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Abstract

Background: Previous studies indicate that decreased heart-rate variability (HRV) is related to the risk of death in
patients after acute myocardial infarction (AMI). However, the conventional indices of HRV have poor predictive
value for mortality. Our aim was to develop novel predictive models based on support vector machine (SVM) to
study the integrated features of HRV for improving risk stratification after AMI.

Methods: A series of heart-rate dynamic parameters from 208 patients were analyzed after a mean follow-up time
of 28 months. Patient electrocardiographic data were classified as either survivals or cardiac deaths. SVM models
were established based on different combinations of heart-rate dynamic variables and compared to left ventricular
ejection fraction (LVEF), standard deviation of normal-to-normal intervals (SDNN) and deceleration capacity (DC) of
heart rate. We tested the accuracy of predictors by assessing the area under the receiver-operator characteristics
curve (AUC).

Results: We evaluated a SVM algorithm that integrated various electrocardiographic features based on three
models: (A) HRV complex; (B) 6 dimension vector; and (C) 8 dimension vector. Mean AUC of HRV complex was
0.8902, 0.8880 for 6 dimension vector and 0.8579 for 8 dimension vector, compared with 0.7424 for LVEF, 0.7932 for
SDNN and 0.7399 for DC.

Conclusions: HRV complex yielded the largest AUC and is the best classifier for predicting cardiac death after AMI.

Keywords: Acute myocardial infarction, Cardiac death, Support vector machine, Heart-rate variability, Machine learning
Background
Risk stratification of survival after acute myocardial in-
farction (AMI) could be very useful in guiding post-AMI
care, such as implantation of a cardioverter-defibrillator
or other optimal medical therapy [1-3]. The degree of
left-ventricular ejection fraction (LVEF) impairment is
generally used to predict the risk for AMI; however, be-
cause most patients exhibit preserved left-ventricular
contractile function when acute revascularization proce-
dures are performed after AMI, the ability to stratify risk
based on LVEF is reduced. Several previous studies have
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indicated that decreased heart-rate variability (HRV), a
marker of cardiac autonomic nervous system dysfunc-
tion, is associated with a high risk for severe ventricular
arrhythmias and mortality in the post-AMI population
[4]. However, conventional methods to analyze HRV,
such as standard time and frequency domain measures,
have relatively poor accuracy for predicting outcomes
with current treatment strategies [5-7]. Recent Holter-
based predictive variables, such as heart-rate turbulence
and deceleration capacity (DC) of heart rate, have dem-
onstrated greater prognostic power in post-AMI pa-
tients; however, the clinical usefulness is not well
established. HRV methods can capture several aspects of
autonomic heart rate modulation, but individual HRV in-
dices do not reflect global effects of autonomic nervous
system dysfunction on the disease. This may be the cause
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Table 1 Electrocardiographic features of heart-rate
dynamics extracted from Holter recordings

Methods Features

Time domain of HRV Standard deviation of all
normal-to-normal intervals

Average standard deviation of all
normal-to-normal intervals

Standard deviation of average
normal-to-normal intervals

Mean normal-to-normal intervals

Triangle index of a geometric figure

Counting of R-R series Mean heart rates per hour

Heart rate turbulence Turbulence onset

Turbulence slope

Phase rectified signal
averaging

Heart rate deceleration capacity

Heart rate acceleration capacity
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of the limited predictive capacity of HRV approaches.
Therefore, a comprehensive method to quantify the glo-
bal effects of the autonomic nervous system on heart rate
modulation and to provide individualized risk stratifica-
tion in the post-AMI population is desperately needed.
In this study, we developed a support vector machine
(SVM) algorithm based on heart-rate dynamics that
measures the relationship between autonomic nervous
dysfunction and AMI mortality. We used this novel analyt-
ical tool to more accurately classify high-risk AMI patients.
We postulate that the integrated features of HRV are better
than individual measures of HRV and DC at predicting
mortality risk in the post-AMI human population.

