTT gravitational
challenge, after the resting conventional and STE exam
we additionally exposed the study population to a
HUTT test and performed STE simultaneously. The
HUTT exam was carried out according to the standard
Newcastle protocol as previously described [24]. Specif-
ically, patients were fasted for 2-3 h prior to the study
and were first reclined in a flat lying position for at least
10 min. Subsequently, the table was tilted to a 70-degree
angle in less than 10 s. Patients were kept in that pos-
ition for a maximum of 30 min. A positive HUTT test
(HUTT+) was defined as the development of presyncope
with a significant drop in blood pressure (<70 mmHg
systolic) and the production of clinical symptoms such
as dizziness, severe nausea or the sudden loss of con-
sciousness. Strict termination criteria were the patient’s
wish to end the exam or the occurrence of a syncope or
presyncope. Echocardiographic images were repeatedly
acquired in the 70-degrees “hanging” position according
to the same standardized scheme of consecutive viewing
planes used for the above-mentioned baseline STE as-
sessment. To achieve comparable hemodynamic circum-
stances for all patients, we analyzed the last recorded
echocardiographic images prior to the termination of
the study. Peripheral blood pressure measurements were
obtained at 2-min intervals and a 12-channel ECG was

Page 3 of 10

continuously monitored. The reported hemodynamic pa-
rameters (i.e. heart rate, blood pressure) reflect the time
at which the echocardiographic images were recorded.
After the HUTT test, patients were kept in a lying pos-
ition for at least 10 min or until the completely recov-
ered (e.g. post-syncopal).

Biostatistical analyses

Demographic data, baseline clinical parameters,
hemodynamics and echocardiographic aspects are pre-
sented as mean and standard deviation. Analysis of vari-
ance (ANOVA) testing was used to compare clinical,
hemodynamic and echocardiographic data of the ana-
lyzed groups. Strain and strain rate are displayed as box-
whisker-plots. Bonferroni correction was applied to ex-
clude multiple testing bias. Hence, p-values <0.0025
constituted statistical significance. Microsoft Excel Ver-
sion 16.0 for PC and GraphPad Prism Version 6 (Graph-
Pad Software, Inc.,, La Jolla, CA, USA) were utilized for
all statistical tests.

Results

Patient characteristics

Baseline clinical characteristics are outlined in Table 1.
Children with NS and a positive HUTT exam (HUTT+)
were aged 13.4 + 2.8 years, HUTT- group mean age was
14.4 £ 2.3 years and healthy controls were 13.3 + 3.1 years
old (p=0.318). Height (p =0.375), body weight (p=0.
101), body mass index (p = 0.1) and body surface area (p
=0.165) were not statistically different between the three
groups. All these values were within normal limits as
evaluated by Z-scores. HUTT response was positive in 21
of the 43 patients with NS and 2 of the 41 healthy controls
(p < 0.001). Hemodynamic parameters, e.g. heart rate and
arterial blood pressure did not differ between the three
groups neither at rest nor at the moment of STE assess-
ment during HUTT testing (0.2 < p < 0.964).

Conventional echocardiographic parameters

Standard 2D derived conventional echocardiographic pa-
rameters were similar in all groups (Table 2). In detail,
M-mode measurements yielded comparable LA/Ao ratio
(p = 0.480), fractional shortening (p = 0.760), LV dimen-
sions (p >0.15) and LV mass (p =0.578). LV stroke vol-
ume was lowest in the HUTT+ group (46.7 £ 17.3 vs. 53.
5+21.3 vs. 53.8£17.6 ml) when compared to HUTT-
and healthy control subjects. However, this difference
was not statistically different (p =0.796). Moreover, LV
ejection fraction (EF) was 54.3 £ 2.9% in syncope HUTT
+ patients, 54.7+6.6% in HUTT- and 56.7 +4.4% in
healthy controls (p = 0.263). Furthermore, diastolic func-
tion as reflected by E/A ratio and E/E’ did not differ sig-
nificantly between the analyzed groups (p=>0.352).
Mitral deceleration time was longer in the HUTT- group
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Table 1 Baseline clinical characteristics and hemodynamics of the study population

