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Abstract

time was found to be a significant predictor of death.

evidence-based tool for everyday use in medical practice.

Background: Physicians utilize different types of information to predict patient prognosis. For example: confronted
with a new patient suffering from severe aortic stenosis (AS), the cardiologist considers not only the severity of
the AS but also patient characteristics, medical history, and markers such as BNP. Intuitively, doctors adjust their
prediction of prognosis over time, with the change in clinical status, aortic valve area and BNP at each outpatient
clinic visit. With the help of novel statistical approaches to model outcomes, it is now possible to construct
dynamic event prediction models, employing longitudinal data such as AVA and BNP, and mimicking the dynamic
adjustment of prognosis as employed intuitively by cardiologists. We illustrate dynamic prediction of patient
survival and freedom from intervention, using baseline patient characteristics and longitudinal BNP data that are
becoming available over time, from a cohort of patients with severe aortic stenosis.

Methods: A 3-step approach was employed: (1) construction of a mixed-effects model to describe temporal BNP
progression, (2) jointly modeling the mixed-effects model with time-to-event data (death and freedom from
intervention), and (3) using the joint model to build subject-specific prediction risk models. The dataset used for
this purpose includes 191 patients with severe aortic stenosis who were followed over a 3-year time period.

Results: In the mixed-effects model BNP was significantly influenced by time, baseline patient age, gender, LV
fractional ejection fraction and creatinine. Additionally, the joint model showed that an increasing BNP trend over

Conclusions: By jointly modeling longitudinal data with time-to-event outcomes it is possible to construct individualized
dynamic event prediction models that renew over time with accumulating evidence. It provides a potentially valuable
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Background

In clinical practice, physicians utilize different sources of
information to predict patient prognosis. For example, in
diagnosing a new patient with severe aortic stenosis
(AS), a cardiologist considers not only the severity of the
AS (for example through aortic valve area AVA mea-
surement) but also patient characteristics such as patient
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age and comorbidities, New York Heart Association
(NYHA) functional class and patient history, in order to
make an assessment of patient prognosis. Additionally,
biomarkers such as brain natriuretic peptide (BNP) can
be used to further assess AS severity and prognosis. A
small AVA and a high BNP are both associated with a
more severe disease and a worse outcome [1-3].
Empirically, cardiologists adjust their prognosis over
time at each outpatient clinic visit, with the change in
functional class, AVA and BNP. Based on emerging
evidence on determinants of the outcome in AS, and
with the help of novel statistical approaches to model
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outcomes, it is now possible to construct dynamic predic-
tion models for patient outcome, employing repeatedly
collected (longitudinal) data such as BNP, mimicking the
dynamic adjustment of prognosis as employed intuitively
by cardiologists at each outpatient clinic visit.

This paper aims to illustrate the use of joint models of
longitudinal and time-to-event data to dynamically pre-
dict individualized event occurrence severe AS. For this
purpose, data from a prospective cohort study of 191 pa-
tients with severe AS is modeled to dynamically predict
prognosis of two patients: Mr. Jones and Mr. Smith; who
were recently diagnosed with severe AS.

Methods
Patient dataset
We used the patient dataset of a previously reported pro-
spective cohort study of 191 adult patients, who were diag-
nosed with severe aortic valve disease in seven cardiology
clinics in the wider Rotterdam area between 2006 and
2009, and who were followed for 2 years [4]. Inclusion cri-
teria were AVA<1 cm? peak transaortic jet velocity
(Vmax) >4 m/s, or aortic valve/left ventricular outflow tract
velocity time integral ratio > 4. The patients were followed
clinically, including BNP measurements, and echocardio-
graphically at baseline and then after 6, 12 and 24 months.
Baseline patient characteristics are displayed in Table 1. In
total 561 BNP measurements were collected over a 2-year
period (mean 0.9 years; range 0-2.5 years). During the
follow-up period, 15 % of the patients (N =28) died and
48 % (N =91) received an aortic valve replacement of trans-
catheter aortic valve implantation.