Methods
Participants
For this study, 226 patients aged from 18 to 80 years who
were admitted for AMI to the Cardiology Department of
the 1st hospital of the Harbin Medical University in
Harbin, China from January 2009 to December 2009
were enrolled. AMI was diagnosed at the time of ad-
mission by at least 2 of the following findings: chest
pain for ≥20 min; creatine kinase-MB more than double
the upper normal limit of our laboratory; ST-segment
elevation ≥0.1 mv in at least two limb leads or ≥0.2 mv in
at least two contiguous precordial leads; and primary mo-
tion abnormality of the left ventricular regional wall in
the echocardiography or MRI examination. We excluded
patients if they: (1) had severe valvular, pulmonary,
hepatic, renal or other severe concomitant noncardiovas-
cular disease; (2) were logistically unable to participate;
(3) exhibited sinus rhythm for <80% of the total 24-hour
Holter recording; (4) had atrial flutter, atrial fibrillation
or pacemaker rhythm; (5) had inadequately analyzable
electrocardiographic data; and/or (6) had inadequate
follow-up data. Furthermore, all of patients underwent
routine cardiac medication and AMI treatment according
to the contemporary guidelines [8].
The analysis of electrocardiographic data and the moni-

toring of patients were approved by the Institutional Ethics
Committee for human research of the Harbin Medical
University. Since the data collection was noninvasive and
did not affect routine clinical management of the patients,
the Ethics Committee deemed oral informed consent to be
sufficient for patient participation.

Procedures
Holter electrocardiograms were recorded for 24 hours
during the second week after infarction (average 8–14
days) for patients that were stable during this period.
The recordings were digitized at 128 Hz, automatically
processed with a GE Holter system (GE medical, USA),
and scanned with GE Holter analysis software following
standard procedures as specified by the manufacturer.
Manual verification of uncorrected QRS classifications
and reduction of noise was conducted as needed. Mean-
while, we assessed LVEF by single-plane echocardiography
one week after index infarction, with <0.35 predefined as
seriously abnormal. Other risk predictors included age, his-
tory of myocardial infarction, diabetes mellitus, hyperten-
sion, and medical treatments, which were determined by
the physician using a standardized protocol.

Automatic feature extraction
Machine learning algorithms require data to be repre-
sented by features, such as the indices that occur in an
electrocardiographic recording. In this study, a total of
10 indices were extracted from every Holter recording.
The electrocardiographic features of the patients are
shown in Table 1 and include the following: indices of
HRV; heart-rate turbulence; mean heart beat; DC; and
acceleration capacity of heart rate. As proposed by the
Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysi-
ology [9], we calculated the following conventional risk
predictors from time domain measures of HRV in the
24-hour Holter recordings. Time domain measures of
the R-R time series were used to quantify the variability
of the R-R intervals, including standard deviation of all
normal-to-normal intervals [SDNN (ms)], average standard
deviation of all normal-to-normal intervals (ms), standard
deviation of average normal-to-normal intervals (ms),
mean normal-to-normal intervals (ms), and triangle index
of geometric figure parameter of the R-R time series. The
spectral measures of HRV were analyzed using the
methods recommended by the Task Force, and the cut-
off values of reduced spectral indexes were also prede-
fined. These traditional indices of HRV have a proven
ability to predict mortality [10] and are easy to calculate.
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High resting heart rate has been associated with cardiac
death [11]. In this study, mean heart rate was calculated
as heart beat number per hour. We assessed other newer
risk predictors of heart-rate dynamics as well. Heart-
rate turbulence indices, including turbulence onset and
turbulence slope (ms), reflect the baroreflex mediated
short-term oscillation of cardiac cycle lengths after spon-
taneous ventricular premature complexes. These were
calculated in the instances when ventricular premature
beats were found in the Holter recordings [12]. Turbu-
lence slope was defined as the maximum slope of the re-
gression line assessed over any sequence within five
subsequent sinus R-R intervals during the first fifteen
sinus heart beats following an ectopic ventricular beat. A
decreased heart rate turbulence is related to autonomic
dysfunction and has a powerful ability to predict sudden
cardiac death [13]. Two newer Holter-based risk vari-
ables, which are developed by a phase rectified signal
averaging technique—namely, DC (ms) and acceleration
capacity (ms) of heart rate—were calculated to provide a
separate assessment of autonomic modulation of the
heart rate. DC reflects the regulation of the vagus nerve
on heart rate. This is of clinical importance because
vagus withdraw has been regarded as an important
mechanism of sudden death [14]. Furthermore, these fea-
tures are all thought to reflect functional changes of the
autonomic nervous system.