Syncope (HUTT+) Syncope (HUTT-) Control p-value (ANOVA)
(n=21) (n=22) (n=41)
Age (years) 13431284 1443 +£231 1330+3.06 0318
Height (cm) 160.14 + 2049 164.24 +17.06 15765+ 1567 0.375
Weight (kg) 56.29 +21.49 60.10+£19.28 4995+ 1534 0.101
Female gender (%) 66.7% 40.9% 53.66% 0.184
Body surface (m?) 1.57+0.39 1.65 £0.34 148 £0.29 0.165
Body mass index (kg/mz) 2107 £4.66 2165+362 1962+3.2 0.1
Positive tilt-table test (n) 21 0 2 0.001
Baseline Heart rate (bpm) 81.18+18.39 82.27 +23.38 8042 + 1333 0.964
BP systolic (mmHg) 11312+ 2642 122,02 +52.76 111.29+£19.02 0436
BP diastolic (mmHg) 76.02 £24.96 77.64 3585 64.02+18.36 02
HUTT Heart rate (bpm) 9324 +26.7 10141 +27.19 96.82 +16.03 0.605
BP systolic (mmHg) 133.16 £45.09 13371 +£41.63 12870+ 13.56 0.866
BP diastolic (mmHg) 85.94 +34.98 87.06+3233 7797 £18.09 0.580

(0.20 £0.07 s, p =0.028) but similar in HUTT+ patients
with NS and healthy controls (0.17 £ 0.07 vs. 0.16 £ 0.
06 s). However, these values were still within normal
limits as evaluated by population-based age-specific ref-
erence values [25].

Speckle tracking echocardiography

At rest, median peak systolic LV circumferential strain
rate (- 1.46 + 0.47 vs. -1.59+0.69 vs. -1.75+0.47 s™ ', p
=0.032) and median peak systolic longitudinal strain
rate (- 1.08 + 0.45 vs. -1.16 + 0.18 vs. -1.39+0.49 s™ !, p
<0.001) were lowest in children with NS and a positive
HUTT exam (HUTT+) as compared to the HUTT-
group and healthy controls (Table 3, Fig. 1). In contrast,
there was no statistically significant difference between
patients with NS and healthy controls regarding peak LV

global circumferential strain or global longitudinal strain
at baseline.

During HUTT testing, longitudinal strain rate was
lower in children with NS (HUTT+ < HUTT-) than in
the control group, but the difference was not statistically
different (p = 0.144, Fig. 2). Peak LV global circumferen-
tial strain and global longitudinal strain were similar in
all groups during HUTT testing (Fig. 2). The combin-
ation of STE and HUTT was feasible in 15 (72%) HUTT
+ patients, 14 (63%) HUTT- patients and 16 (39%)
healthy controls. A representative echocardiographic
image sample of STE assessment in a child with NS is
given in Fig. 3.

While the overall comparison to healthy controls
revealed LV myocardial strain rate at rest to be signifi-
cantly lower in patients with neurocardiogenic syncope,
we also observed a heterogeneous distribution of LV

Table 2 Conventional echocardiographic parameters derived from two-dimensional and Doppler imaging

Syncope (HUTT+) Syncope (HUTT-) Control p-value (ANOVA)

