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Weighted gene co-expression network
analysis identifies specific modules and hub
genes related to coronary artery disease
Jing Liu1, Ling Jing2,4* and Xilin Tu3

Abstract

Background: The analysis of the potential molecule targets of coronary artery disease (CAD) is critical for
understanding the molecular mechanisms of disease. However, studies of global microarray gene co-expression
analysis of CAD still remain limited.

Methods: Microarray data of CAD (GSE23561) were downloaded from Gene Expression Omnibus, including peripheral
blood samples from CAD patients (n = 6) and controls (n= 9). Limma package in R was used to identify the differentially
expressed genes (DEGs) between CAD and control samples. Using weighted gene co-expression network analysis
(WGCNA) package in R, WGCNA was performed to identify significant modules in the network. Then, functional and
pathway enrichment analyses were conducted for genes in the most significant module using DAVID software. Moreover,
hub genes in the module were analyzed by isubpathwayminer package in R and GenCLiP 2.0 tool to identify the
significant sub-pathways.

Results: Total 3711 DEGs and 21 modules for them were identified in CAD samples. The most significant module was
associated with the pathways of hypertrophic cardiomyopathy and membrane related functions. In addition, the top 30
hub genes with high connectivity in the module were selected, and two genes (G6PD and S100A7) were taken as key
molecules via sub-pathway screening and data mining.

Conclusions: A module associated with hypertrophic cardiomyopathy pathway was detected in CAD samples. G6PD and
S100A7 were the potential targets in CAD. Our finding might provide novel insight into the underlying molecular
mechanism of CAD.
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Background
Coronary artery disease (CAD, also named ischemic heart
disease, atherosclerotic cardiovascular disease, atheroscler-
otic heart disease and coronary heart disease) is one of the
most common forms of heart disease that remains a lead-
ing cause of morbidity and mortality in the entire world
population [1, 2]. In 2010, CAD causes more than 7 million
deaths worldwide [3]. CAD has a number of risk factors,
including family history, obesity, diabetes, hypertension,

high blood lipids, smoking, stress and lack of exercise [4].
Although numerous efforts have been undertaken, it re-
mains a major challenge for scientists to prevent and cure
this disease. It is predicted that the disease will be the major
and the most common threat to human life by the year
2020 [5, 6]. Therefore, it’s urgent to reveal the mechanisms
of CAD and develop novel therapeutic strategies.
The clinical manifestations of CAD are heritable traits,

and the knowledge of genome variations carrying risk is
helpful in improving diagnosis and treatment of CAD.
In the past decades, plenty of genetic changes in CAD
have been identified, increasing our understanding to
the underlying molecular mechanism of CAD. For
example, lipase (LIPA) gene is proved to be associated
with prevalent cardiovascular risk factors for CAD [7].
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The gene encoding vascular endothelial growth factor is
suggested to be able to augment myocardial perfusion in
CAD patients [8]. On the basis of genetic evidence,
interleukin 6 receptor (IL6R) blockade is demonstrated
to be a potential therapeutic approach for CAD
prevention [9]. Furthermore, Chen et al. report that
miR-545-TFEC and miR-585-SPOCK1 are highly corre-
lated with CAD [10].
Gene co-expression network based approaches have

been widely used in analyzing microarray data, especially
for identifying functional modules [11, 12]. Weighted
Gene Co-expression Network Analysis (WGCNA) is one
of the most useful gene co-expression network based
approaches. Malki et al. use WGCNA to construct
the gene co-expression network and identify neuro-
oncological ventral antigen 1 (NOVA1) and ubiquitin
specific peptidase 9, X-linked (USP9X) in the most
significant module are associated with major depressive
disorder and pharmacological treatment response [13].
WGCNA identifies Spleen Tyrosine Kinase (SYK) as a
candidate oncogene in a subset of small-cell lung cancer
[14]. Zhao et al. suggest that dedicator of cyto-kinesis 2
(DOCK2), dedicator of cyto-kinesis 8 (DOCK8) and Fc
fragment of IgG, low affinity of IIa, receptor (FCGR2A)
may represent potential therapeutic targets via WGCNA
combined with methylation data analysis [15]. Therefore,
WGCNA could be used to analyze microarray data of
CAD in this research.
To reveal the potential molecular mechanisms of

CAD, we investigated the mRNA expression profile of
CAD samples to identify the highly connected hub
genes and significant modules. WGCNA was used to
construct the co-expression network and identify sig-
nificant modules in the network. As the modules may
correspond to biological pathways, detailed analysis of
the modules will allow us to understand the molecu-
lar mechanisms. In addition, we also identified the
highly connected hub genes in the most significant
module.

