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Abstract

Background: Some benefits of glucose-insulin-potassium (GIK) in patients with acute coronary syndromes (ACS)
may be from an anti-inflammatory effect. The primary aim of this study was to assess the impact of GIK
administration early in the course of ACS on inflammatory marker C-reactive protein (CRP) levels. A secondary aim
was to investigate the association between CRP and 30-day infarct size.

Methods and Results: Retrospective analysis of participants with ACS randomly assigned to GIK or placebo for at
least 8 h in the IMMEDIATE Trial biological mechanism cohort (n = 143). High sensitivity CRP (hs-CRP) was measured
at emergency department presentation, and 6 and 12 h into infusion. Logarithmically transformed hs-CRP values at
12-hours were lower with GIK vs. placebo (mean =0.65 mg/L in GIK, 0.84 mg/L in placebo), with a marginal trend
toward significance (P =0.053). Furthermore, using mixed models of hs-CRP, time, and study group, there was a
significant increase in hs-CRP levels over time, but the rate of change did not differ between treatment arms
(P=10.3). Multivariable analysis showed that an elevation in hs-CRP, measured at 12 h, was an independent predictor
of 30-day infarct size (B coefficient, 6.80; P =0.04) using sestamibi SPECT imaging.

Conclusions: The results of this study show no significant effect of GIK on hs-CRP. In addition our results show that
in patients with ACS, hs-CRP measured as early as 12 h can predict 30-day infarct size.

Keywords: Acute coronary syndromes, Glucose-insulin-potassium (GIK), Inflammation, C-reactive protein, Metabolic
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Backgrounds

Glucose -insulin-potassium (GIK) infusion as metabolic
therapy can reduce damage to myocardial cells in the
setting of ischemia or infarction [1-4]. Since its intro-
duction in the early 1960s [5], GIK treatment has been
assessed in both animal models and human studies.
However, the role of GIK in patients with acute myocar-
dial infarction (MI) remains controversial. While several
clinical trials have shown no benefit of GIK treatment in
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patients with acute MI [6-10], other studies have re-
ported benefit [11-15]. Most recently, the IMMEDIATE
(Immediate Myocardial Metabolic Enhancement During
Initial Assessment and Treatment in Emergency care)
Trial failed to show significant differences in the out-
come of progression to MI among patients presenting
with acute coronary syndromes (ACS); but it did show
that GIK was associated with lower rates of the compos-
ite outcome of cardiac arrest and/or in-hospital mortal-
ity, and with smaller infarct size [15]. The IMMEDIATE
Trial is distinguished from other trials by the early ad-
ministration of GIK prior to arrival at the hospital [15].
In previous studies, GIK administration was delayed
until hospital admission [6-10], with a median time of
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6 h from symptom onset to GIK initiation in one study
[9].

While the mechanisms underlying GIK’s effects in
patients with ACS are unknown, several pathways
have been suggested, including a metabolic pathway
by promoting of glycolysis, and reducing circulating
free fatty acid (FFA) levels, and through anti-
inflammatory effects [16—18]. Inflammation contrib-
utes to myocardial damage in ischemia, infarction,
and reperfusion [19]. The acute phase reactant C-
reactive protein (CRP) is released in response to
inflammation in chronic coronary artery disease and
in acute MI [19]. High CRP levels after acute MI pre-
dict infarct expansion and plaque rupture [20-22].
Whereas a reduction in the rise of CRP levels has
been shown to indicate the efficacy of thrombolytic
therapy and a patent infarct-related coronary artery
[23, 24]. Continued elevations in CRP portend in-
creased risk of mortality, even in the presence of cur-
rently available therapies for ACS [25].

In the setting of ACS, GIK has been demonstrated to
reduce serum markers of inflammation, including CRP
in one study [18] but not in others [26, 27]. Here, in the
largest study to date of very early administration of GIK
for ACS, the IMMEDIATE Trial, we tested the hypoth-
esis that GIK was associated with smaller CRP elevations
compared to those treated with placebo. Related to this,
we further hypothesized that the changes in CRP levels
following presentation with an ACS correlate with 30-
day infarct size.