(n=21) (n=22) (n=41)
LA/AoR 1.08 £0.13 1.15£0.17 107 £0.15 0480
Fractional shortening (%) 3448 + 9.65 3365 +9.18 3402 +3.14 0.760
Interventricular septal end-diastolic diameter (cm) 097 +£ 036 0.86 + 0.29 083 +£0.14 0.150
LV end-diastolic diameter (cm) 435+ 1.26 424 + 131 441 +£0.76 0.764
LV posterior wall diameter. Diastolic (cm) 101 £032 098 £ 0.31 09+ 024 0.244
LV mass (g) 149.65 + 74.99 130.55 + 63.00 12841 + 60.62 0.578
LV end-diastolic volume (ml) 91.08 = 29.21 093.59 + 36.73 94.92 + 30.29 0.937
Ejection fraction (%) 5425 + 294 54.69 + 6.59 56.66 + 443 0.263
Stroke volume (ml) 46.76 £ 17.34 5349 + 21.29 53.79 £ 17.61 0.796
E-Wave / A-Wave 212 + 068 2.16 + 085 1.95 + 0.65 0.352
Mitral deceleration time (s) 0.17 = 0.07 0.20 + 0.07 0.16 + 0.06 0.028
E/E (cm/s) 746 £ 1.11 7.56 £ 2.35 7.25 £ 184 0.833
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Table 3 Speckle tracking derived peak systolic LV strain rate at rest and during head-up tilt table testing

Syncope (HUTT+) Syncope (HUTT-) Control p-value (ANOVA)
(n=21) (n=22) (h=41)
Baseline Circumferential strain rate (s™) —1.46 +047 —1.59+0.69 —1.75+047 0.032
Longitudinal strain rate () —1.08 +045 —-1.16+0.18 —139+049 < 0.001
Circumferential strain (%) -219+724 —2299+782 —2400+5.89 0.186
Longitudinal strain (%) -2131+£89 —20.94 +1.94 —2048 £5.21 0468
(n=15) (n=14) (n=16)
HUTT Circumferential strain rate (s~ —1.46 +0.69 —151+0.54 —149+0.25 0.860
Longitudinal strain rate (s') -1.03+052 -1.07+028 -1.14+ 059 0.144
Circumferential strain (%) —2224+10.69 —-2198+7.71 — 2246+ 367 0915
Longitudinal strain (%) -2048 £1047 -20.86 +£5.54 —2093+£1098 0.926

deformation in those patients. Interestingly, a subset of
patients with NS had high LV circumferential (n =4) or
longitudinal strain rate values (n =2; both had also in-
creased circumferential strain rate) at rest (> top quartile
of healthy controls). Interestingly, all of these patients
were in the HUTT- group. One of the four patients was
female and one had a history of more than one syncopal
episode. The average blood pressure of this subgroup
was 121 +9 mmHg systolic and 68 + 2 mmHg diastolic
and the average heart rate was 74 + 10 bpm at. None of

the patients with NS and a positive tilt-table response
had resting LV longitudinal or circumferential strain rate
values > the top quartile of the healthy control group.

Discussion

This is the first study to simultaneously perform
speckle-tracking echocardiography (STE) and head-up
tilt-table (HUTT) testing in children with NS. Interest-
ingly, we found LV resting longitudinal strain rate to be
significantly lower in NS patients than in healthy

Baseline
Circumferential strain rate Longitudinal strain rate
Syncope Syncope Syncope Syncope
(HUTT+) (HUTT-) Control (HUTT+) (HUTT-) Control
L 1 1. 0.0 A1 1 1.
= — -0.54
b 44 )
o o -1.01
[ s
£ £ -1.54
£ 2 £
n 9 2.0
-p<0.001
-3 25
Circumferential strain Longitudinal strain
Syncope Syncope Syncope Syncope
(HUTT+) (HUTT-) Control (HUTT+) (HUTT-) Control
c AL 1 1. A 1 s
=10
9 101
£ -201 £
o g
o & 204
=30
-40- -30
Fig. 1 Left ventricular circumferential and longitudinal strain and strain rate at baseline. p-values were calculated using the Mann-Whitney-U test
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Mann-Whitney-U test

Head-up tilt-table
Circumferential strain rate Longitudinal strain rate
Syncope Syncope Syncope Syncope
(HUTT+) (HUTT-) Control (HUTT+) (HUTT-) Control
1 1 L. o 1 1.
=09 0.5
L L
o -1.04 )
s S -1.0- i
«© «©
= = -1.5
9 2,04 o -
25 20
Circumferential strain Longitudinal strain
Syncope Syncope Syncope Syncope
(HUTT+) (HUTT-) Control (HUTT+) (HUTT-) Control
c o 1 1. c o 1 1.
-104
g g 1
» &» -20
=30

