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Abstract

Numerous advances and innovative therapies have been introduced in interventional cardiology over the recent
years, since the first introduction of balloon angioplasty, but bioresorbable scaffold is certainly one of the most
exciting and attracting one. Despite the fact that the metallic drug-eluting stents have significantly diminished
the re-stenosis ratio, they have considerable limitations including the hypersensitivity reaction to the polymer
that can cause local inflammation, the risk of neo-atherosclerotic lesion formation which can lead to late stent
failure as well as the fact that they may preclude surgical revascularization and distort vessel physiology. Bioresorbable
scaffolds overcome these limitations as they have the ability to dissolve after providing temporary scaffolding which
safeguards vessel patency. In this article we review the recent developments in the field and provide an overview of
the devices and the evidence that support their efficacy in the treatment of CAD. Currently 3 devices are CE marked
and in clinical use. Additional 24 companies are developing these kind of coronary devices. Most frequently used

material is PLLA followed by magnesium.
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Background

The need for Bioresorbable scaffolds

Plain ‘old’ balloon angioplasty (POBA) was first performed
by Andreas Roland Griintzig in 1977 and heralded the first
revolution in the percutaneous treatment of coronary artery
disease (CAD) [1]. Despite the success in dilating and
restoring coronary flow to diseased coronary vessels, enthu-
siasm to this ground-breaking technology was hampered
by issues related to acute vessel closure secondary to iatro-
genic coronary dissection (occurring in approximately
30-40 % of cases) and restenosis secondary to elastic re-
coil, constrictive remodelling, and neointimal hyperplasia
[2—5]. Bare metal stents (BMS) heralded the second revo-
lution in the treatment of CAD as means to overcome the
limitations of POBA. BMS resolved the issue of acute ves-
sel occlusion by sealing the dissection flaps and prevented
elastic recoil and constrictive remodelling. Two landmark
studies - BENESTENT and STRESS trials - demonstrated
the superiority of bare metal stents (BMS) over POBA
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[6-8]. Nevertheless, indigenous limitations of BMS such
as the neointimal hyperplasia and consequent the in-
creased risk of in-stent restenosis (ISR) precluded the
widespread adoption of this technology, particularly in
more complex CAD and diabetics [9-12].

Drug eluting stents (DES) — the third revolution in inter-
ventional cardiology — were conceived as means to tackle
the iatrogenic issue of excessive neointimal hyperplasia and
reduce the risk of restenosis. Land-mark studies of the first
generation sirolimus-eluting Bx velocity stents demon-
strated the dramatic reduction in the excessive hyperplastic
healing response and risk of restenosis compared to BMS
[13, 14]. Subsequently the indications for DES rapidly ex-
panded, with the use of DES in more complex CAD and
higher risk patient groups. Despite the promising results as-
sociated with the first generation DES, safety issues arose,
in particular the risk of late stent thrombosis, quoted as
0.53 % per year, with a cumulative incidence of 3.3 % at
4 years [15, 16]. The primary concerns with the first gener-
ation DES were related 1) to the lack of biocompatibility of
the drug eluting polymer leading to a persistent inflamma-
tory response beyond the drug eluting period of the device,
2) to a risk of a continued neointimal response and risk of a
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‘late-catch up’ phenomenon and late ISR, and 3) to a de-
layed/incomplete healing, and risk of late/very late stent
thrombosis. In addition, other issues were identified includ-
ing, stent malapposition (early or late acquired), the risk of
early or late stent fracture, neoatherosclerotic lesion forma-
tion and late DES failure, and the permanent metallic ca-
ging causing abnormal vasomotion [17]. With the latter,
abnormal vasoconstriction responses to acetylcholine at
the sites distal to the DES were identified, implying the ab-
normal function of the endothelial layer. Although newer
generation DES, with more biocompatible polymers, over-
came many of the safety issues related to first generation
DES, these concerns were not completely resolved espe-
cially the longer term risk of DES failure secondary to
neoatherosclerosis [18—20]. Bioresorbable scaffolds (BRS)
— heralded as the fourth revolution in interventional cardi-
ology — were thus designed to overcome the perceived lim-
itations of DES by providing a temporary support to the
vessel wall, whilst simultaneously allowing for the release
of an anti-proliferative drug to limit the excessive response,
in order to potentially allow the vessel to heal and restore
its physiological function.

Development of bioresorbable scaffolds
Historically biodegradable materials for implants which
serve as a temporary function have been used in
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therapeutic medicine in areas that include wound clos-
ure — such as absorbable surgical sutures made from
glycolic and lactic acid orthopaedic devices, dental
procedures, cardiovascular surgery, intestinal surgery,
urology, nerve repair, drug delivery and oncology, and
were designed to overcome the disadvantages of per-
manent metallic-based devices [21].

In so far as application with BRS, this concept is still
in its infancy. Identifying the appropriate bioresorbable
materials to allow for temporary scaffolding of the vessel
wall to seal dissections and prevent recoil, and allowing
for drug elution to limit the healing response has proven
to be a major challenge. In addition, the ideal BRS
should have as thin struts as possible to limit the healing
response whilst providing adequate radial support for a
3-6 month period to limit recoil and constrictive re-
modelling, and have as low crossing profile as possible
and be flexible enough to allow delivery in more challen-
ging anatomical disease.