Methods

Study sample

This study analyzed data collected from participants en-
rolled in the IMMEDIATE Trial, the methodology of
which has been published elsewhere [15]. In brief, it was
a randomized, placebo-controlled, double-blind clinical
effectiveness trial of GIK, from December 2006 through
July 2011, in which paramedics, aided by electrocardio-
graph (ECG)-based decision support, randomized and
enrolled 871 participates aged =30 years with high prob-
ability of ACS [15]. Participants were given either the
GIK solution (30 % glucose, 50 U/L of regular insulin,
and 80 mEq of KCI/L) intravenously at 1.5 mL/kg/h for
12 h, or an identical-appearing placebo as 5 % glucose
solution. In the study, the median time from symptom
onset to initiation of infusion was 90 min [15]. This
investigation was based on the IMMEDIATE Trial bio-
logical mechanism cohort (“biocohort”), which com-
prised of participants who consented to participate in
this biocohort, confirmed as having ACS, and treated for
at least 8 h with study drug. Confirmed ACS (acute MI
or angina pectoris) was determined by site investigator
review and then independently adjudicated by the study
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clinical events committee who were blinded to study
group, glucose, and potassium results. Enrolment in the
biocohort began after the trial was started and only in-
cluded 6 out of 13 study centers. The study protocol and
analyses were approved by the Tufts Institutional Review
Board (IRB) and by the IRBs responsible for each of the
IMMEDIATAE Trial study sites.

Data collection

During the 12-hour infusion of study drug, glucose, in-
sulin, FFA, and high sensitivity CRP (hs-CRP) levels
were tested at three times: 1) the initial measurement,
which was drawn as soon as feasible after hospital ar-
rival; 2) 6 h after start of study drug; and 3) 12 h after
start of study drug, or upon discontinuation of the infu-
sion. Hemoglobin A1C was measured on admission and
at 30 days, and infarct size was measured at 30 days by
sestamibi SPECT imaging. The Trial’s core laboratory
interpreted the nuclear studies, and the core laboratory
of Tufts Clinical and Translational Science Institute per-
formed the hs-CRP measurements. Other covariates
measured in the biocohort include demographic data,
vital signs, medical history, and medications used at
home, in the hospital, or upon discharge.

Data analysis

Statistical analyses were performed using R, version
2.15.2. Descriptive statistics were used to describe base-
line characteristics. All tests were two-sided, using alpha
<0.05 to determine statistical significance. Serum hs-
CRP levels ranged widely and their distribution was
highly skewed to lower levels; therefore hs-CRP concen-
trations were logarithmically (base 10) transformed in all
further analyses. Linear regression models were used to
assess the relationship between initial hs-CRP measure-
ments and baseline characteristics; variables significantly
associated with initial hs-CRP levels were adjusted-for in
the analysis. The independent sample t-test was used to
detect unadjusted differences in cross-sectional hs-CRP
levels between GIK and placebo. In addition, using inde-
pendent sample t-test, the differences between the initial
and 12-hour hs-CRP measurements (delta hs-CRP) were
used to assess differences by treatment arm. A mixed
model was used to detect the differential effect of treat-
ment on the rate of change in the initial, 6-, and 12-
hour hs-CRP levels, adjusting for baseline and clinical
characteristics associated with initial hs-CRP measure-
ment, and accounting for repeated measures on each
participant at the different time points. We also adjusted
for time from symptom onset to reperfusion therapy.
The linear mixed model uses a random intercept for
each subject, and for within-subject correlation. The
model included terms for time, from the initiation of in-
fusion (real-time as a continuous measurement), and an
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interaction term between study drug and time, in order
to estimate the association between treatment arms and
change in the inflammatory marker over the follow-up
time points. Sensitivity analysis was done by stratifying
participants based on ACS diagnosis (i.e. acute MI com-
pared to unstable angina), and by the use of statins prior
to enrollment in the study.

Univariate and multivariable linear regression models
were used to study the association between hs-CRP
levels at the three time points (as the predictor) and
infarct size (as the outcome), after adjustment for poten-
tial confounders including age, gender, and those corre-
lated with infarct size in univariate models at a p-value
of <0.1. Infarct sizes ranged from 0 to 59 % of left ven-
tricular mass, where 0 % represent those who did not
develop an infarct, and 59 % was assigned to those who
died (n=4) before imaging, based on the fact that the
largest infarct size measured in the study was 58 %. In
addition, correlations between hs-CRP at the initial, 6-,
and 12-hour determinations and infarct size were
assessed using Spearman’s rank correlation. Sensitivity
analyses were performed by removing participants who
had no infarct to check if the association between hs-
CRP and infarct size has the same direction for those
who had an infarct versus those who did not. Additional
sensitivity analysis was done on participants in the
placebo group only to test for the correlation between
hs-CRP levels, at the three time points measured, and
infarct size, without the effect of GIK. We also ran sensi-
tivity analyses based on ACS diagnosis, and prior use of
statins. Because hs-CRP baseline levels were not mea-
sured prior to study infusion initiation, but rather, after
hospital arrival, the time from when the drug started
and time of the first hs-CRP measurement was used as a
covariate in regression models.