Fig. 2 Left ventricular circumferential and longitudinal strain and strain rate during head-up tilt testing. p-values were calculated using the

controls with a more pronounced decrease in the HUTT
+ group. During HUTT challenge we found a similar but
not statistically significant tendency of lower longitu-
dinal strain rate in patients with NS. This is in line with
findings from Kojo et al, who utilized a Doppler flow
meter during HUTT testing and found reduced carotid

artery blood flow in pediatric patients with NS [26]. Our
findings are furthermore in agreement with results from
Sucu and colleagues, who detected atrial conduction
delay in adolescents and young adults with NS [27].
Moreover, our data is in accordance with a HUTT echo-
cardiography study in adults reporting that vigorous

SAXM 111
16:52:45
HR = 562 bpm

Fig. 3 Echocardiographic image examples of speckle tracking derived left ventricular circumferential (a) and longitudinal (b) strain rate analyses in

a patient with neurocardiogenic syncope

AP4 11
16:56:11

* HR = 66 bpm
( HR Variation >10%)
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contraction is probably less responsible for vasovagal
syncope release than left ventricle volume reduction
[28]. Similarly, HUTT+ NS patients had reduced end-
systolic stress, LV volume, and chamber function during
HUTT testing in another study, which provides further
evidence that if paradoxic activation of LV mechanore-
ceptors has a role in mediating NS, it is not triggered by
increased systolic wall stress or LV hypercontractility [8].

On the other hand, our findings are counterintuitive
in the light of the “ventricular theory” in that we did not
measure an increase but a decrease in LV contractility in
patients with NS and a positive HUTT response. This,
however, apart from the fact that the ventricular hypoth-
esis is far from being established conclusively, is in
agreement with a similarly performed study by Goel et
al., who report attenuated resting LV strain in HUTT+
patients and conclude that — other than previously be-
lieved — increased resting LV contractility is not a pre-
requisite for the development of NS [17]. Notably, even
though the authors have measured a similar
phenomenon as we did in this study, their study bares
significant technical limitations which gives incremental
value to our observations. Firstly, Goel et al. have per-
formed STE measurements on a different day then
HUTT challenge. Moreover, they utilized LV strain as a
measure for LV contractility; strain rate was not
assessed. Importantly, STE-derived strain rate has been
shown to be more robust to dynamic ventricular unload-
ing than strain in several well-performed animal experi-
mental studies [29-31]. In humans, LV strain has been
shown to be affected by changes in cardiac loading con-
ditions such as hemodialysis [32] or gravitational gradi-
ents [33]. Furthermore, other than strain, strain rate has
been demonstrated to be unaffected by preload and cor-
relate well with end systolic elastance as verified by inva-
sive catheterization [18]. In addition, utilizing a stress
testing echocardiography set up, strain rate has been
shown to reflect myocardial contractility demonstrat-
ing a positive force-frequency relationship in both
children and young piglets [34]. In conclusion, our
study closes that gap as we performed STE and
HUTT on the same occasion and detected LV strain
rate in addition to LV strain.

The cardiac autonomic response pattern of patients
with NS during HUTT challenge has been distinguished
between HUTT+ and HUTT- patients in previous stud-
ies [35]. In line with this, we measured more attenuated
longitudinal strain rate in HUTT+ patients. The lack of
statistical significance for circumferential strain rate and
longitudinal strain rate during HUTT is most probably a
result of the limited sample size as well as suboptimal
image quality during HUTT testing. In the present
study, we further found HUTT+ patients to have a lower
LV stroke volume when compared to HUTT- and
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healthy control subjects. This is in accordance with the
findings from Moon et al, who described decreased left
atrial volumes in HUTT+ patients and concluded a lim-
ited intracardiac volume reserve to play an important
role in the mechanism of NS [36]. A subset of patients
with NS had increased strain rate values — correspond-
ing to a “hyperdynamic” type of NS. Interestingly, none
of those patients had a positive response during HUTT
challenge. While one could speculate about the patho-
physiologic significance of this observation, the small
sample size underlying this finding should be taken into
consideration. Hence, no definite conclusion can be
drawn from this observation at this point. Future studies
should further investigate the different types of LV de-
formation in patients with NS with a specific focus on
hemodynamics and cardiomechanics.