Various types of materials have been used in BRS devel-
opment (Table 1). Amongst them poly-L-lactic acid
(PLLA) and magnesium appear to be the most promising
and reached clinical use. PLLA is the most commonly
used material for manufacturing BRS. The degradation of
PLLA is by hydrolysis of the ester bonds into small parti-
cles that are phagocytosed by macrophages into lactic acid

Table 1 Summary of the design and structure of clinically tested bioresorbable scaffolds

Scaffold Strut material Coating material  Eluted drug ~ Strut thickness (um) Resorption (month) Current status
Igaki-Tamai PLLA None None 170 24-36 CE mark for
peripheral use
AMS-1 Mg None None 165 <4 Discontinued
DREAMS-1 Mg PLGA Paclitaxel 125 9 Clinical trials
DREAMS-2 Mg PLLA Sirolimus 150 9 Clinical trials
Absorb BVS 1.0 PLLA PDLLA Everolimus 156 18-24 Discontinued
Absorb BVS 1.1 PLLA PDLLA Everolimus 156 24-48 CE mark
Absorb BVS-New generation  PLLA PDLLA Everolimus <100 NA NA
DeSolve PLLA None Myolimus 150 12-24 CE mark
DeSolve 100 PLLA PLLA Novolimus 100 24 CE mark
IDEAL biostent Polymer salicylate Salicylate Sirolimus 175 >12 Clinical trials
REVA PTD-PC None None 200 24 Discontinued
ReZolve PTD-PC None Sirolimus 115-230 4-6 Clinical trials
ReZolve2 PTD-PC None Sirolimus 100 48 Clinical trials
Fantom PTD-PC - Sirolimus 125 36 Clinical trials
Fortitude semicrystalline polylactide - None 150-200 3-6 Clinical trials
Mirage BRMS PLLA - Sirolimus 125-150 14 Clinical trials
MeRes PLLA PDLLA Sirolimus 100 24 Clinical trials
Xinsorb PLLA PDLLA Sirolimus 160 24-36 Clinical trial
ART 18AZ PDLLA None None 170 3-6 Clinical trials

Mg magnesium, PLLA poly-L-lactic acid, PDLLA poly-DL-lactic acid, BVS bioresorbable vascular scaffold
SA/AA salicylic acid/adipic acid, PTD-PC, poly-tyrosine-derived polycarbonate, CE Conformité

Européenne. NA not available
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and metabolized through the Krebs cycle into carbon di-
oxide and water [22]. Magnesium is mixed with rare earth
metals to allow it to have thinner struts and control the
degradation process. In addition magnesium has been
reported to have potential antithrombotic properties em-
anating from its electronegative charge during degradation
[23, 24]. One of the reported challenges associated with
magnesium alloys has been the too rapid degradation of
the material before the end of the healing process with the
consequent risk of early vessel recoil and restenosis [25].

The potential benefits of bioresorbable scaffolds
BRS allow for successful acute revascularization of coronary
artery stenosis and in preliminary studies, they have been
shown to be associated with low rates of repeat revasculari-
sation and major adverse cardiac events (MACE) during
the early follow-up period [26]. The main advantage of the
BRS is that following complete bioresorption, no foreign
body remains in the vessel wall at long term follow-up,
which may mitigate the increased long term risk of stent
thrombosis seen with the first generation DES [22, 27, 28].
In addition, a potential issue of late catch-up in restenosis
secondary to a persistent low grade inflammatory response
to the polymer/device, even evident with newer generation
DES [29], may be mitigated with BRS since no material
remains following bioresorption.

The enhanced mechanical flexibility of the Absorb BRS
(compared to metallic DES) allows for increased conform-
ability to the original vessel wall geometry, which may
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have an advantageous influence on coronary blood flow
and its biomechanical properties [30]. Additionally the
bioresorption process allows for malapposed struts or
jailed struts over the side-branch to resolve at follow-up
[30]. Furthermore, the treated vessel has been shown to
potentially restore its vasomotor function a year following
Absorb BRS implantation, when the structural integrity of
the Absorb device has been appropriately lost [31]. Con-
versely, endothelial dysfunction has been shown to persist
with DES [31]. Another useful property of BRS is that it
allows for a non-invasive imaging (e.g. multi-slice coron-
ary computed tomography [MSCT]) without any signifi-
cant imaging artefacts. Additionally, BRS potentially
allows the surgeons to attach anastomoses to the scaf-
folded segments once the bioresorption process has been
completed.

