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Abstract

Background: Patients with coronary artery disease can accumulate significant radiation dose through repeated
exposures to coronary computed tomographic angiography, myocardial perfusion imaging with single photon
emission computed tomography or positron emission tomography, and to invasive coronary angiography. Aim of
the study was to audit radiation doses of coronary computed tomographic angiography, single photon emission
computed tomography, positron emission tomography and invasive coronary angiography in patients enrolled in
the prospective, randomized, multi-centre European study—EVINCI (Evaluation of Integrated Cardiac Imaging for the
Detection and Characterization of Ischemic Heart Disease).

Methods: We reviewed 1070 tests (476 coronary computed tomographic angiographies, 85 positron emission
tomographies, 310 single photon emission computed tomographies, 199 invasive coronary angiographies) performed
in 476 patients (mean age 60 + 9 years, 60% males) enrolled in 12 centers of the EVINCI. The effective doses were
calculated in milli-Sievert (mSv) as median, interquartile range (IQR) and coefficient of variation of the mean.

Results: Coronary computed tomographic angiography (476 exams in 12 centers) median effective dose was 9.

6 mSv (IQR = 13.2 mSv); single photon emission computed tomography (310 exams in 9 centers) effective dose was
9.3 (IQR = 2.8); positron emission tomography (85 in 3 centers) effective dose 1.8 (IOR =1.6) and invasive coronary
angiography (199 in 9 centers) effective dose 7.4 (IQR = 7.3). Inter-institutional variability was highest for invasive
coronary angiography (100%) and coronary computed tomographic angiography (54%) and lowest for single
photon emission computed tomography (20%). Intra-institutional variability was highest for invasive coronary
angiography (121%) and coronary computed tomographic angiography (115%) and lowest for single photon
emission computed tomography (14%).

Conclusion: Coronary computed tomographic angiography and invasive coronary angiography doses vary
substantially between and within centers. The variability in nuclear medicine procedures is substantially lower.
The findings highlight the need to audit doses, to track cumulative exposures and to standardize doses for
imaging techniques.

Trial registration: The study protocol is available at https://www.clinicaltrials.gov/ (ClinicalTrials.gov Identifier:
NCT00979199). Information provided on September 16, 2009.
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Background

Medical imaging is an important cause of exposure to
radiation, and cardiac imaging in particular has contrib-
uted greatly to its recent increases, especially in patients
with known or suspected coronary artery disease (CAD)
[1, 2], such as those involved in the EVINCI study, which
was designed to identify the optimal noninvasive strategy
to diagnose significant CAD [3]. Radiation dose is an im-
portant component of the ratio of benefit to risk for any
given combination of diagnostic tests being related to the
possible long term adverse risks [4, 5]. It has therefore
been proposed that the total effective dose (E) per episode
of care should be documented so that lifetime exposure
can be estimated [6—8]. Estimated cumulative E is a po-
tential safety metric for patients with common clinical
conditions [9], and it is especially relevant in patients with
known or suspected CAD, whose cumulative radiation
exposure has risen 4-fold in the last 40 years [10] because
of increases in the use of imaging tests.

The aim of this study was to evaluate the E of patients
with intermediate likelihood of CAD enrolled in the
EVINCI trial, which evaluated the accuracy of a com-
bination of a non-invasive purely anatomical imaging as
coronary computed tomographic angiography (CCTA)
with a non-invasive functional approach as myocardial
perfusion imaging with single photon emission com-
puted tomography (SPECT) and positron emission
tomography (PET) for the identification of anatomically
and functionally significant CAD, as defined by invasive
coronary angiography (ICA) [3].

Methods

Study population

The study included 476 consecutive patients (mean age
60+ 9 years, 286 males) prospectively enrolled in the
EVINCI trial, which studied 697 patients between January
1, 2009 and May 20, 2012, from 12 different European
institutions [3]. The study protocol is available at http://
www.clinicaltrials.gov (NCT00979199). The main aim of
the EVINCI study was to identify the optimal strategy for
noninvasive detection of CAD. By inclusion criteria, all
patients had intermediate likelihood of CAD and no
previous myocardial infarction, percutaneous coronary
intervention or coronary artery bypass grafting. Major
exclusion criteria were: age < 30 > 75 years; left ventricular
dysfunction (EF <35%); low or high (<=20%, >=90%)
probability of CAD; persistent atrial fibrillation or ad-
vanced AV Block; asthma or chronic treatment with ami-
nophylline; <6 months cerebral ischemic attack; peripheral
vascular disease; cancer; severe hypertension; congenital
heart disease; significant valvular disease; inability to
provide an informed consent. The radiation sub-study
included only patients in which the radiation dose was
recorded at the end of at least one test and sent to the

Page 2 of 8

core lab. The correct recording of dose was obtained in
476 of the initial enrolled 697 patients; of these, 78 were
drop-outs and 619 had an imaging evaluation; of these
619, 476 (77%) had the radiation dose information and
represent the population of the present study. ICA con-
ducted at the same time as percutaneous coronary
intervention was excluded because of the difficulty of
separating the dose of each procedure. The characteris-
tics of the patients are reported in Table 1.