Another unresolved issue regarding the enigmatic
pathogenesis of NS is the factor age. Even though youn-
ger and older patients react differently on the HUTT, es-
pecially in the early phase [37], the role of the
autonomic nervous system for the etiology of NS seems
to be similarly important in adults and children [38]. In
extreme cases, the cardioinhibitory effect of the adult
autonomous nervous system can reach an extent that
can cause death, ie. cardiac arrest due to extensive in-
hibitory vagal reflex following a laryngoscopic procedure
[39]. Neither has a definite origin in the pathogenesis of
neurally mediated syncope been identified, nor do previ-
ous studies point toward a definite answer for the
“chicken or egg” question. While the “ventricular theory”
is centered on the heart as the primarily malfunctioning
source, arterial distensibility was also shown to be de-
creased in patients with recurrent episodes of NS [40].
Similarly, Sucu and colleagues have reported increased aor-
tic stiffness as expressed by altered aortic strain in mid-
aged adults with NS and a positive HUTT response [41].

Interestingly, based on the evidence of fear and threat
bradycardia in animals and the beneficial vasovagal re-
flex during hemorrhagic shock in humans and animals,
some researchers suggest NS not to be a recently
evolved human-only disease but rather the remnant of
an ancient defense mechanism that has once reduced
myocardial oxygen consumption and supported
hemostasis before the development of larger blood losses
[42-44]. Under this assumption, it is well imaginable,
that this trait is now differentially passed on to subse-
quent generations and therefore despite being common
it is variously pronounced which could explain the dif-
ferent response patterns during HUTT challenge. The
principle mechanism during the actual faint is an im-
paired ability to maintain vasomotor tone in the skeletal
muscle blood vessels due to sympathetic withdrawal
[45]. While — due to the technical design of this study —
we did not perform STE during the event of fainting
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(HUTT+ group), we assessed LV performance at rest
and during HUTT testing before termination of the chal-
lenge. The detected lower strain rate may reflect a lower
sympathetic tone and thus decreased LV performance
which may be a relevant factor in the etiology of NS.

Limitations

Despite the incremental value of these findings, this
study design bares important limitations. Firstly, while
STE has been implemented in specific clinical practice
of pediatric cardiology, i.e. to monitor cardiotoxicity in
chemotherapy patients [46], it is still mostly used in ex-
perimental settings. Solid cut-off points for pathologic
values, especially for strain rate, are still missing and the
technique is subject to relevant inter-vendor inconsist-
ency [47, 48]. Interpretation of STE derived myocardial
performance parameter is complex and limited by a var-
iety of factors [49]. Secondly, the combination of STE
and HUTT is challenging both for the patient and the
involved examiner. When performed according to a
standardized protocol, HUTT testing has been shown to
be highly reproducible [50]. However, reliable STE mea-
surements require optimal image quality, the absence of
artifacts and thorough noise-reduction. We proceeded as
previously suggested by limiting deformation analysis to
subjects with adequate imaging quality to achieve favor-
able accuracy [51]. Consequently, as substandard echo-
cardiographic image quality is unavoidable during
HUTT testing when the patient is placed in a 70-degree
hanging position, not to mention the important factor of
patient compliance — especially in children — the results
of STE during HUTT challenge must be interpreted with
caution. Nevertheless, the most important observation
of this study was detected at baseline under normal im-
aging conditions.

Conclusion

This study provides further evidence that decreased LV
resting performance may be a relevant factor in the eti-
ology of neurocardiogenic syncope in children. Further
experimental animal and human studies should be de-
signed to investigate LV contractility in children and
adults with NS under different cardiac loading condi-
tions at baseline and in the context of HUTT challenge.
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