Bioresorbable scaffolds currently in use

Absorbable magnesium stent (AMS)

Magnesium (Mg) is an essential element for several en-
zymes in human body and a co-factor for ATPase. The
balloon-expandable Absorbable Metal Stent (AMS-1)
(Biotronik, Berlin, Germany) (Fig. 1) was the first metallic
bioresorbable scaffold. The radial strength of the device
allowed for low elastic recoil (<8 %), a high collapse pres-
sure (0.8 bar), and minimal shortening after inflation
(<5 %) [32]. In preclinical studies, rapid endotheliza-
tion of the device and degradation into inorganic salts
was reported within 60 days [33, 34] (Fig. 2). In the
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Fig. 2 Device functionality of drug-eluting absorbable metal scaffold over time. (Reprinted from European Heart Journal with permission from

prospective, multicentre, non-randomized, Clinical Per-
formance and Angiographic Results of Coronary Stenting
with Absorbable Metal Stents (PROGRESS AMS) pilot
study (63 patients with single de novo lesions, 71 AMS),
no death, MI or stent thrombosis was reported at
12 months follow-up, with the treated vessel attaining its
vasoreactivity within 4-months. The device was however
associated with an unacceptable incidence of repeat revas-
cularisation (target lesion revascularization [TLR] rates
23.8 % and 45 % at 4 months and 12 months respectively),
which was similar to POBA [32]. Intravascular ultrasound
(IVUS) imaging revealed that the late lumen loss (LLL)
(1.08 mm at 4-months) was due to recoil secondary to in-
adequate radial force that was ascribed to be secondary to
the too rapid degradation of the device. Afterwards the de-
vice was redesigned predominantly to slow down the bior-
esorption process, so as to retain its mechanical strength
for longer in order to prevent early vessel recoil. Several
design iterations have emerged: AMS-2 and AMS-3. The
AMS-2 scaffold had a more refined Mg alloy which gave it
a higher collapse pressure (1.5 bar compared with 0.8 bar
for AMS-1), approximately 30 % thinner struts (from
165 um [AMS 1] to 125 pm), and importantly, a longer
bioresorption process — with a 2-3 times slower degrad-
ation process. The AMS-3 ‘DREAMS (Drug Eluting
Absorbable Metal Scaffold) device uses a similar platform
as the AMS-2, and includes a biodegradable polymer that
allows for drug elution. The DREAMS device provides
vessel scaffolding and paclitaxel drug elution for a period
of 3 months (Fig. 1). DREAMS was tested in clinical set-
ting in the BIOSOLVE-I study [35]. In this prospective,
multi-center, non-randomised trial, 46 patients with a
single de novo lesion with a reference diameter 3.0—
3.5 mm were recruited. In total, 47 DREAMS devices were
successfully implanted. At 6-months the TLR rate was
4.3 % and the LLL was 0.64 + 0.50 mm. At this same
time point, improvements in the scaffolded segment

angulation were evident, from 14.9+12.0° post-
procedurally, to 26.1+15.9° at follow-up [35]. Further
modification of the DREAMS device alloy - made from a
WE43 alloy with 6-crown 2-link design - have allowed for
a slower bioresorption and dismantling process. The
DREAMS-2 device has a strut thickness of 150 pm and in-
corporates tantalum based radiopaque markers at both
ends to allow for more precise post-dilatation. In addition,
the DREAMS-2 device was coated with a bioresorbable
polylactic acid polymer (7 pm) and a limus based anti-
proliferative drug (sirolimus at a dose of 1.4 pg/mm?®) —
which was shown to have a more potent anti-proliferative
effect compared to paclitaxel. DREAMS-2 has completed
preclinical evaluation and is currently being investigated
in the BIOSOLVE-II study (n = 120).

Polymeric scaffolds

The igaki-tamai scaffold

The Igaki-Tamai scaffold (Kyoto Medical Planning Co.,
Ltd., Kyoto, Japan) was the first BRS used in humans, and
is a PLLA-based, non-drug eluting and a heat treated self-
expandable device [36]. For the initial expansion of the
device, the contrast was heated up to 80 °C and applied
through the delivery balloon. Final expansion of the device
was achieved at body temperature after 20—30 min follow-
ing device implantation. In vivo the device took 18-24
months to fully disappear. To allow for visualization
during the follow-up, two radiopaque cylindrical gold
markers were placed at both ends of the device. A pilot
study examining the efficacy of this device (15 patients,
19 lesions, 25 stents), demonstrated no MACE or ST
within 30 days and only 1 repeat PCI at the 6-month
follow-up. The mean stent cross-sectional area increased
from 7.42 + 1.51 mm? at baseline to 8.18 + 2.42 mm? (P =
0.086) at 3 months, and 8.13+2.52 mm? at 6 months
follow-ups (p =0.30) [36]. Notably, there was no significant
neo-intimal hyperplasia on IVUS. IVUS also demonstrated
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no significant stent recoil at day-1 but evidence of stent
expansion at 3-months following implantation.

