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Abstract

Background: Ultrasound (US) has been used to enhance thrombolytic therapy in the treatment
of stroke. Considerable attenuation of US intensity is however noted if US is applied over the
temporal bone. The aim of this study was therefore to explore possible changes in the effect of
thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US)
exposure.

Methods: Clots were made from fresh venous blood drawn from healthy volunteers. Each clot
was made from 1.4 ml blood and left to coagulate for | hour in a plastic test-tube. The thrombolytic
drugs used were, 3600 |U streptokinase (SK) or 0.25 U reteplase (r-PA), which were mixed in 160
ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of | MHz and
intensities ranging from 0.0125 to 1.2 W/ecmZ2. For each thrombolytic drug (n = 2, SK and r-PA) and
each intensity (n = 9) interventional clots (US-exposed, n = 6) were submerged in thrombolytic
solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n
= 6) were left unexposed to US.

To evaluate the effect on clot lysis, the haemoglobin (Hb) released from each clot was measured
every 20 min for | hour (20, 40 and 60 min). The Hb content (mg) released was estimated by
spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference
in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical
analysis was performed using Wilcoxon's signed rank test.

Results: Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9
and 1.2 W/ecm? at all times (P < 0.05). Continuous-wave ultrasound significantly increased the
effects of r-PA on clot lysis following 20 min exposure at 0.9 W/ecm?2 and at 1.2 W/cm?, following
40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm?2, and following 60 min of exposure at 0.05 0.3,
0.6, 0.9 and at 1.2 W/cm2 (all P < 0.05).

Conclusion: Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-
treated blood clots, but decreased clot lysis of SK-treated clots.
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Background

Ultrasound (US) has been used to enhance thrombolytic
therapy, for example, in the treatment of stroke. In this
setting, US is usually applied over the temporal bone,
exposing the obstructed vessel to US concomitantly with
treatment with thrombolytic drugs [1-3]. The enhance-
ment of various thrombolytic drugs has been demon-
strated during in vitro clot lysis at frequencies, ranging
from 20 kHz to 4.5 MHz [4-7]. Positive effects on clinical
outcome have been reported when high frequency US has
been used in vivo [1,8]. However, in the CLOTBUST trial,
the effects were found not to be statistically significant [1].
This is in contrast to the results from in vitro studies of US-
enhanced thrombolysis, where considerable enhance-
ment effects of the clot lysis have been shown as a result
of exposure to US [7,9,10]. This discrepancy might be
explained by the attenuation of US intensity passing
through the temporal bone structure during high fre-
quency US exposure, although direct comparison between
in vitro and in vivo results should be made carefully one
possible explanation for the different levels seen could be
attenuation induced by the skull bone. There have been
reports of decreases in the output intensity between
86.8% and 99.2% when US is applied over the temporal
bone [11,12]. Low frequency US on the other hand, has
greater penetration through bone tissue compared to high
frequency US, which results in higher US intensities reach-
ing the obstructed vessel [13,14]. However, low frequency
US has been shown to induce a higher rate of bleeding
complications during US-enhanced thrombolysis in vivo
[15].

Other factors of US than intensity and frequency also
seem to affect the results during US-enhanced thromboly-
sis. We have previously only found, during pulsed-wave
US SK induced clot lysis, enhanced effects at low intensity
(0.5 W/cm2) [16,17]. During pulsed-wave US exposure of
r-PA induced clot lysis, enhancement effects occur both at
high and low intensities (i.e. < 0.25 W/cm? or > 2.0 W/
cm?) [18]. The enhancement effects might thus depend on
duty cycle, i.e. the number of pulses sent [9,19,20]. Meu-
nier et al reported increasing effects on tissue type plas-
minogen activators mediated clot lysis depending on
increasing duty cycle [20]. However, Holland et al failed
to verify the same duty cycle dependency [9]. Others have
shown higher grades of enhancement using CW-US expo-
sure than when pulsed-wave US exposure was used [5,21].