Methods
Microarray data
Microarray data of GSE23561 [16] was downloaded
from the National Center For Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database [17, 18], which
was based on the platform of GPL10775 Human 50 K
Exonic Evidence-Based Oligonucleotide Array. GSE23561
contains 6 peripheral blood samples from CAD patients
(mean age = 56, 5 males and 1 female) and 9 peripheral
blood samples from control individuals who had never
been diagnosed with a chronic illness (mean age = 45.9, 2
males and 7 females). CAD patient was diagnosed through
detecting flow-limiting coronary artery stenoses using

imaging techniques. All of the CAD patients were also
treated for systemic hypertension. Grayson et al. deposited
GSE23561, and their research was approved by the Insti-
tutional Review Board of Vanderbilt University [16]. In the
study of Grayson et al., all subjects gave their written in-
formed consent [16].

Data preprocessing
After GSE23561 was downloaded, probe identifica-
tion numbers (IDs) were transformed into gene sym-
bols. For multiple probes corresponding to one gene,
their average expression value was taken as the gene
expression value. After that, gene expression values
were normalized using preprocessCore package (version
1.28.0, http://www.bioconductor.org/ packages/release/
bioc/html/preprocessCore.html) [19], and were per-
formed with log2 transformation.

Differentially expressed genes (DEGs) screening
Linear models for microarray data (Limma) is a li-
brary used for analyzing gene expression microarray
data, especially the use of linear models for the as-
sessment of differential expression and the analysis of
designed experiments [20]. Limma package (version
1.22.0, http://www.bioconductor.org/packages/release/
bioc/html/limma.html) in R was applied to identify
the DEGs between CAD samples and control samples.
Genes with |log2 fold change (FC)| ≥ 0.5 were selected for
subsequent analysis.

Construction of Weighted Gene Co-expression Network
WGCNA is a widely used systems biology method,
which is used to construct a scale-free network from
gene expression data [11]. At first, the Pearson’s cor-
relation matrices were calculated for all pairs of
genes, the correlation coefficient between gene m and
gene n was defined as Smn = |cor(m,n)|. Then, the
Pearson’s correlation matrices were transformed into
matrices of connection strengths using a power func-
tion amn = power (Smn, β) = |Smn|

β . This step can
emphasize strong correlations and reduce the influ-
ences of weak correlations on an exponential scale.
Here, the power of β = 17 (Soft.R.sq = 0.8) were
chose to make sure we can obtain a scale-free net-
work. These connection strengths were used to calcu-
late topology overlap (TO) [21], which measures the
connectivity of a pair of genes. In this study, hier-
archical average linkage clustering [22] based on TO
was used to identify gene co-expression modules, which
could group genes with similar patterns of expression.
The WGCNA package in R can be used for performing
various functions in weighted correlation network
analysis, including constructing network, detecting
module, calculating topological properties, simulating
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data, visualization, and interfacing with external soft-
ware [23]. Using WGCNA package (version 1.46,
http://www.inside-r.org/packages/cran/WGCNA/docs/
bicor) in R, the analysis was performed as described
previously [11, 24].

After the modules were identified, the T-test was used
to calculate the significant p-value of candidate mRNAs,
and the gene significance (GS) was defined as mediated
p-value of each gene (GS = lgP). Then, the module sig-
nificance (MS) were defined as the average GS of all the

Fig. 1 Identification of gene co-expression modules in CAD via hierarchical average linkage clustering (Dynamic tree cut algorithm was used to
identify modules, and genes in the same branch could be assigned to different modules)

Fig. 2 Module significance (MS) values of each module (Different colors of column indicated different modules)
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genes involved in the module. In general, the module
with the highest MS among all the selected modules will
be considered as the one associated with disease. In
addition, we also calculated the relevance between the
feature vector of modules and phenotypes to identify the
most relevant module. Gene Ontology (GO) analysis is
applied to reveal functions of gene products from three
aspects: biological process (BP), cellular component
(CC) and molecular function (MF) [25]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
database aims at describing functions of molecules or
genes [26]. Using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) software
[27], GO functional and KEGG pathway enrichment ana-
lyses for the genes in the most significant module
searched by the two methods were performed. The
p-value < 0.05 was used as the cut-off criterion.

Sun-pathway analysis of hub genes in the most
significant module
Hub genes were highly connected nodes which involved
in much more interactions. Hub genes in a module may
be more important than other genes in the whole net-
work. Gene connectivity can measure the connection
strength of a gene connect to other genes in global net-
work. Therefore, hub genes with higher connectivity in
the selected module were extracted.
The occurrence of certain diseases is not always

caused by the abnormality of the whole pathway
involved in the biological process. It is more likely to be
caused by dysfunction of the sub-pathways. For this
reason, we focused on the sub-pathways of hub genes to
narrow down our research. The iSubpathwayMiner
can be applied for graph-based reconstruction and
analysis of pathways [28]. Using the iSubpathwayMiner
package (version 3.0, http://cran.r-project.org/web/
packages/iSubpathwayMiner/) in R, the significant sub-
pathways of the hub genes were identified (p-value < 0.05).
The goal of GenCLiP 2.0 is to serve for free tern-based net-
work construction and functional clustering of genes [29].
Thus, GenCLiP 2.0 tool (http://ci.smu.edu.cn/GenCLip/
analysis.php) was used to collect the correlated pathways of
hub genes.