In a second study of 50 elective patients (63 lesions,
84 stents), IVUS follow up at 3-year demonstrated
complete absence of the struts. In addition, angiographic
mean diameter stenosis was 25 % compared to 38 %,
29 %, and 26 % at 6, 12, and 24 months, respectively. At
4-year follow-up, the overall and MACE-free and sur-
vival free rates were 97.7 % and 82.0 % respectively [37].
Ten-year clinical follow-up demonstrated freedom from
cardiac death, non-cardiac death, and MACE at 98 %,
87 %, and 48 %, respectively [38]. Angiographic long
term follow-up demonstrated no changes in the minimal
lumen diameter (MLD): 1-year mean MLD 2.01 mmy;
10-year mean MLD 2.06 mm. Only 2 ST events were
reported at 10-year follow-up. Concerns with regards to
this device arose from the use of heat to induce self-ex-
pansion, which may cause arterial wall necrosis leading to
an exaggerated neointimal hyperplastic response or in-
creased risk of platelet adhesion and scaffold thrombosis.
Another concern of this device was that it required an 8-
French guiding catheter. The PERSEUS study lead to the
biodegradable peripheral Igaki-Tamai scaffolds to be used
in Europe for peripheral cases [39].

The REVA stent, a poly carbonate scaffold

The REVA scaffold (REVA Medical, Inc., San Diego,
CA, USA) is a poly (iodinated desamino tyrosyl-
tyrosine ethyl ester) carbonate device composed of
iodinated-desaminotyrosinetyrosine. Following absorp-
tion, water, carbon dioxide, ethanol and iodinated-
desaminotyrosinetyrosine are the end products from
the Krebs cycle and excreted from the body. The REVA
scaffold has no anti-proliferative drug coating and the
bioresorption time is nearly 36 months. The slide and
locking design prevented deformation and weakening
of the polymer during scaffold deployment (Fig. 1). The
radial force of the REVA scaffold has been reported to
be greater than the MULTILINK BMS [40]. In the RE-
SORB study, in which 27 patients with de novo lesions
were enrolled, acute gain in lumen diameter and vessel
shrinkage were satisfactory following device implantation.
The mean diameter stenosis pre- and post implantation
were 70 % and 5.9 % respectively. The pre-implantation
and post-implantation lumen diameters were 0.88 +
0.39 mm and 2.76 + 0.36 mm, respectively. Despite these
results, at 6-months follow-up LLL was 1.81 mm and TLR
was 66.7 %, predominantly secondary to vessel recoil since
the neo-intimal hyperplasia response was shown to be
similar compared to BMS [41]. Following these findings,
the scaffold has been redesigned and the second-
generation ReZolve stent has stiff radiopaque polymer, a
spiral ‘slide and lock’ mechanism and is coated with the
antiproliferative drug sirolimus. In the RESTORE study,
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with 50 patients at 12 months follow-up, acute recoil was
3.8+ 6.7 %, and LLL was 0.29 + 0.33 mm at 12 months. At
6 months there were 2 MACE events in 12 patients [42].
Further improvements in the design of the scaffold have
concluded in REVA’s current product. ReZolve2 is being
tested in the Safety and Performance Study of the
ReZolve2 Sirolimus-Eluting Bioresorbable Coronary Scaf-
fold study (RESTORE-II) (n = 125) [43]. The company has
presented a new clinical trial program named FANTOM
investigating Fantom bioresorbable sccaffold with thinner
strut thickness [44].

Poly salicylic acid stent: IDEAL BRS

The IDEAL BRS (Xenogenics Corp.; Canton,
Massachusetts, United States) has a backbone made
of polylactide anhydride mixed with a polymer of salicylic
acid and sebacic acid. The backbone is coated with salicyl-
ate that controls the release of the antiproliferative drug
sirolimus (8.3 pw/mm). With salicylate and sirolimus, the
scaffold has potentially both anti-inflammatory and anti-
proliferative properties [45]. The IDEAL BRS was initially
tested in humans (11 patients) in 2009. In this first experi-
ence, there was negligible neointimal suppression and a
significant reduction in lumen area that was associated
with problems relating to the dose release kinetics of
sirolimus — namely that it was eluted too rapidly, with a
surface area dose of only a quarter compared to Cypher
drug eluting stent [46]. The new generation IDEAL
BioStent device has been designed with a lower profile to
aid delivery, as well as optimising the dose release kinetics
of sirolimus. Preclinical studies of the IDEAL BioStent
device are underway.