The aim of this study was to investigate the changes in the
effect of clot lysis of r-PA and SK during low-intensity,
high-frequency CW-US exposure, intensities within the
area following attenuation from the skull bone.

http://www.biomedcentral.com/1471-2261/8/19

Methods

The methods employed for clot formation and clot lysis
evaluation, and the ultrasonic properties of the model
have been described in detail previously [17,18,22]. Only
a brief description will thus be given below.

Clot formation

Blood clots were made using fresh venous blood from
seven healthy volunteers (3 men and 4 women, age 47.5
+ 12.5 year (mean + SD)) not receiving anticoagulation
treatment and with no history of coagulation distur-
bances. After collection the blood was immediately trans-
ferred to a Teflon-coated bottle. The collected blood was
then anticoagulated using citrate-phosphate-dextrose ade-
nine (CPDA). Each blood clot was made from 1.4 ml
CPDA-anticoagulated blood to which 0.025 mmol CaCl,
had been added to induce coagulation. The blood was
then left to coagulate around a wool yarn (100 m/54 g,
Peer Gynt, Sandnes Uldvarefabrik A/S, 4300 Sandnes,
Norway) in a plastic test-tube for one hour [17,18,22].

Determination of clot lysis

Following one hour of coagulation, the clot was carefully
extracted together with the wool yarn and mounted in a
plastic frame that was lowered into a clot container with
160 ml of r-PA or SK mixed NaCl solution [17,18,22].

To evaluate clot lysis 1 ml samples of the thrombolytic
solution were taken from the clot container every 20 min-
utes during one hour (20, 40 and 60 min) to estimate the
haemoglobin (Hb) leakage from the clot. The sample was
added to 4 ml of Drabkins solution and the Hb content
(mg) was measured by spectrophotometer at 540 nm, as
described elsewhere [23]. To determine clot lysis the loss
of Hb (mg) in each individual clot (following 20, 40 and
60 min of exposure) was divided by the Hb content (mg)
of a fully lysed clot (from each volunteer), resulting in an
estimation of percentage clot lysis (equation 1) [22].

experimental clot Hb
fully lysed clot

% clot lysis = (x100) (1)

Thrombolytic drugs

Two thrombolytic drugs were used in the present study,
0.25 U of r-PA (Rapilysin 10 U°® Roche Registration Ltd,
Hertfordshire, Great Britain) was mixed in 160 ml 0.9%
NaCl solution resulting in a concentration of 0.001562 U/
ml. The other was SK, (Streptase®, 1.5 million interna-
tional units, Hoechst Marion Roussel AB, Stockholm,
Sweden), and 3600 IU mixed in 160 ml 0.9% NacCl solu-
tion with a resulting concentration of 22.5 IU/ml. These
concentrations of the thrombolytic drugs are optimised
for use in this in vitro method, the optimisation procedure
has been described in detail previously [22].
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Ultrasound exposure

Continuous-wave US emitted by an unfocused piezoelec-
tric transducer (CERAM AB, Lund, Sweden) with a reso-
nance frequency of 1 MHz (diameter = 16 mm, area = 2.0
cm? and a near field ending 42 mm from transducer sur-
face) was used in all experiments. The transducer was
excited by an electronic system consisting of a function
generator (HP 3314A, Hewlett-Packard, Washington,
USA) and an RF power amplifier (ENI 240L, ENI, Roches-
ter, New York, USA). Prior to experiments the transducer
were calibrated by determining spatial-average temporal-
average intensity in W/cm?2 by measuring the total pres-
sure of US radiation on an electrical balance (Model UPD-
DT-1, Ohmic Instrumental co). Needle hydrophone
exploration of field distribution for the transducer were
performed in degassed water, but exact values of intensity
were not measured (Figure 1).