The study protocol was approved by the medical ethics
committee of Erasmus University Medical Center (MEC
2006—-066); all patients provided written informed consent.

Statistical methods
The development of a dynamic event prediction model
that takes into account both baseline patient characteristics

Table 1 Baseline patient characteristics
All patients (Number =191)

Male gender (n, %) 118, 62 %
Age in years (mean, sd) 726,114
Symptomatic at study entry (n, %) 132,69 %
Smoking (n, %) 115, 60 %
Hypertension (n, %) 100, 52 %
Diabetes (n, %) 39,20 %
Dyslipidemia (n, %) 93,49 %
AVA in cm? (mean, sd) 074,027
LV ejection fraction in % (mean, sd) 61,6.7
Creatinine in micromol/L (mean, sd) 89, 125

AVA = aortic valve area; LV = left ventricular
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and longitudinal BNP measurement, requires that we first
describe the evolution of BNP over time, correcting for
baseline variables. Second, we use this information in a
time-to-event model. Finally, using the combined model,
we perform dynamic event predictions. In the next para-
graphs we describe in detail the statistical methods that
were employed in this 3-step process, and the rationale be-
hind these methods.

First, we fitted a mixed-effects model to describe the
evolution of BNP over time. Particularly, the model in-
cluded time (years) and the baseline covariates: AVA
(cm?), patient age (years), symptoms (yes/no), gender,
transformed LV ejection fraction (%) and transformed
creatinine (micromol/L). Transformation was done by
dividing the values with the standard deviations of the
specific covariates. Moreover, due to heterogeneity in
the residuals plot the logarithmic scale of BNP was used.
An advantage of the mixed-effects models is that they
account for the positive correlation between the mea-
surements that are observed within the same patient.
For example, the values of BNP that are observed over
time from the same patient are expected to be more cor-
related than between patients. Moreover, these models
account for the biological variability in the longitudinal
outcome. Specifically, if we measure BNP twice a day,
we may not obtain the same result. By taking this into
account using the mixed-effects model, more reliable re-
sults will be observed.

Second, to investigate the effect of the repeated BNP
measurements on death and intervention probabilities,
separate joint models of longitudinal and survival out-
comes were constructed [5,6]. AVA, age, symptoms, gen-
der, LV fraction and creatinine (all at baseline) were
included as additional confounders. More details about
the joint models are presented in the Appendix.

Third, we considered the joint modeling framework
and focused on the assessment of the predictive ability
of our survival outcomes. Specifically, it was of interest
to predict patient survival and aortic valve intervention-
free for a new patient that has provided us with a set of
BNP measurements and baseline characteristics, using
the fitted joint model for all patients. Due to the fact
that BNP is time-dependent and not constant between
the visits and therefore providing longitudinal measure-
ment up to a specific time, assumes survival up to this
time, it was more relevant to calculate the probability of
surviving a future time point, given that the patient was
alive until his last follow-up visit [7,8]. Using this approach,
we applied the resulting joint modeling framework to two
hypothetical patients: Mr. Jones and Mr. Smith and pre-
dicted their future survival and aortic valve intervention-
free probabilities. Specifically, Mr. Jones is a 72 year old
male, with creatinine value at baseline 92 micromol/L,
AVA of 0.96 cm? LV ejection fraction 61 % and BNP
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Table 2 Coefficients, standard error of coefficients and
p-values for the mixed-effects model describing the
evolution of BNP over time

Coef Se(coef) p-value
(Intercept) 292 095 0.0025
Time (years) 023 0.04 <0.0001
AVA (cm?) -148 03 <0.0001
Age (years) 0.05 0.007 <0.0001
Symptoms 043 0.18 0.0188
Male gender -034 0.18 0.0607
*LV ejection fraction (%) -0.16 0.08 0.0486
*Creatinine (micromol/L) 04 0.09 <0.0001