Results

Characteristics of study population

A total of 143 participants met the inclusion criteria for
the biocohort; 68 received GIK and 75 placebo. Not all
individuals had complete hs-CRP measurements; partici-
pants with at least one hs-CRP measurement available
were included in the analysis (z = 143). Additional file 1:
Figure S1 illustrates how the biocohort participants were
enrolled. Their demographic and clinical characteristics
by treatment arm are shown in Table 1. The average age
was 64 years in both groups; 77 % of the GIK group and
70 % of the placebo group were men. Chest pain was the
chief symptom of 86 % of participants, and they were
randomized at a median time of 90 min after ischemic
symptom onset. The median time from start of study
drug to the measurement of the initial hs-CRP values
was 2.5 h in the GIK group and 2.6 h in the placebo
group. The entry participant characteristics were well-
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balanced in the GIK and placebo groups. The clinical
characteristics of participants in the biocohort were
similar to all IMMEDIATE Trial participants by site of
enrollment. The diagnosis of ACS was more common in
the biocohort, as expected because a confirmed diagno-
sis of ACS was a requirement for enrollment into the
biocohort (Additional file 1: Table S1).

Changes in hs-CRP levels

Table 2 shows hs-CRP levels in the first 12 h of drug in-
fusions before logarithmic transformation. Linear regres-
sion models were performed to assess the association
between admission hs-CRP levels and baseline charac-
teristics. They showed that older people, women and in-
dividuals with history of heart failure had higher hs-CRP
levels upon admission (Additional file 1: Table S2). In
addition the longer time from symptom onset to reper-
fusion therapy the higher the hs-CRP levels (Additional
file 1: Table S2). These associations remained significant
after adjusting for the use of study drug. No other clin-
ical characteristics had a significant association with ad-
mission hs-CRP values.

The hs-CRP measurements increased significantly in
both the control and the treatment groups by 6 and 12 h,
compared with the initial measurement (P <0.01 for all
intragroup comparisons). Hs-CRP values were not different
for those who received GIK versus placebo at the initial
and 6-hour measurements; however by 12 h, the hs-CRP
levels were slightly higher in placebo-treated versus GIK-
treated participants (P =0.053) (Fig. 1). When comparing
delta hs-CRP, the differences between the initial and 12-
hour hs-CRP measurements, there were no significant dif-
ferences in those delta values between treatment arms
(Additional file 1: Table S3). Using linear mixed model, hs-
CRP levels increased significantly with time in both arms
(P <0.01); however, the rate of change did not differ be-
tween the GIK and placebo groups (P = 0.30 for time*treat-
ment interaction). Baseline characteristics associated with
initial hs-CRP were added to the model and did not change
the above results. In addition, the results remained the
same after adjusting for the time from symptom onset to
reperfusion therapy. The results also did not change when
we stratified the analysis by ACS diagnosis, and by the use
of statin therapy prior to study enrollment.

Association between hs-CRP and infarct size

After adjusting for age, gender and GIK administra-
tion (variables that were associated with infarct size in
univariate models), there were no significant associations
between hs-CRP and infarct size at the initial and 6-hour
measurements. On the other hand the 12-hour measure-
ment and delta hs-CRP were significantly associated with
infarct size (Table 3). Sensitivity analysis done by removing
participants with no infarct (i.e. those with an infarct
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Table 1 Baseline demographics and clinical characteristics of study participants by treatment group in the biocohort (N =143)?

Cohort characteristics No. (%)
N=143
GIK (N=68) Placebo (N=75)

Age, mean (SD), y 64.5 (12.9) 639 (12.8)
Men 52 (76.5) 52 (69.3)
Race

White 66 (97) 71 (95)
Hispanic ethnicity 344 7 (9.3)
Chief complaint on presentation

Chest pain 59 (86.8) 67 (89.3)

Shortness of breath 1(1.5) 34

Other P 8(11.7) 5(67)
Medical history

Diabetes 12 (17.6) 19 (25.3)

Heart Failure 4 (5.9) 7 (9.3)

AMI 21 (30.9) 24 (32.0)
Medication history

Statins 30 (44.1) 29 (38.7)

Aspirin 39 (57.3) 44 (58.7)
Minutes from symptom onset to study drug, median (IQR) 86 (51.5-160.5) 81 (53-123)
Minutes from symptom onset to study drug

0-30 1(15) 0

31-60 21 (30.9) 22 (29.3)

61-90 9(13.2) 19 (25.3)

91-180 12.(17.7) 15 (20.0)

181-360 10 (14.7) 8(10.7)