The effect of one hour of 1 MHz CW-US exposure, at
intensities 0.0125, 0.025, 0.05, 0.1, 0.15, 0.3, 0.6, 0.9 and
1.2 W/cm? on clot lysis induced by either SK or r-PA was
evaluated. For each thrombolytic drug (n = 2, SK and 1-
PA) and each intensity (n = 9) interventional clots (US-
exposed, n = 6) were submerged in thrombolytic solution
and exposed to CW-US while control clots (also sub-
merged in thrombolytic solution, n = 6) were left unex-
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Figure |

The field distribution for the transducer used in the
present study. Needle hydrophone exploration of field dis-
tribution for the transducer. Scanning was performed over
an area of 50 X 30 mmZin the y- and z-direction starting
close to the transducer surface. No exact values of intensity
were measured. Clots were placed 30 mm from the trans-
ducer surface.
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posed to US. Thus, the total number of clots used were
216.

Statistical analysis

Wilcoxon's signed rank test, was used to assess differences
between interventional and control clots at each intensity,
following 20, 40 and 60 min of exposure. In all statistical
comparisons, P-values below 0.05 were considered signif-
icant.

Ethical considerations
The experiments described in the present study were con-
ducted with the consent of each participant, and were
approved by the Regional Ethical Review Board in Lund
(approval: 879/2004).

Results

Streptokinase treated clots

Statistically significant decreases in clot lysis were seen at
0.9 W/cm? following 20 min (-2%), 40 min (-2%) and 60
min (-4%) CW-US exposure of SK-treated clots (P < 0.05
in all cases). At an intensity of 1.2 W/cm?2 the decrease in
clot lysis following 20 min of CW-US exposure was 3%
and following 40 and 60 min of CW-US exposure 3 and
8%, respectively (P < 0.05 in all cases) (see Table 1 and
Figure 2). No increase in clot lysis was seen in clots treated
with SK at any time or intensity of CW-US exposure.

Reteplase treated clots

In the experiments using r1-PA, statistically significant
increases in clot lysis were seen following CW-US expo-
sure at intensities of 0.05 W/cm? (3%, P < 0.05), and at 0.3
W/cm? following 40 and 60 min of exposure (1%, P <
0.05 and 8%, P < 0.05) and at 0.6 W/cm? following 40
and 60 min (5%, P = 0.03 and 8%, P < 0.05) of exposure.
Increased clot lysis was seen at all times following CW-US
exposure at intensities of 0.9 and 1.2 W/cm? (0.9 W/cm2:
20 min: 3%, P < 0.05, 40 min: 4%, P < 0.05, 60 min: 7%,
P <0.05 and at 1.2 W/cm2: 20 min: 8%, P < 0.05, 40 min:
15%, P < 0.05, 60 min: 10%, P < 0.05). No significant
decrease in lysis was seen at any time or US intensity in
clots treated with r-PA (see Table 1 and Figure 2).

Discussion

The use of high frequency US to enhance thrombolysis
during the treatment of stroke has shown promising
results [1,3]. However, clot lysis levels in vivo have not
been in the same levels as those reported in vitro [7,9,10].
This may well be due to the attenuation of intensity as US
passes through the temporal bone during high-frequency
UsS exposure [11], although direct comparison between in
vitro and in vivo results should be made carefully. In the
CLOTBUST trial, an intensity of 0.75 W/cm?2 was used [1],
which would result in intensities between 0.01 and 0.06
W/cm? (following attenuation) reaching the obstructed
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Table I: Difference in clot lysis following continuous-wave ultrasound exposure.

Intensity (W/cm?) US+SK (n =6) Control (n = 6) P-value US+r-PA (n = 6) Control (n = 6) P-value
Time (Min)

0.0125

20 13 (11-29) 13 (11-29) 0.69 7 (5-11) 6(4-9) 0.08
40 27 (19-47) 23 (21-36) 0.25 16 (9-22) 12 (7-25) 0.25
60 43 (22-59) 31 (23-54) 0.12 22 (14-42) 22 (10-43) 0.46
0.025

20 15 (13-26) 16 (13-31) 0.34 9 (5-12) 7 (3-10) 0.25
40 25 (18-33) 22 (19-40) 0.60 16 (10-19) 15 (7-17) 0.17
60 34 (21-58) 30 (23-49) 0.25 36 (13-37) 27 (10-37) 0.12
0.05