Dose estimates

To evaluate the radiation exposure for each imaging
procedure, we obtained estimates of typical E (assessed
in mSv).

Nuclear medicine

The E from nuclear medicine was estimated from the
radiopharmaceutical used and its activity. Coefficients
relating E to administered activity were obtained from
the addenda to International Commission on Radiologic
Protection Publication 53 [11, 12].

CCTA

The E for CCTA to 70 kg patients was obtained by the
use of a conversion factor between E and dose length
product (DLP) in cardiac examinations of 0.026 mSv/
milligray.(mGy).cm which takes into account ICRP 103
weighting factors and is valid at 120 keV [13]. E for a
patient of weight W was computed as:

Table 1 Patient characteristics

Number 476
Age, yrs, mean + SD 60+9
Male, no. (%) 286 (60)
>1 vessel disease, no.(%) 110 (23)
Hypertension, no. (%) 298 (62)
Diabetes, no. (%) 120 (25)
Hypercholesterolaemia 284 (59)
Smoking, no. (%) 120 (25)
Family history of CAD, no. (%) 166 (34)
BMI, kg/m2, mean + SD 2790+47
No risk factors 42 (9)
Angina

Typical 126 (26)

Atypical 292 (61)
ECG

Abnormal 97 (20)

Normal 360 (75)
Therapy 397 (83)

BMI body mass index
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E(mSv) = DLP(mGy.cm)
x 0.026(mSv.mGy '.cm™) x R(W)

where R(W) is a dimensionless patient weight correction
factor reported by Huda et al. [14] as:

R(W) = 1.73-1.33E-2W + 4.04E-5W>

with W expressed in kg. Because R(W) is applied to all
irradiated organs in each CCTA scan, Es can be adjusted
for patient size by using the same scaling factor as
applied to organ doses.

ICA

Finally the E for ICA was obtained by the use of the Na-
tional Radiological Protection Board (NPRB) model which
assumes a conversion factor between E and dose-area
product, measured in Gy.cm? of 0.18 mSv.Gy *.cm™2 [15].

Statistical analysis

Data were described using median and interquartile range
(IQR) for non-normal distributions and mean, standard
deviation and coefficient of variation for normal distribu-
tions. Inter-institutional variability was expressed as the
coefficient of variation of mean E. Intra-institutional
variability was expressed as the average coefficient of vari-
ation of mean E in each center. Comparison between
groups was performed using Fisher’s exact test for
categorical variables and Mann-Whitney U test or
Kruskal-Wallis for non-normally distributed continuous
variables with two groups or more than two groups, re-
spectively. Hierarchical regression model adjusted for age,
sex and BMI was used to evaluate the possible influence
on E of type of equipment for each procedure and of
protocol for SPECT. Box and whiskers plots were used to
provide a univariate graphical representation of E ob-
tained in the different centers for the different imaging
techniques. Outliers and extremes were defined as
points higher than the value of the 75th percentile plus
1.5 or 3 times the interquartile distance, or lower than
the value of the 25th percentile minus 1.5 or 3 times the
interquartile distance, respectively. All statistical ana-
lyses were carried out with Statistica software, version
6.0 (Statsoft) using a two-sided type I error rate of 0.05.

Results
Radiation dose was available in 1070 imaging tests
performed in 476 patients (286 males, 60%). Table 2 shows
the scanner types in use in the different centers. The imaging
procedure radiation dose distribution is shown in Table 3.
Four hundred seventy-six CCTA were obtained in 12
centers, 394 myocardial perfusion imagings, of which 85
PET in 3 centers and 310 SPECT in 9 centers (1 patient
performed both); 199 ICA in 9 centers.
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Table 2 Scanner manufactures and type