361-24 h 6 (8.8) 5(6.7)

Within 24 h, unspecified 3 (44) 4 (5.3)
>24 h 6 (838) 2(27)
ACI-TIPI score, mean (SD), % 83 (15.7) 83.1 (12.1)
Hospital reperfusion treatment

Thrombolytic therapy 1(1.5) 1(1.3)

PCl 59 (86.8) 56 (74.7)

Coronary artery bypass graft 0(0) 2(2.7)
Confirmed diagnosis

Acute myocardial infarction 58 (85.3) 68 (90.7)

Any angina 10 (14.7) 7(93)
Time from study drug to biomarker measurement, median (IQR), hours

Initial 25(13-33) 26 (1.9-32)

6h 6 (6-6.3) 6 (6-6.2)

12h 12 (12-12.2) 12.1 (12-12.3)

AMI indicates acute myocardial infarction; ACI-TIPI acute cardiac ischemia time-insensitive predictive instrument; GIK glucose-insulin-potassium; IQR interquartile
range; PCl percutaneous coronary intervention; SD standard deviation

“No significant differences were noted between GIK and placebo groups

PAbdominal pain, back pain, dizziness, heartburn, loss of consciousness, shoulder pain and weakness
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Table 2 Hs-CRP Levels in the first 12 h of emergency department admission

GIK Placebo
Hs-CRP No. Mean (SD) Median (IQR) No. Mean (SD) Median (IQR)
Initial hs-CRP mg/L 59 8.1(17.7) 3.1 (14-73) 61 123 (244) 32 (1.9-93)
6 h hs-CRP mg/L 58 86 (17.0) 34 (1.8-8.98) 63 15.1 (30.7) 42 (20-124)
12 h hs-CRP mg/L 57 92 (16.7) 45 (23-79) 64 176 (31.0) 59 (3.1-13.7)

GIK indicates glucose-insulin-potassium; Hs-CRP high sensitivity C-reactive protein; IQR interquartile range; SD standard deviation

size of 0, or those who died and did not have infarct size
measurement available) (# = 31) showed the same associ-
ation between hs-CRP levels and infarct size (Table 3).
Also stratifying participants by ACS diagnosis and statin
use prior to study enrollment did not significantly change
the study results. Results from spearman’s rank correlation
yielded similar associations between hs-CRP and 30-day
infarct size (Additional file 1: Fig. S2). When testing for
the correlation between hs-CRP and infarct size in the
placebo group only, we found that the 12-hour hs-CRP
and the delta hs-CRP remained significantly correlated
with infarct size (p-value =0.022 and 0.049, for the 12 h
and delta hs-CRP respectively).

Discussion
Our data confirm that plasma hs-CRP concentrations are
increased in participants presenting to the ED with ACS,
presumably reflecting a state of inflammation. However,
the administration of GIK early in ACS did not have a sig-
nificant impact on hs-CRP levels. Although there was a
modest difference between the 12-hour hs-CRP levels
with GIK, the delta hs-CRP values was not different be-
tween treatment arms. In addition, results of mixed
models, adjusting for within and between subjects vari-
ability, demonstrated no effect of GIK on hs-CRP over the
three time points. These results suggest that the beneficial
effects of GIK in ACS observed in the main study [15], at
least as reflected in the absence of an effect on hs-CRP,
are less likely to be through an anti-inflammatory effect,
and may be more extended through a metabolic effect.
Previous studies on the effect of GIK on CRP yielded
conflicting results. In a study by Chaudhuri et al.,, GIK

Table 3 Regression analysis of hs-CRP levels and 30-day infarct size®

administration started in the emergency department in
patients presenting with ST-segment elevation myocar-
dial infarction (STEMI) (n = 32) and lasting 48 h showed
significantly reduced hs-CRP values at 24 and 48 h post-
infusion compared to placebo [18]. In contrast, Parikh et
al., demonstrated in 25 patients with STEMI that a 24-
hour infusion of GIK produced no statistically significant
difference in 24 h hs-CRP levels compared with placebo
[26]. Additionally a study by Hashemian et al., showed
no effect of GIK on hs-CRP levels in 72 patients with
STEMI treated within 12 h from symptom onset [27].
Although those studies added GIK to standard care,
there are important differences in the use of GIK in the
IMMEDIATE Trial. First, unlike prior clinical trials in
which GIK was started typically an average of 6 h after
onset of ischemic symptoms, following documentation
of acute MI [6, 10, 14], in IMMEDIATE, the study drug
was started prior to arrival to emergency department,
upon emergency medical services (EMS) arrival in the
community following a 9-1-1 call, at an average of
90 min after symptom onset [15]. Moreover, the previ-
ous studies only included participants with STEMIL In
contrast, the IMMEDIATE Trial included participants
with ACS, ie., either unstable angina or acute MI
(whether or not STEMI) [15].