AVA = aortic valve area; LV = left ventricular. * Trasnformed LV ejection fraction
and Creatinine in the models

values over time 64, 70, 72 and 78 pg/ml measured at 0.5,
0.9, 1.5 and 1.5 years. Moreover, he is asymptomatic at
baseline. Additionally, Mr. Smith is a 79 year old male that
has creatinine equal to 92 micromol/L, AVA equal to
0.61 cm? LV ejection fraction equal to 61 % and he is
symptomatic at baseline. Finally, his BNP values are 381,
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287, 1068 and 1070 pg/ml measured at 0, 0.9, 1.2 and
2 years.

Furthermore, we performed internal validation using a
bootstrapping procedure (size of 1000). Specifically, we
focused on discrimination, that is, how well can the
model discriminate between patients who are about to
experience the event within a time frame after the last
measurement, from patients that are going to surpass
this time frame. Since the patients were visiting their
physician approximately every half year, we set this time
frame. In particularly, we relied on the receiver operating
characteristic (ROC) approach to assess the predictive
ability of the longitudinal biomarker BNP [7].

All analyses have been implemented in R-3.2.0, which
can be downloaded as freeware at http://www.r-project.org,
using the JM package [9].

Results

As illustrated in Table 2 in the mixed-effects model de-
scribing the evolution of BNP over time, all covariates
have a strong association with the levels of BNP, except
baseline gender. Specifically, a longer follow-up, lower
AVA at baseline, older patient baseline age, symptomatic
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5.0 7
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Fig. 1 Effect plot of AVA described from the joint model for Mr. Jones and another patient with the same age, with impaired LV ejection fraction
of 61, creatinine level equal to 92 and both patients with no symptoms at baseline
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Table 3 Coefficients, standard error of coefficients and p-values for the joint model predicting death and aortic valve intervention

Coef Exp(coef):HR Se(coef) p-value
Death
BNP at specific time point (pg/ml) 0.5 1.65 03 0.0962
AVA (cm?) -261 007 15 0.0815
Age (years) 0.02 1.02 0.04 0.5674
Male gender 1.12 3.06 06 0.0623
Symptoms 1.87 6.49 1.05 0.0753
*LV ejection fraction (%) 0.01 1.01 0.25 0.9539
*Creatinine (micromol/L) 0.18 1.2 0.15 0.2162
Aortic valve intervention
BNP at specific time point (pg/ml) 0.18 1.2 0.25 04787
AVA (cm?) -1.12 033 1.04 02804
Age (years) -0.04 0.96 0.02 0.0077
Male gender 0.39 148 049 04287
Symptoms 1.08 2.94 046 0.0183
*LV ejection fraction (%) 0.24 1.27 0.21 0.2388
*Creatinine (micromol/L) —143 024 131 0.2761

BNP = brain natriuretic peptide; AVA = aortic valve area; LV = left ventricular; HR = hazard ratio. * Trasnformed LV ejection fraction and Creatinine in the models
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patient at baseline, lower baseline LV ejection fraction
and a higher baseline serum creatinine are highly associ-
ated with an increased BNP. Moreover, Fig. 1 shows the
evolutions of BNP over time of two hypothetical
patients, Mr. Jones and another patient that has the
same characteristics as Mr. Jones except for the AVA level
which is 0.61. It is obvious in Fig. 1 that a smaller AVA is
associated with a higher BNP at baseline. Furthermore,
there is no difference in the progression of BNP between
the two patients. From the joint model with the death as
outcome, in Table 3, we observe that smaller AVA at base-
line, male patient, symptoms at baseline and higher BNP
at a specific time point (since we used all repeated mea-
surements in the model for the specific covariate) tend to
be associated with death. The joint model with the aortic
valve intervention as outcome shows that a younger
patient and symptoms at baseline are strongly associated
with aortic valve intervention probabilities.