Procedure  Scanner Manufactures  Type Centers
CCTA
General Electric Light Speed VCT
Philips Brilliance 64 4
Siemens Somatom Definition DS 1
General Electric PET/CT Discovery 690 1
Siemens PET/CT Biograph 16 1
Siemens Somatom Definition Flash 1
SPECT
General Electric Discovery NM 530C 1
Picker Axis 1
General Electric Millenium VG 2
General Electric Infinia Hawkey 4 3
Philips Brightview XCT 1
Siemens Ecam 1
ICA
General Electric Integris Allura 9 biplane 1
Siemens Axiom Artis 2
Philips Allura XPER FD10 3
General Electric Innova 2100 1
PET
General Electric Discovery 690 3

CCTA coronary computed tomographic angiography, SPECT single photon
emission computed tomography, ICA invasive coronary angiography, PET
positron emission tomography

Estimates of E for each of the procedures (CCTA,
SPECT, PET, ICA ) are shown: the mean highest dose
was obtained for CCTA and the lowest for PET. Intra-
institutional variability was highest for ICA (121%) and
for CCTA (115%) and lowest for SPECT (14%). Inter-
institutional variability was highest for ICA (100%) and
for CCTA (54%) and lowest for SPECT (20% ) (Table 3).
The variability for each test is shown in Figs. 1 and 2.
The results of hierarchical regression model adjusted for
age, gender and BMI are presented in Table 4.

The type of equipment was a significant independent
predictor of E for each imaging procedure although the
percent of E variability accounted for by this predictor
was only 1,2% for CCTA and 7 and 8,7% for SPECT and
ICA respectively. When the type of SPECT protocol
was added to the regression model the predictive power
increased of 15%.

E was significantly different between males and females
for ICA (15+ 15 versus 9 +13, P=0.001) and SPECT
(11 + 3 versus 10 + 3, P=0.011). Mean age was 60 + 9 with
centers ranging from 65 + 6 to 54 + 8 years (P < 0.001); its
predictor effect was significant for SPECT and ICA E.
Mean body mass index was 28 + 4, with centers ranging
from 25 + 5 to 29 + 4 (P = 0.007).
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Table 3 Effective dose estimates for the different centers

Center CCTA (mSv) SPECT (mSv) PET (mSv) ICA (mSv)

V% N Mean + SD V% N Mean + SD V% N Mean + SD V% N Mean + SD

Median, IQR Median, IQR Median, IQR Median, IQR

1 26 64 99+26 22 57 18+04 121 49 92+112
9.6,1.1 20,02 63,62

2 58 71 31+18 14 71 10.1+£14 1 1.0 102 15 18.7+£19.1
25,14 94,28 12.1,245

3 54 3 122+66
15.6, NC

4 38 42 145+£55 17 43 140+ 24 65 30 55+36
129,81 142,38 45,43

5 92 34 6.7 +62 33 25 9.1+30 32 4 20+06
45,09 92,51 20,09

6 20 15 13.0+26 14 16 95+13
13.7,40 92,07

7 27 17 206+55 19 17 11.7+£22 63 4 10.7£70
227,77 125,0 115133

8 19 50 209+39 15 50 10.1£15 69 31 136+94
206,42 93,10 11.1,79

9 53 36 51+27 59 4 28+16
46,11 28,29

10 44 44 57+25 30 36 80+24 60 36 6.1+3.7
57,42 86, 4.1 48, 4.7

11 49 86 176+86 23 44 79+18 25 23 23+06 50 26 109+54
174,85 87,12 24,07 10.2,69

12 115 14 6.7+77 21 8 84+18 54 4 93+50
40, 2.1 91,11 103,90

Tot 54 476 11.2+81 20 310 100+£2.7 50 85 14+07 100 199 9.64+9.7
95,132 93,28 18,16 74,73

CCTA, SPECT, PET, ICA as in Table 2; CV average coefficient of variation of E in each center, IQR interquartile range, N number of patients

There was a significant difference of radiation dose be-

Discussion

tween centers even using the same type of CCTA scanner
(4 centers, P<0.001 and 4 centers P < 0.001). There were
also differences between centers using the same SPECT
camera (3 centers, P<0.001) and ICA manufacturer (3
centers, P =0.017 and 2 centers, P = 0.047) (Table 2).