Infarct size has shown to be a prognostic marker of
adverse clinical outcomes after an acute coronary event
[28]. Baseline CRP levels in healthy individuals or in pa-
tients with stable angina are independent risk factor for
cardiovascular events [29]. Also the rise in CRP after
acute MI or during unstable angina pectoris has been
shown to be related to outcome [23, 30, 31]. In this

All participants

Participants with an infarct

Regression models® No. Beta Coefficient P-value No. Beta Coefficient P-value
Initial hs-CRP mg/L® 83 23 046 54 38 035
6 h hs-CRP mg/L® 85 40 0.17 56 59 0.13
12 h hs-CRP mg/L® 83 6.8 0.04 56 10.6 0.02
Delta hs-CRP mg/L¢ 78 139 0.02 51 231 0.01

GIKGIK indicates glucose-insulin-potassium,: Hs-CRP high sensitivity C-reactive protein

“Data analyzed using logarithmically transformed hs-CRP values

PAdjusted for age, gender and GIK administration. In addition, the time from when the drug started to the time of the first hs-CRP measurement was used as a co-
variate. The coefficient represents the fitted increase in infarct size per one unit change in logarithmically trasnformed hs-CRP.

Per 1 unit increase in hs-CRP levels
dDifference between the initial hs-CRP and 12 h hs-CRP measurements
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represents the first hs-CRP measurement (median = 2.5 h)

study on participants presenting to EMS with ACS, we
document a relationship between hs-CRP level measured
at 12 h and 30-day infarct size. In addition, the magni-
tude of change in hs-CRP levels, between the initial and
12-hour values, was related to infarct size. Limiting the
analysis to those participants with a documented infarct
size measurement, and also to those in the placebo
group only, showed similar results. Previous studies have
shown no clear relationship between CRP levels on hos-
pital admission and infarct size in patients with acute
coronary events [32]; but nevertheless, cumulative or
peak CRP levels have been correlated with infarct size
[33]. Peak CRP levels are reached by no earlier than 24 h
after infarction [34]. Adding to that picture, our hs-
CRP measurements reflect that an early rise, within
12 h of ACS symptom onset, correlates with 30-day
infarct size. Imaging studies in IMMEDIATE Trial
biocohort participants at 30 days showed an 80 % re-
duction infarct size associated with GIK, both for the
entire ACS cohort (n=110) and in those presenting
with STEMI (n=75) [15]. Therefore the modest re-
duction seen in hs-CRP levels at 12 h between the
two groups may be indirectly related to infarct size.
This study has several limitations. First, although our
sample is larger than previous studies on the effect of
GIK on hs-CRP levels [18, 26, 27]. the size of the IMME-
DIATE Trial biocohort may have limited our power to
detect treatment interactions. Second, CRP levels prior
to the onset of GIK infusion and after the 12 h infusion
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were not available. Finally, although CRP is commonly
used as an inflammatory biomarker, it is somewhat non-
specific and other biomarkers have been considered as
an alternative to CRP. For instance, serum amyloid A,
interleukin-6, and adhesion molecules such as soluble
intercellular adhesion molecule type 1, similar to CRP,
are markers of inflammation that are produced by the
liver [35]. Therefore, if GIK exerts an anti-inflammatory
effect it may be reflected through biomarkers other than
CRP. Nevertheless this study has several strengths in-
cluding serial hs-CRP levels measurements within 12 h
after GIK initiation, compared to other studies, in which
the effect of GIK on CRP was assessed at 24—48 h fol-
lowing treatment. Moreover, our data were collected in a
randomized placebo-controlled trial, with both GIK and
placebo participants having balanced characteristics.

Conclusions

In patients with an ACS, early administration of GIK ap-
pears to have no significant effect on hs-CRP levels mea-
sured in the first 12 h of treatment infusion. This is
consistent with a model that the primary immediate
benefits of GIK are more likely metabolic rather than
anti-inflammatory. Nevertheless, in order to more fully
understand the mechanisms by which GIK exert its po-
tential benefits in patients with an ACS, future research
should consider markers of endothelial dysfunction,
microvascular dysfunction, and coagulation. Our find-
ings of a possible association between the early rise in
hs-CRP levels and infarct size, are consistent with the
role of inflammation in extent of infarction, an effect
that deserves further investigation as a marker of acute
myocardial damage and inflammation.
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