Myolimus-eluting Poly-L-Lactic acid scaffold: DESolve

The DESolve Myolimus-Eluting Bioresorbable Coronary
Scaffold System has a poly L-lactic acid (PLLA) backbone
and is coated with myolimus (3 mg/mm) - a sirolimus
analogue. In porcine studies, the radial strength was suffi-
ciently provided over a 3 month period, and the resorption
phase was completed at up to 2-years [47]. In the multi-
centre DESolve-I FIM trial, which recruited 16 patients im-
planted with polylactide-based bioresorbable scaffold
coated with bioabsorbable polymer eluting myolimus, the
incidence of acute recoil was 6.4 % and the LLL was
0.19 mm at 6 months. Post-procedural IVUS analyses
demonstrated a mean scaffold area 5.35 mm?® and a mean
lumen area of 5.35 mm?>. Six-month IVUS analyses did not
significantly differ from the baseline IVUS with a mean
scaffold area 5.61 mm?> and mean lumen area 5.10 mm?.
Six-month optical coherence tomography (OCT) examin-
ation at follow-up demonstrated that 98.7 % of the struts
to be covered by neointima. One-year clinical follow up
demonstrated 3 MACE, 1 target vessel MI and 1 TLR; no
patient was reported to have had a scaffold thrombosis
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[47]. In the multi-center, prospective DESolve Nx trial, 120
patients were treated with the DESolve Nx device - a
PLLA-based polymer scaffold that is coated with novoli-
mus (5 mg/mm), which is an active metabolite of sirolimus
[48, 49]. Recruitment of patients in the trial has been com-
pleted and clinical follow-up is still on-going. DESolve Nx
trial was successful in demonstrating the safety and efficacy
of the DESolve scaffold, with a low 6-month LLL by QCA
(0.20 £ 0.32 mm), low 6-month IVUS % volume obstruc-
tion (5 %), low 6-month neointimal hyperplasia (NIH)
thickness by OCT (0.10 mm), sustained neointimal sup-
pression through 18 months follow-up, low 24-month
MACE rate (7.4 %), no reported late acquired incomplete
strut apposition (ISA) by IVUS / OCT at 6 months and
high percentage of strut coverage by OCT at 6 months
(98.8 %) [48, 49]. The preclinical study for the next gener-
ation scaffold named DEsolve 100 with reduced strut
thickness (100 pm) is ongoing.

Everolimus-eluting Poly-L-lactic acid scaffold (Absorb BVS)

The Abbott Vascular everolimus eluting bioresorbable
vascular scaffold (ABSORB BVS) (Abbott Vascular, Santa
Clara, CA, USA) has a backbone of PLLA, coated with
layer of a 1:1 mixture of an amorphous matrix of poly-D,
L-lactide (PDLLA) and an antiproliferative drug everoli-
mus (8.2 pg/mm). The PDLLA controls the release of
everolimus, 80 % of which is eluted at the end of the first
month following implantation. The first version of Absorb
BVS (Absorb BVS 1.0) had a strut thickness of 150 pm, a
crossing profile of 1.4 mm, and constituted of circumfer-
ential out-of-phase zigzag hoops, with the struts linked
directly together by thin and straight connections. In
the first human study, ABSORB (n = 30), multimodality
intravascular imaging including IVUS, IVUS-virtual
histology (IVUS-VH), palpography and OCT were per-
formed at 6-month and 2-years follow up. At 6-month
clinical follow-up, there was only one ischemic driven
major adverse event (non Q-wave myocardial infarc-
tion); in the following 42-months there were no re-
ported MACE events [22, 50]. At the 4-year clinical
follow-up there was no ST [51]. At 5-years the overall
MACE event rate was 3.4 %. At 6-months follow-up
LLL was 0.44 mm. The reduction in lumen area was
16.6 %, and the late recoil was 11.7 % [52]. The loss of
radial strength with bioresorption, that was considered a
consequence of scaffold shrinkage (6.94+1.70 mm® to
6.29 + 1.47 mm? at the 6 months follow-up), prompted the
redesign of the scaffold. The re-designed Absorb BVS 1.1
had a strut design with in-phase hoops and straight links to
provide additional radial support, and an updated polymer
to provide additional mechanical strength for the scaffold
[53]. The second generation ABSORB BVS was evaluated
in the ABSORB Cohort B study. The studied population
was divided into 2 groups; the first group (B1) had QCA,
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IVUS, IVUS palpography, IVUS-VH, IVUS echogenicity,
and OCT at 6 months and 2 years. The second group (B2)
had the same follow-up imaging processes at 1 and at
3 years. At 2 year clinical follow up overall MACE was
9.0 % [54]. In Cohort B1, IVUS analyses demonstrated the
minimal lumen area to decrease during the 6-months
follow-up (baseline: 6.60 + 1.22 mm? , 6-month:, P < 0.005),
and to remain stable between 6-months and 2-years
follow-up (6-month: 6.37 + 1.12 mm? 24-month: 5.99 +
1.61 mm?, P =0.26). On OCT evaluation, the scaffold area
progressively increased (baseline: 7.47 +1.18 mm?, 6-
months: 7.70 + 1.34 mm?, 2-years 8.34 + 1.83 mm?>).

In Cohort B2, the mean scaffold area did not significantly
change between post-implantation and 12-months in OCT
and IVUS examinations. The vessel vasomotion was tested
with the application of acetylcholine or methylergonovine
and the lumen measurements during these tests elicited
restoration of the vasomotion at 12 months after scaffold
implantation [55]. At two years, intracoronary administra-
tion of nitrate was performed and a significant (p = 0.035)
but modest (0.034 +0.09 mm) vasodilatation was demon-
strated. At three years, the vasodilatation was improved
(0.054 + 0.12 mm, p =0.005) [56]. Subsequently, prelimin-
ary results from the international, multi-center ABSORB
EXTEND single arm study demonstrated an incidence of
MACE of 7.3 %, ischemia driven TLR of 4.0 %, and stent
thrombosis of 0.8 %, in 250 patients with 24 months of
clinical follow-up [57].