Figures 2, 3, 4 and 5 represent the dynamic prediction
of survival and aortic valve intervention-free respectively
for Mr. Jones and Mr. Smith, employing the joint mode-
ling framework. It can be seen in Fig. 2 that as more BNP
measurements accumulated over time for Mr. Jones, the
survival curve does not show big changes. Moreover, the
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same can be seen in Fig. 3, where the intervention-free
probabilities are presented. This can be explained by the
fact that Mr. Jones’ BNP measurements are relatively low
and stable. In contrast, Mr. Smith has more steep curves
for both expected survival and aortic valve intervention-
free probabilities indicating that the patient should be
monitored frequently. Specifically, one year after his first
follow-up visit Mr. Smith has a survival probability of
70 %, while one year after his last visit his survival probabi-
lity is less than 50 %. The reason could be that Mr. Smith
has a high BNP value at baseline and his progression is fas-
ter within the 2 year period compared to Mr. Jones. Thus,
Mr. Smith has a much lower survival probability one year
after his last follow-up.

Finally, from the bootstrapping we observe the area
under the ROC curve for death and aortic valve inter-
vention to be 0.88 and 0.59, respectively. This indicates a
good discriminative capability of the BNP for death, and
little added value for the prediction of aortic valve
intervention.

Discussion
In this paper we illustrated the use of joint models of
longitudinal and time-to-event data for individualized
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dynamic event prediction using serial BNP measurements
in patients with severe AS. Patient prognostication may be
improved by the use of such models that take into account
all available medical information that accumulates over
time. In the case of Mr. Jones and Mr. Smith, their prob-
abilities of survival and aortic valve intervention-free were
calculated accounting for all BNP values that accumulated
over time and were updated when new BNP mea-
surements became available. This approach provides the
cardiologist with a useful evidence-based tool to assess
the impact of BNP on patient prognosis. Importantly,
the calculated probabilities for survival and aortic valve
intervention-free can be used as an early warning system,
allowing the necessary time for the physicians to plan an
intervention. Given the impaired quality of life (QOL) of
symptomatic patients with AS [10] and the considerable
improvement in QOL after the aortic valve replacement,
dynamic event predictions may be of great value in opti-
mizing the timing of the intervention [11].

The joint model of longitudinal and survival data [5]
represents a powerful statistical tool capable of capturing
the association between longitudinal and survival data.
An alternative approach is to utilize the time-dependent
Cox model. However, this model assumes a step func-
tion between the repeated measurements, which is not

realistic for biomarkers due to the fact that such cardio
data as BNP values cannot be assumed to be constant
between visits.

Of course, the proposed methodology has several
(potential) limitations, both from a clinical and a statis-
tical point of view. From a clinical point of view, every
patient is unique, and analysis based on group data may
not account for the special characteristics of an indi-
vidual patient. Moreover, there are factors that are not
included in the statistical models that may play an im-
portant role and thus influence the decision making. In
this respect we acknowledge that the proposed metho-
dology may be supportive in clinical decision making,
but can never replace clinical expertise. Also, for clini-
cians with limited understanding of advanced statistical
models, the proposed methodology may be difficult to
comprehend, and tutorials aimed at clinicians are needed
to further educate clinical professionals [6]. From the stat-
istical point of view, the analysis of more than one longitu-
dinal outcomes such as BNP, AVA and symptoms over
time together with survival outcomes requires advanced
computational work and standard statistical packages do
not yet provide these options. Moreover, there is not yet a
package performing dynamic event prediction accounting
for the competing risk problem: specifically, patients could
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die or require an intervention, in this case is aortic valve
intervention. The analysis, then, becomes more compli-
cated by the fact that the two censored outcomes are not
completely independent, thus it is clear that analyzing the
two outcomes separately is not appropriate and may lead
to bias. However, in order to keep the analysis simple and
thus to use only available packages, in the paper we did
not accounted for the competing risk problem. Further-
more, a topic that was not addressed in this paper, con-
cerns the validation of the derived predictions in terms of
calibration. Within the joint modeling frame, some work
has been done by Rizopoulos (2011) [7] and Proust-Lima
and Taylor (2009) [8]. Specifically, they focus on predictive
accuracy measures that compare the actual value of pre-
dictions with the observed data using simulated data.
Finally, a dataset consisting of more patients that are
followed for a longer time period may provide better pre-
dictions for future patients.