Results
Data preprocessing and DEGs screening
After data preprocessing, the expression matrices of
24277 genes were obtained from the 15 samples. Under
the threshold of |log2FC| ≥ 0.5, total 3711 DEGs were
selected for subsequent analysis.

WGCNA analysis and key modules identification
Using WGCNA package in R, the DEGs with similar
patterns of expression were grouped into modules via

hierarchical average linkage clustering. And a total of 21
modules (Fig. 1) were identified.
Two methods were used to test the relevance between

each module and the disease. Firstly, the MS value of each
module was calculated, and modules with greater MS
values were considered to have more connection with the
disease (Fig. 2). We found that the darkmagenta module
had the highest MS value among all of the selected mod-
ules. Afterwards, the relevance between each module and
the disease were tested through calculating the relevance
between the feature vectors of modules and phenotypes,
and then all modules were ranked according to the signifi-
cant p-value (Table 1). As could be seen in the table, the
darkmagenta module was still the most relevant module.
The results of the two methods were identical with each
other. So the darkmagenta module was identified as the
module highly relevant to CAD.

Functional and pathway enrichment analysis
Functional and pathway enrichment analysis were per-
formed for the genes in the darkmagenta module. The
significantly enriched functions mainly were membrane-
associated biological processes and cellular components,
and the enriched pathway included hypertrophic cardio-
myopathy (HCM) (Table 2).

Table 1 Correlations between modules and coronary artery
disease

Module Correlation P-value

Darkmagenta 0.88 1.95E-5

Lavenderblush3 0.76 1.07E-3

Coral1 0.75 1.20E-3

Grey 0.74 1.65E-3

Plum2 0.72 2.24E-3

Red 0.71 3.05E-3

Mediumpurple3 0.7 3.89E-3

Violet 0.68 5.44E-3

Thistle1 0.62 1.32E-2

Maroon 0.58 2.33E-2

Darkseagreen4 0.55 3.44E-2

Ivory 0.54 3.93E-2

Brown4 0.53 4.13E-2

Antiquewhite4 0.53 4.10E-2

Mediumorchid −0.38 1.65E-1

Midnightblue −0.6 1.75E-2

Brown −0.69 4.45E-3

Black −0.73 2.11E-3

Darkolivegreen −0.74 1.66E-3

Floralwhite −0.8 3.91E-4

Bisque4 −0.87 2.07E-5
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Sub-pathway analysis of hub genes in darkmagenta
module
Highly connected hub genes in a module play import-
ant roles in biological processes. Therefore, the top
30 genes (Fig. 3) with the highest connectivity in
darkmagenta module were taken as hub genes, in-
cluding S100 calcium binding protein A7A (S100A7),
tumor protein p63 (TP63), coagulation factor II (throm-
bin) receptor-like 3 (F2RL3), TBCC domain containing 1
(TBCCD1), glucose-6-phodphate dehydrogenase (G6PD)

and carbonic anhydrase VII (CA7). Subsequently,
iSubpathwayMiner package was used to identify sub-
pathways of these hub genes (Table 3), and found two
genes (G6PD and CA7) were enriched in the sub-
pathways of pentose phosphate pathway and nitrogen
metabolism. Data mining using GenCLiP 2.0 tools
showed that 18 of the 30 hub genes were enriched in
several functional items in biological process category,
such as apoptosis, cell cycle arrest, epidermal growth
factor, and wound healing (Fig 4).

Table 2 GO and KEGG pathway enrichment analysis of darkmagenta module

Category Term Count P-value

KEGG_PATHWAY hsa05410:Hypertrophic cardiomyopathy (HCM) 3 2.85E-2

GOTERM_BP_FAT GO:0016044~membrane organization 5 1.47E-2

GOTERM_BP_FAT GO:0042391~regulation of membrane potential 3 4.44E-2

GOTERM_CC_FAT GO:0005886~plasma membrane 18 4.37E-3

GOTERM_CC_FAT GO:0044459~plasma membrane part 12 1.47E-2

GOTERM_CC_FAT GO:0045121~membrane raft 3 4.95E-2

GOTERM_BP_FAT: Gene ontology term biological process; GOTERM_CC_FAT: Gene ontology term cellular component; KEGG: Kyoto Encyclopedia of Genes
and Genomes