ABSORB 1I constitutes the first randomized controlled
trial comparing the efficacy and safety of a 2nd generation
bioresorbable scaffold (Absorb, Abbott Vascular, Santa
Clara, CA, USA) with a contemporary DES (Xience,
Abbott Vascular, Santa Clara, CA, USA). The ABSORB II
trial had a 2:1 single-masked design, recruiting 501 pa-
tients with stable and unstable angina symptoms to treat-
ment with an everolimus eluting bioresorbable scaffold or
a contemporary everolimus eluting metallic DES. The pro-
cedural details of the study were shown in Table 2. The
co-primary endpoints of nitrate-induced vasomotion and
changes in minimum lumen diameter (in-stent late loss)
are to be reported at 3 years. Secondary outcomes recently
reported at 1 year demonstrated no difference in major
adverse cardiovascular events (defined as death, myocar-
dial infarction or target lesion revascularization) between
patients treated with a bioresorbable or a contemporary
metallic DES (5 % vs. 3 %, P = 0.35). In addition, cumula-
tive rates of first new or worsening angina were reported
to be lower with the bioresorbable scaffold group
compared to contemporary metallic DES (22 % vs. 30 %,
p =0.04), whereas the performance during maximum ex-
ercise and angina status by Seattle Angina Questionnaire
were reported to be similar [57].

In ABSORB 1II, pre-procedure mean lumen area in
the BVS and metallic stent groups were reported to be
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Table 2 Procedural details of ABSORB I trial
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Bioresorbable scaffold group (n = 335)

Metallic stent group (n=166) Difference 95 % Cl) p

Number of lesions 364
Balloon dilatation prior to device implantation 364 (100 %)
Planned overlap with the same type of device 56 (15 %)
Additional implantation with the same device 14 (4 %)
More than one study device implanted 70 (19 %)
Nominal size of study device (mm) 3.01 (0.31)
Balloon dilatation after device implantation 221 (61 %)
Nominal diameter of balloon used (mm) 3.08 (0.34)
Maximum balloon pressure used (atm) 14.23 (3.43)
Diameter of balloon used (mm) 3.29 (0.35)
Angiographic acute recoil of device following  0.19 (0.19)
implantation per device (mm)
Device success

Clinical device success 361 (99 %)

Clinical procedural success 322 (96 %)

182

180 (99 %) 1.10 % (=021, 3.92) 0.1
20 (11 %) 440 % (=193, 9.94) 0.16
11 (6.0) —220 % (-6.91,144) 025
27 (15 %) 440 % (-257,1062) 021
3.05 (0.28) —-0.04 (-=0.10, 0.01) 0.10
107 (59 %) 1.92 % (-6.66, 1067) 067
3.16 (0.36) -0.08 (=0.14, 0.01) 0.02
15.03 (3.33) —0.80 (=14, -0.2) 0.01
3.35(037) —-0.06 (-0.14, 0.02 ) 0.15
0.19 (0.18) —0.00 (-0.04, 0.03) 0.85
182 (100 %) —0.82 % (-2.39,1.31) 055
164 (99 %) —2.68 % (=546, 0.80) 0.16

similar 4.84 +1.39 mm? and 5.02 + 1.47 mm?, respect-

ively (p =0.16). The post-procedure mean lumen area
were 6.06 + 1.44 mm” and 6.85 + 1.60 mm? respectively
(p <0.001). Post-procedure acute gain in minimum lumen
diameter was significantly larger in metallic stent group
than in BRS group (1.46+0.38 mm vs 1.15+0.38 mm,
respectively; p <0.001). Post-procedure in-stent/in-scaf-
fold diameter stenosis was larger in BRS group than in
metallic stent group (167 % vs 10+5 %, respectively;
p <0.001). In post-procedure IVUS analyses, post-procedure
mean lumen area was significantly less in BVS group
than in metallic stent group (6.06 + 1.44 mm? vs 6.85 +
1.60 mm?, respectively; p <0.001). Post-procedure minimal
lumen area (5.73 + 1.51 vs 4.89 + 1.38, p <0.001) and post-
procedural acute gain in minimal lumen area (3.60 + 1.34
vs 2.85+1.25, p <0.001) were higher in metallic stent
group than in BVS group (Table 3). The incidence of def-
inite scaffold thrombosis was 0.6 % in BRS and 0 % in me-
tallic stent group (p = 1.0). At the end of the first year the
incidence of MI was 15 (4 %) in the BRS group and 2
(1 %) patients in the metallic stent group (p =0.06), and
were mostly non Q-wave MI. There were two scaffold
thrombosis, one within 24 h of implantation and the sec-
ond on the 2nd day [57]. In the POLAR ACS registry [58],
Absorb BVS was implanted in selected patients with
unstable angina, non ST-elevated myocardial infarc-
tion (NSTEMI) and ST-elevated myocardial infarction
(STEMI). 100 patients were followed up for 1 year
with two MACE reported, namely periprocedural MI.
At the very least this small registry demonstrated the
potential feasibility of the Absorb BVS in the treat-
ment of ACS [58].