20 15 (12-27) 17 (15-21) 0.69 8 (4-10) 7 (5-10) 0.46
40 21 (18-35) 25 (21-36) 0.08 16 (13-19) 12 (11-22) 0.34
60 39 (28-52) 36 (27-52) 0.46 26 (20-30) 24 (17-28) <0.05
0.1

20 18 (13-27) 15 (10-31) 0.69 7 (6-10) 8 (4-9) 0.50
40 22 (19-37) 21 (15-42) 0.35 15 (10-18) 17 (3-12) 0.92
60 32 (25-46) 29 (20-49) 0.35 28 (23-34) 24 (13-39) 0.60
0.15

20 17 (14-27) 17 (13-24) 0.60 7 (5-11) 7 (5-8) 0.25
40 28 (19-38) 23 (16-34) 0.17 15 (14-17) 15 (11-18) 0.60
60 35 (21-44) 39 (23-49) 0.12 28 (20-41) 25 (16-37) 0.75
0.3

20 16 (14-17) 17 (13-25) 0.69 8 (3-12) 7(2-11) 0.12
40 26 (19-48) 25 (18-35) 0.25 14 (12-29) 13 (8-21) <0.05
60 38 (37-58) 35 (22-62) 0.46 30 (24-51) 22 (15-39) <0.05
0.6

20 14 (5-16) 13 (9-16) 0.92 29 (18-35) 25 (18-31) 0.08
40 19 (10-23) 17 (12-21) 0.60 31 (19-52) 27 (16-43) <0.05
60 23 (14-26) 21 (16-26) 0.92 41 (28-57) 33 (22-44) <0.05
0.9

20 26 (18-29) 27 (22-31) <0.05 23 (18-29) 20 (14-29) <0.05
40 34 (30-42) 36 (27-42) <0.05 44 (31-47) 39 (25-42) <0.05
60 38 (30-42) 42 (33-51) <0.05 50 (43-60) 43 (39-45) <0.05
1.2

20 26 (22-29) 29 (26-34) <0.05 17 (14-23) 9 (8-10) <0.05
40 32 (28-33) 35 (30-38) <0.05 36 (26-38) 21 (19-22) <0.05
60 32 (30-37) 41 (37-44) <0.05 42 (36-48) 32 (25-35) <0.05

Clot lysis (%) of clots exposed to streptokinase concomitantly with continuous-wave ultrasound at different intensities (n = 6 for each intensity) for
one hour (US+SK) and clots exposed to streptokinase alone (n = 6 for each intensity, (control clots)) and in clots exposed to reteplase
concomitantly with continuous-wave ultrasound at different intensities (n = 6 for each intensity) for one hour (US-r-PA) and reteplase alone (n = 6
for each intensity, (control clots)). Results are presented as medians and 5t — 95t percentiles. Wilcoxon's signed rank test was used to assess

statistical difference.

vessel and the thrombus. We previously observed no
enhanced fibrinolytic effects during pulsed-wave US expo-
sure of r-PA-treated clots in this range of intensities [18],
however effects were seen in the small intensity range
between 0.125 and 0.25 W/cm?. In the present study,
using CW-US exposure, a statistically significant increase
in lysis of r-PA treated clots was seen at low intensity (0.05
W/cm?, 3% increase, P = < 0.05). Thus, applying high-fre-
quency CW-US to r-PA treated stroke patients may
improve clinical results. However, different frequencies
were used in the present study (1 MHz) and in earlier clin-
ical studies (2 MHz) [1,3], and the results should there-
fore be compared with care, also direct comparison

between in-vitro and in-vivo results should be made with
care. Another explanation could be that the number of
patients included in the CLOTBUST-trial was to small to
achieve statistical significance, this despite efforts to
include a sufficient number of patients [24].