Fig. 3 Network of top 30 genes in darkmagenta module (Node size:larger indicates a more significant differentially expressed gene, smaller
indicates a less significant differentially expressed gene. Node color:Red indicates up-regulated gene, Green indicates down-regulated gene)
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Discussion
In 2011, Grayson et al. perform microarray data analysis
and find that genes implicated in activation of NF-kB
were up-regulated in CAD [16]. Via network-driven in-
tegrative analysis, Huan et al. screen genes associated
with coronary heart disease, and define network struc-
ture that shows the interactions of disease risk-related
genes [30]. Using WGCNA, Tan et al. identify two mod-
ules closely related to atrial fibrillation in human left
atrial tissues [31]. Here, the same data by Grayson et al.
[16] were investigated by WGCNA to construct the co-
expression network of CAD, which considered not only
DEGs but also their interactions. Hierarchical average
linkage clustering analysis was performed to group co-
expressed genes into modules, and 21 modules were

identified. The darkmagenta module was the most sig-
nificant module identified by both MS and feature vec-
tor. Genes in darkmagenta module were mainly enriched
in membrane-related functions, suggesting that genes in
the darkmagenta module might play important roles in
membrane functions during CAD. Pathway enrichment
analysis indicated that genes in the darkmagenta module
were enriched in hypertrophic cardiomyopathy (HCM)
pathway. HCM is one of the most common inherited
cardiac disorders, and previous studies demonstrate that
CAD usually has adverse effects on the prognosis of pa-
tients with HCM [32, 33].
We listed the top 30 hub genes with the highest

connectivity in the darkmagenta module, such as
S100A7, TP63, F2RL3, TBCCD1, G6PD and CA7. Sub-
pathway analysis showed that G6PD may might exert
its role by influencing pentose phosphate pathway.
Glucose-6-phosphate dehydrogenase (G6PD) is the
rate-controlling enzyme of the pentose phosphate
pathway [34], which is reported to be implicated in
heart disease [35]. Results of spectrophotometry
shows that the level of G6PD was significantly de-
creased in CAD patients [36]. The G6PD-deficient
phenotype can protect against coronary heart disease

Table 3 Sub-pathway analysis of top 30 genes in darkmagenta
module

Pathway Id Pathway name P-value Genes

path:00030_5 Pentose phosphate pathway 9.60E-3 G6PD

path:00030_4 Pentose phosphate pathway 2.31E-2 G6PD

path:00910_2 Nitrogen metabolism 3.12E-2 CA7

path:00030_3 Pentose phosphate pathway 3.65E-2 G6PD

Fig. 4 Enrichment analysis of functional items in biological processes for top 30 genes in darkmagenta module (Green indicates that the gene is
enriched in the item, black indicates that the gene is not enriched in the item)
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by inhibiting 3-hydroxy-3-methylglutarylcoenzyme A
reductase (HMG-CoA R) activity and reducing NADPH
oxidase activity [37–39]. Previous study reports that
G6PD can relax coronary artery by increasing Ca2+
sequestration, inhibiting Rho kinase and decreasing Ca2+
influx [40]. There were are also some studies revealed the
multiple mechanisms of pentose phosphate pathway in
bovine coronary arteries [41, 42]. Correlated fFunctions of
involved the hub genes included apoptosis, cell cycle ar-
rest, epidermal growth factor, and wound healing. S100A7
was enriched in wound healing function. Following an in-
jury, series of events that restore integrity and function
toof a damaged tissue would occur in would healing
process. For myocardial infarction, healing is essential for
further prognosis [43]. S100A7, also called psoriasin, is a
member of the S100 multigene family. S100 protein is
proved to have play a role in wound healing, and S100A7
is activated during wound healing [44]. Increased plasma
levels of S100A8 and S100A9 can serve as marks for hu-
man cardiovascular disease, and their deletion protects
aganist atherosclerosis to some degree [45]. As Another
another number in S100 family, S100A12 is reported to
function as a prediction marker for cardiovascular events
in chronic coronary artery diseaseCAD [46].

Conclusions
In conclusion, total 3711 DEGs and 21 modules for
them were identified in CAD samples. Via further
analysis of the top 30 genes with highest connectivity
in the most significant module, G6PD and S100A7
were identified to be potential targets in CAD. How-
ever, the small sample size is a limitation of the
study, and further studies are still needed to verify
our findings.

Highlights

1. A total of 21 significant modules were identified.
2. The most significant module was detected by

module significance and feature vector.
3. G6PD in the module was predicted as candidate

gene by enrichment analysis.
4. S100A7 involved in coronary artery disease by

participating in wound healing.
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