Other bioresorbable scaffolds under clinical investigation

ART bioresorbable scaffold

The ART BRS (Arterial Remodeling Technologies; Noisy le
Roi, France) is made from a PDLLA amorphous polymer.
Notably the device does not contain an anti-proliferative
drug. The device retains its structural integrity and scaf-
folding properties for a period of 5-7 months; the biore-
sorption ends within 18 months. In animal studies, there
was no MACE reported and acute recoil rates were similar
with BMS, with the mean lumen area and external elastic
lamina area being increased at 9-months on IVUS
evaluation [59, 60]. Based on these promising results, the
Arterial Remodeling Transient Dismantling Vascular
Angioplasty (ARTDIVA) [61] first in man trial (Clinical-
Trials.gov Identifier: NCT01761578) was launched aiming
to evaluate the safety and efficacy of the ART18Z biore-
sorbable scaffold in the treatment of patients with CAD
[61]. In this trial 30 patients with a single de novo lesion
were recruited in 5 medical centers in France. The mean
diameter of reference vessel pre-procedure was 2.55 +
0.30 mm, minimal luminal diameter was 0.99 + 0.23 mm,
the diameter stenosis was 61 +8 % and the lesion length
was 7.54 + 1.24 mm. At 6-months follow-up, in-stent diam-
eter stenosis was 12+7 % in-segment diameter stenosis
was 17 £5 % and angiographic recoil was 4.3 %. During
this follow-up period there was 1 ischemia driven TLR and
2 non-ischemia driven TLR, no MI and stroke/TIA [62].

Xinsorb BRS

The Xinsorb BRS (Huaan Biotechnology; Laiwu, China)
is a fully bioresorbable sirolimus-eluting scaffold (strut
thickness 160 pm) that consists of PLLA, polylactide-
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Table 3 Angiographic and IVUS/IVUS-VH outcomes of ABSORB Il trial
Bioresorbable scaffold Metallic stent Difference (95 % Cl) p
group (n=335) group (n=166)

Angiographic analysis

Lesion length obstruction (mm) 13.8 (6.5) 13.8 (6.6) 0.00 (-1.18, 1.18) 1.00

Total scaffolded/stented length (mm) 21.1 (8.8) 209 (7.4) 024 (=1.17, 1.65) 0.74
Reference vessel diameter

Pre-procedure diameter (mm) 2.59 (0.38) 263 (0.40) —0.03 (=0.10, 0.04) 036

Postprocedure diameter (mm) 2.64 (0.36) 2.80 (0.34) —0.16 (-=0.22, —0.09) <0.001
Minimum lumen diameter

Pre-procedure diameter (mm) 1.07 (0.32) 1.05 (0.32) 0.02 (—0.03, 0.08) 0.44

Post-procedure in-stent or in-scaff old diameter (mm) 222 (0.33) 2.50 (0.33) —0.28 (-0.34, —0.22) <0.001

In-stent/in-scaff old acute gain (mm) 1.15+0.38 146+0.38 —0.30 (-0.37, -0.24) <0.001
Diameter stenosis

Pre-procedure percent diameter stenosis (%) 59+11 % 60+12 % —1.07 (=3.11,0.97) 0.30

Post-procedure in-stent/in-scaffold diameter stenosis (%) 167 % 1045 % 537 (4.38,6.36) <0.001
Pre-procedural fibrotic tissue (%) 31.47+11.39 30.62+11.42 0.85 (—1.33, 3.04) 0.44
Pre-procedural fibrofatty tissue (%) 47 43+16.91 4855+16.86 —1.12 (=4.35,2.11) 0.50
Pre-procedural necrotic core (%) 16.20+6.86 16.15+6.90 0.05 (-1.27,137) 094
Pre-procedural dense calcium (%) 490+4.73 468+4.10 022 (-061, 1.05) 0.60
Vessel area

Pre-procedure area (mm?) 11.51+£340 12.34+342 —0.83 (=147, -0.19) 0.02

Post-procedure area (mm?) 13.17+3.55 14.28+3.59 —1.11 (=1.78, —0.44) 0.001
Plaque area

Pre-procedure plaque area (mm?) 6.67+2.52 7304268 06 (=1.12,0.13) 0.01

Post-procedure plaque area (mm?) 7114246 7434244 -0.32 (-0.78, 0.14) 0.18
Mean lumen area

Pre-procedure mean lumen area (mm?) 484+1.39 5.02+147 —0.19 (<047, 0.08) 0.16

Post-procedure mean lumen area (mm?) 6.06+1.44 6.85+1.60 —0.80 (—1.09, —0.50) <0.001
Minimal lumen area

Pre-procedure minimal lumen area (mm?) 2.04+0.72 2.13+£0.83 —0.10 (-=0.25, 0.05) 0.20

Post-procedure minimal lumen area (mm?) 489+1.38 5.73+151 -084 (-1.12, -0.57) <0.001

Acute gain in minimal lumen area (mmz) 2.85+1.25 3.60+1.34 —0.75 (-=0.99, —0.50) <0.001

co-glycolide, and poly-L-lactide-co-e-caprolactone. 78 %
of sirolimus is released from the Xinsorb BRS within
14 days [63].