We have found that in patients evaluated for suspected
CAD, radiation doses received from diagnostic interventions
varied substantially within and between centers and the vari-
ability was highest for ICA and CCTA and lower for SPECT
and PET, even between centers using the same equipment.
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Fig. 1 Coronary angiography effective dose. Distribution of median (interquartile range) coronary angiography effective dose (mSv) obtained by
coronary computed tomographic angiography (CCTA) (left panel) and by invasive coronary angiography (ICA) (right panel). The whiskers show the
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Fig. 2 Nuclear medicine effective dose. Distribution of median (interquartile range) myocardial perfusion effective dose (mSv) obtained by single
photon emission computed tomography (SPECT) (left panel) and positron emission tomography (PET) (right panel). The whiskers show the minimum
and maximum observed values. mSv: milliSievert

The observed great variability of E for each examin-
ation can recognize different factors: patient-related,
technology-related and operator-related. Of interest, we
found substantial inter-center differences even in centers
using the same technology, suggesting that factors related
to the operator, as experience, adherence to the best prac-
tice and awareness can play a major role in optimizing
dose delivery for any given study. This can certainly have
to do with increasing experience of the operators, but
also—at least equally important—with the individual practi-
tioner awareness and concern for radioprotection issues.
In fact, radiation awareness regarding doses employed in
commonly used examinations can be low even in very
experienced cardiologists or radiologists or nuclear car-
diologists, in high volume laboratories [16, 17]. The dose
optimization is not only driven by the number of exami-
nations you did in the past, but by the attention paid to
radioprotection in the working habitat you live in. The

Table 4 Multivariable regression analysis

large intra-site variability of ED could also be viewed as
a good thing, since a personalized application of the
ALARA-principle sometimes should lead to a large vari-
ation in patient dose.

Another potential, hidden source of variability is under-
reporting of doses by recruiting centers. It is of concern
that about 1 out of 4 studies did not include a dose report,
in spite of the fact that the radiation assessment was a
clearly specified subproject of the study, and all centers
had long-standing experience and reputation in cardiac
imaging. According to the ESC position statement on
medical radiation in cardiology, “due to the numerous
sources of variability there is no clear threshold between
acceptable and unacceptable exposure for any given
examination, but the dose that is not even considered or
reported is certainly unacceptable” [18].

The regression model showed that the type of equip-
ment was a significant and independent predictor of

Factor B 95% Cl Standard error R square change P
CCTA
Model 1: age 017 0,085;0,255 0,043 0,040 <0,001
Model 2: equipment —-0,55 -1,02; 0,088 024 0,012 0,020
SPECT
Model 1: BMI 0,199 0,125,0,273 0,038 0,163 <0,001
sex -1,151 —-1,836; —0,465 0,348 0,163 0,001
Model 2: equipment -0418 —-0,605; —0,231 0,095 0,070 <0,001
Model 3: protocol 2,129 1,545; 2,713 0,296 0,150 <0,001
ICA
Model 1: BMI 1,225 0,751;1,700 0,240 0,191 <0,001
sex 7435 2,939,11,931 2,278 0,191 0,001
Model 2: equipment —4,276 -6,137; =2,415 0,943 0,087 <0,001

Model 1: Predictors BMI, age, sex; Model 2: Predictors BMI, age, sex, type of equipment; Model 3: Predictors BMI, age, sex, type of equipment, type of protocol

(1 or 2 days protocol)
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E mainly for ICA although the percent of E variability
accounted for by this predictor was modest. Relative to
perfusion imaging the type of technology used was im-
portant, with PET associated with lower doses than
SPECT, as well as SPECT type of protocol. Different
equipment has different dose-reduction potential, par-
ticularly the ones developed in recent years and also
different costs. The physiological heterogeneity due to
uneven distribution of health care resources may have
been magnified in recent years by the economic crisis,
which has led in Europe to a reduction in the turnover
of imaging equipment and failure to invest in lower dose
equipment to reduce medical radiation exposure [19].

The dose values that we found are by and large con-
sistent with the recent data reported in the literature. In
the prospective, multicenter, US-based PROMISE trial,
Douglas et al. [20] reported a median dose around 10 mSv
for CCTA and nuclear stress testing, with similar dose
variability as reported in the present study. In fact, the
two studies share some important similarities in design
eventually affecting the similarities in radiation dose
results. Both EVINCI and PROMISE included minimal
requirements for all testing methods, and observed
similar variation across sites likely due to the expected
differences in operator awareness of radioprotection,
experience, equipment, and image-acquisition protocols
[3, 20]. Our data are also consistent with the INCAPS
trial, showing a wide inter-institutional dose variability
in stress perfusion imaging, with the lowest doses in
nuclear cardiology practice achieved when the radiation
best practices are followed [21].

The culture and technologies are evolving in cardiology
and rapidly progressing towards the goal of achieving the
same imaging information with less dose. With nuclear
cardiology, this is best achieved with stress-only protocol,
technetium-based tracers, and new SPECT detectors
which reduce the dose with preserved image quality which
in EVINCI study were not yet mostly in use. For myocar-
dial perfusion imaging PET produces at least comparable
diagnostic information compared with SPECT but with
almost 5-fold reduction in dose. There are however varia-
tions in dose between PET centers arising mainly from the
use of different radiopharmaceuticals, with rubidium-82
having somewhat higher dose than 150-water or 13N-
ammonia [11, 12]. Whether these differences in dose
between PET and SPECT justify the higher cost requires
further analysis.