In the present study, increasing enhancement of the clot
lysis was seen in the experiments on 1-PA treated clots
(intensities > 0.3 W/cm?), which are intensities higher
than can be expected after passing through the skull bone
[11]. In the present experiments on 1-PA treated clots,
enhancement of lysis was at lower intensities compared to
our earlier study using pulsed-wave US exposure [18].
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Difference in clot lysis following continuous-wave ultrasound exposure. Difference in clot lysis following 20, 40 and
60 min of continuous-wave ultrasound exposure at different intensities, presented as the difference between ultrasound-
exposed clots and control clots: [1 = clots exposed continuous-wave ultrasound and streptokinase (n = 6), = clots exposed
to continuous-wave ultrasound and reteplase (n = 6). Wilcoxon's signed rank test was used to assess statistical differences, * =

P < 0.05.
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However, it would be difficult reach such levels of inten-
sity both with pulsed and CW-US, due to the high attenu-
ation of the skull bone and considering the limited levels
of out put intensity recommended in transcranial Doppler
us [25].

In the present study no enhanced effects of SK were seen
at any intensity level used. This is a contradictory result
when compared to results from studies with pulsed-wave
Us exposure [16,17]. Thus, the mechanisms by which US
enhance clot lysis might vary between CW-US exposure
and pulsed-wave US exposure. This study shows decreased
effects of clot lysis at intensities > 0.9 W/cm?, a finding
that has been seen earlier during pulsed-wave US expo-
sure [16,17], however at higher intensities (= 2 W/cm?).
This might indicate that also duty cycle is an important
factor influencing the results in US-enhanced clot lysis,
not only intensity. Streptokinase is still considered by
some to be a useful thrombolytic drug in the clinical set-
ting [26,27]. However, it does not appear to be suitable,
in the setting of US enhanced thrombolysis, based on the
decrease in effects induced by US exposure, according to
the results in the present and earlier studies [16,17]. In the
earlier studies it was possible to modulate the stereochem-
istry of SK by exposing it to US of different intensity levels
of pulsed US. These effects occurred at US intensities
below the prescribed upper limit of exposure of the
human body to US energy (Mechanical Index < 1.9) [17].
Therefore, during SK treatment of any thrombotic disor-
ders, possible undesired effects of exposure to US should
be considered. And when using US to enhance the effects
of SK in clinical situations, we recommend it to be
restricted since reliable calculations and measurements of
local US intensities in the treatment area is hard to per-
form. Streptokinase has also been shown to be associated
with a higher risk of intracranial bleeding than other
thrombolytic drugs, and is therefore not recommended
for clinical use in the treatment for stroke [28].

We have previously demonstrated a direct effect on the
thrombolytic substance during exposure with pulsed-
wave US exposure, effects associated with both decreased
and increased effects on clot lysis [17,18]. This was not
examined in the present study, and we therefore do not
know whether this effect exist when using CW-US. A
recent study failed to reveal any changes in enzymatic
activity of both SK and r-PA following US exposure [29].
Direct effects on the molecules of thrombolytic drug fol-
lowing CW-US exposure must therefore be investigated in
the future.

Limitations

The use of pure 0.9% NaCl solution as medium for exper-
iments of fibrinolysis might not be the optimal solution
for exploring when fibrinolytic effects are optimised. Pre-

http://www.biomedcentral.com/1471-2261/8/19

vious studies have explored fibrinolytic effects in pure
0.9% NaCl solution showing them to be stable or partly
reduced, but not totally inactivated [30-32]. Results from
earlier studies [16,33] in vitro adding fibrinolytic drugs to
pure 0.9% NaCl solution have been reproduced and veri-
fied in vivo [34,35] as well as in clinical studies [36]. The
use of pure 0.9% NaCl solution without addition of plas-
minogen might explain the limited levels of clot lysis seen
in the present study [37,38]. How this affects the results in
the present method has to be studied in the future.

Conclusion

Increasing intensities of CW-US exposure resulted in
increased clot lysis of r-PA-treated blood clots, but
decreased clot lysis of SK-treated clots. Continuous-wave
US may thus be useful in US-enhanced clot lysis during
stroke treatment with r-PA.
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