In a comparison study between Xinsorb BRS and the
Excel DES (JW Medical; Shandong, China) implanted in
the coronaries of porcine models, there was no signifi-
cant difference in percentage diameter stenosis (%DS) in
the Xinsorb BRS compared to the Excel DES (18.6 % vs.
214 % at 30 days; p>0.05 and 24.5 % vs. 27.7 % at
90 days; p > 0.05, respectively) [64]. At 3-month follow-
up OCT imaging demonstrated significant red significant
neointimal hyperplasia in porcine models. Subsequently the
LLL and %DS were noticeably reduced. At 1-month follow-
up, proximal, in-scaffold, and distal LLL of scaffold were
0.53 £ 0.41 mm, 0.68 + 0.42 mm and 0.65 + 0.24 mm, while

the %DS were 9.5+ 7.7 %, 17.6 + 16.8 % and 10.5 + 7.4 % re-
spectively. At 3-months, proximal, in-scaffold, and distal
LLL were 0.23 +£048 mm, 0.77+048 mm and 0.11+
0.35 mm, while %DS were 14.5 £ 9.4 %, 31.9 + 13.6 % and
54+36 % respectively. At 12-months, proximal, in-
scaffold, and distal LLL were -0.13 +0.45 mm, 0.28 +
0.41 mm and 0.18 + 0.48 mm, while %DS were 2.4 +
29 %, 141+91 % and 8.6+8.7 % respectively. At
18-month, proximal, in-scaffold, and distal LLL were
0.37 +0.57 mm, 0.09 +0.31 mm and -0.01 +0.41 mm,
while %DS were 3.9+4.6 %. 13.7+7.3 % and 69+
5.2 % respectively. Lumen area at 18-month was signifi-
cantly larger than that at 3-month with a constant scaffold
area [65]. In Xinsorb FIM trial (7 =30 patients), at 6-
months follow-up, LLL was 0.18 + 0.21 mm. In scaffolded
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segments, the diameter stenosis was 10.0 £ 4.2 % at post-
implantation and 10.6 + 6.6 % at 6-months follow-up (p =
0.70). At 6-months OCT follow-up (n=19) the luminal
area was 6.03+0.76 mm? scaffold area was 7.74+
0.62 mm?, in-scaffold area obstruction was 22.1+6.1 %,
neointimal thickness was 0.07 +0.04 mm with no
thrombus detected. The 6-month IVUS follow-up re-
vealed a mean vessel area 14.37 + 0.90 mm?, mean neointi-
mal area 3.11+0.19 mm? mean scaffold area 9.36+
0.21 mm? and mean luminal area 6.26 + 0.26 mm? [66].

Mirage bioresorbable micro-fiber scaffold

Mirage Bioresorbable Micro-fiber Scaffold (Mirage BRMS,
Manli Cardiology Singapore) is a PLLA-based sirolimus
eluting scaffold. The device incorporates a helix coil design
that provides high flexibility with a strut thickness of
125 pm in scaffolds with diameter <3 mm, and of 150 pm
in scaffolds with diameter > 3.5 mm. Mirage BRMS has a
low crossing profile (0.044” — 0.058”), and relatively short
bioresorption time (~14 months). Results of a porcine
study were encouraging; namely no in-scaffold restenosis
at 6-month follow-up, 99 % of the struts were covered
while the mean NIH thickness on top of covered struts
was 0.08 £ 0.03 mm at 6-month follow-up [67]. Frequency
of covered and uncovered struts per lesion were 99.85 +
0.33 % and 0.15+0.33 % respectively. The frequency of
malapposed struts per lesion was 0.03+0.08 %, and
malapposition strut-to-lumen distance was 0.28 mm (there
was only one malapposed strut at 6-month follow-up). In
QCA analysis, MLD and % DS was 2.34 + 0.49 mm and
2.13+0.47 mm, 17.1+11.4 % and 22.8+15.0 %, at
post-procedure and at 6-months, respectively. At 6-
months, LLL was 0.21 £ 0.20 mm and late recoil was
0.16 + 0.12 mm. Both in-scaffold and in-segment angio-
graphic binary restenosis ratios were 0 % at 6-month
[67]. Patient enrolment in FIM trial was completed in
September 2014 and the results are expected to be pre-
sented at the end of 2015.

Conclusion

For the last 20 years percutaneous coronary revasculariza-
tion has evolved, with the current premise that stent im-
plantation to be the standard of care in appropriately
selected patients [68]. Considering that coronary stenting
with metallic devices may results in persistent inflamma-
tion and endothelial dysfunction, an issue that has been
reduced but not eliminated with newer generation DES
[69], the temporary scaffold that would safeguard vessel
patency and then it would disappear appears as the ideal
solution for treating CAD [70]. These devices at the very
least have to provide comparable performances to con-
temporary DES in the short term, with the potential
promise of enhanced longer term benefits due to freeing
the vessel wall from the metallic cage and allowing the
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vessel to potentially restore its vascular function (vessel
vasomotion) adaptive shear stress and would permit late
luminal enlargement, and late expansive remodelling. On-
going, and future randomized trials assessing the efficacy
of the multitude of bioresorbable scaffolds — currently 16
different scaffolds are being developed and under investi-
gation — will ultimately determine the clinical value of this
fourth revolution in interventional cardiology.
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