Although all analysis was performed using standard
statistical packages, a level of expertise in programming
may be required. Thus, interactive web applications with
friendly controls that easily incorporate plots and sum-
maries are essential for adequate implementation of the
proposed models in clinical practice may be interesting

to produce. Particularly, an easy web application could
give the opportunity to every physician to derive up-
dated predictions for new patients when more longitu-
dinal outcomes are available.

From the analysis we obtained a non-significant asso-
ciation between aortic valve intervention and the evolu-
tion of BNP (Table 3). Hence, the validation showed that
for the target group of patients the BNP as a marker for
intervention does not exhibit great discrimination
power. BNP levels have been previously found to be pre-
dictors of reoperation. Therefore, although BNP profile
is not a good predictor of intervention in our case, it is
reliable in predicting mortality and thus can be very
helpful in planning an intervention to prevent mortality
due to AS disease progression. This non-significant re-
sult could be explained by the fact that additional car-
diovascular risk factors were not taken into account
because either there were not available or the patients
were not enough to include more factors in the model.

In this paper we assumed linear trajectories for the
BNP biomarker since we did not have a big range of
values per patient. However, in a different setting where
more information would be available per patient it may
be of interest to investigate for non-linear profiles.
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Specifically, patients could have highly non-linear evolu-
tion that could not be described by a simple structure,
such as linear one. Even though the interpretation then
becomes more complex, it is evident that misspecifica-
tion of the evolution of the biomarkers could lead to
bias. In order to obtain valid results, it is important to
postulate a mixed-effects model that is capable of appro-
priately capturing such non-linear evolutions.

Conclusions

In conclusion, this paper has shown that temporal ad-
justment of risk prediction models for patients with se-
vere AS, as more measurements of BNP become
available over time, provide the physician with an evi-
dence based understanding of the prognostic implication
of changes in the patient’s disease condition. With the
cardiovascular medical practice increasingly moving to-
wards personalized medicine [12], joint models may pro-
vide an attractive tool for subject-specific predictions.
The proposed joint model that was built and used to
predict prognosis of patients suffering from severe AS,
can be easily extended to other chronic disease entities
that employ both longitudinal and survival data to dy-
namically assess patient prognosis.

Appendix
Introduction to joint models

Let 7T; denote the true failure time for the i-th individual
(i=1,..., n), and C; the censoring time, then T; = min(7}, C;)
represents the observed failure time for the i-th patient.
Moreover, §; = 0,1 is the event indicator where 0 indicates
censoring. For the longitudinal part, we let y; consist of
longitudinal responses that may be obtained at different
time points £; and have length #,. To describe the subject-
specific evolutions over time of the longitudinal outcome
we utilize a linear mixed-effects model. Specifically, it
takes the form,

yi(t) =fi(t) + & = x{ (OB + 2] ()bi + &,

where x;(f) denotes the design vector for the fixed effects
regression coefficients  and z,(¢) the design vector for
the random effects b;.

Finally, we assume that a normal distribution for the
random effects describes the evolution of the longitu-
dinal outcomes, i.e.,

bi~N(0, O'b),

Where oy, is the variance of the random intercept.
For the survival process we have

hi(t, 05) = ho(t)e{}’T“’I'Jr“fi(l‘)}7

where 6, is the parameter vector for the survival out-
comes, ; is a vector of baseline covariates with a
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corresponding vector of regression coefficients y, and «a
denotes the strength of association between the longitu-
dinal and survival outcome. Moreover, a Weibull base-
line hazard /,(t) = ¥~ was assumed.
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