In CCTA, new breakthrough technologies allow cor-
onary imaging with sub-mSv doses [22]. In invasive
cardiology, zero-fluoroscopy navigation techniques in
electrophysiology and dose-sparing technology in
fluoroscopy coupled with better operator training and
awareness will slash by 50% or more the dose exposure
associated with common procedures [23]. It is the
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responsibility of the operators to use all the available
resources to obtain the optimal radiation dose manage-
ment which means that it is essential to develop a cul-
ture of radiation safety. radiation safety. It is expected
that the dose burden for imaging cardiology patients
will be substantially reduced in next years. The combined
effects of technology evolution in imaging, greater aware-
ness of radiation risk in cardiology and, at least in Europe,
changes in legislation forcing laboratories to communicate
in writing the dose administered during the examination,
starting February 2018, will likely change the current
heterogeneous dosimetric landscape for the better in
the near future.

An improved culture of radioprotection will enormously
benefit not only the patients, but also the doctors, who
will have their professional life longer and healthier if
the principles of justification, optimization and protec-
tion are implemented, especially in the invasive imaging
laboratories [18].

Study limitations

The study has some methodological limitations. Reference
doses cannot be measured precisely nor are they patient-
specific [7, 24]. E is an estimate designed to provide a sex-
averaged dose for a reference subject and it may not apply
to individual patients [8]. It relies on assumptions of
the radiation sensitivity of organs and tissues, imaging
techniques and protocols, and, in the case of radio-
nuclide imaging, radiopharmaceutical activity, half-life,
distribution and elimination kinetics [25-27]. Moreover
the E for CCTA is estimated by multiplying the DLP
with a conversion factor which affects the E values
reported in the literature [28]. We applied a value of
0.026 mSv mGy ' cm ™" since this value was likely to be
more accurate for estimation of radiation dose associ-
ated with CCTA compared to the ones usually assumed
for chest CT (0.014 or 0.017 mSv mGy’1 cmY) [13, 28].
Despite its use raises controversy, E remains the only
available measure of the potential biologic effects of
different types of radiation. The description of imaging
protocol, which could be helpful to understand the large
variability in E, was not included in the EVINCI radi-
ation substudy database. Unfortunately we do not have
information on the operators years of experience to be
included in the regression model to test its predictive
power for the different procedures.

Conclusions

Although most of cardiac imaging tests are performed in
elderly patients, the cardiac patients are today the
patients living longer because of advances in disease
prevention and management. This means that we should
pay attention to the long-term side effects of our inter-
ventions, including imaging procedures using ionizing
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radiation. These forms of imaging have improved the
diagnosis and treatment of numerous, if not all, cardiac
diseases. At the same time, some of them expose patients
to ionizing radiation, which has long-term side effects.
The contemporary patient who undergoes interventional
procedures may receive a median effective dose of
60 mSv, with 1 out of 4 patients exceeding 100 mSv [1]. In
the USA, high doses from medical imaging procedures
(>20 mSv/year) are experienced by 2% of the population
[2]. Since a significant part of our imaging examinations
may not be justified or optimized [29] our findings en-
courage greater awareness of radiation doses and help us
to ensure the best possible ratio of benefit to risk for our
patients, taking into account even the possible long term,
adverse effects of radiation use.

Special care to justification and optimization should be
taken in subgroups particularly vulnerable to radiation
effects, such as children and women. For any given radi-
ation exposure, the cancer risk is 2-to-ICA, coronary
angioplasty and CCTA by breast, a highly radiosensitive
organ in women [17]. The single exposure to the indi-
vidual examination may be negligible, but all doses add-
up in determining the lifetime exposure and individual
risk. Exam adds to exam, dose to dose and risk to risk,
and therefore the entire radiological dosimetric record
of the patient should be considered in determining the
individual risk, especially considering age and gender,
with more restrictive criteria applying to younger and
female patients, and those who received already a sig-
nificant exposure in the past.

In conclusion the findings highlight the need to audit
doses in cardiac imaging labs, to track cumulative expo-
sures and to standardize doses for each technique. This
high priority scientific and clinical need is also propelled
by the European radiation protection legislation which
was recently updated, and now requires monitoring of
radiation exposure of patients [30]. All member states
are forced to transpose the Directive into national legis-
lation and to implement its requirements by 2018.
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