SVM algorithm
In machine learning, SVM are supervised learning models
with associated learning algorithms that analyze data and
recognize patterns. SVMs are used for classification and
regression analyses, and the classification strongly depends
on the available feature set and the tuning of hyper-
parameters [15]. We used SVMs to analyze the predictive
power of the combined indices from every Holter record-
ing. In this study, SVM was developed to maximize the
margin of the hyper-plane dividing electrocardiographic
data into two classes, survivals and cardiac deaths, by find-
ing the best hyper-plane that separates clusters of features
represented in an n-dimensional space. A hyper-plane can
be written as the set of points X satisfying WTX + b = 0,
where WT is a normal vector perpendicular to the hyper-
plane, X is the vector of electrocardiographic features, and
b is bias or offset of the hyper-plane from the origin. In-
puts of SVM are mapped onto a high dimensional feature
space via kernel functions, and the optimal hyper-planes
are constructed to separate samples into two classes [16].
SVMs were trained and tested using the leave-one-out
and cross-validation methods, which were applied to
evaluate the accuracy of classification. At every step, one
electrocardiographic data subset was left out from the
total training dataset and treated as undefined data. The
classification model was constructed with the remaining
data and the algorithm classified the “left-out” electrocar-
diographic data. The same procedure was applied to the
training dataset. The results of SVM were normalized in
the range from 0 to 1. We prospectively defined a cut-
off point as >0.5 indicated higher probabilities of death,
while <0.5 indicated higher probability of survival. Through
training and testing, we finished feature selection and
searched for the optimal vector that had the greatest pre-
dictive power.
At the same time, comparisons were made with LVEF,

SDNN and DC using the identical dataset. The SDNN
measured from the 24-hour R-R intervals was chosen as
a conventional index of HRV, with a value <70 ms pre-
defined as abnormal [10]. Meanwhile, DC measured
from the 24-hour recording was chosen as a novel index
of heart-rate dynamics, with a value <4.5 ms predefined
as abnormal [14].

Follow-up and endpoints
Patients with AMI underwent physical examination
6 months after discharge and annually thereafter by tele-
phone assessment. The patients were followed for a
mean of 28 months after AMI. In cases of death, the
causes were verified from the hospital records, death
certificates, autopsy records and telephone interviews
with either the primary physicians or those who had wit-
nessed the death. An independent endpoint committee
determined the cause of death according to the available
data from the aforementioned sources. Witnessed deaths
due to cardiac diseases including myocardial infarction,
heart failure, severe malignant arrhythmia and those oc-
curring after attempted resuscitation by defibrillator
were all classified as cardiac death. Unwitnessed deaths
occurring in a previously asymptomatic patient with no
other life-threatening diseases was classified as cardiac
death as well. Based on these determinations, the elec-
trocardiographic data were then classified as survivals or
cardiac deaths. To avoid bias, the computer center re-
ceived only electrocardiographic data and classification
results without other clinical information of patients.

Statistical analysis
We calculated receiver-operator characteristic curves to
evaluate prediction accuracy of SVM models, LVEF, and
conventional risk indices of HRV and DC. We quantified
receiver-operator characteristic curves by taking the in-
tegrals of the curves (area under the curve; AUC), with
the continuous variable being set to a plurality of differ-
ent critical values, to calculate a series of sensitivity and
specificity thresholds. The sensitivity was used as the or-
dinate and negative positive rate (1- specific) as the ab-
scissa to plot the curves. The AUC of a method was
prospectively defined as the statistical measure of the pre-
dictive power. The accuracy, sensitivity, specificity, positive
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predictive value and negative predictive value of each vari-
able were taken into account [17]. The difference between
two receiver-operator characteristic curves was compared
by non-parametric test, with a P value less than 0.05 con-
sidered statistically significant.

Results
Based on initial evaluation with the GE analysis software,
6 electrocardiograms were excluded because of non-
cardiac death and 12 electrocardiograms were excluded
because of unacceptable deviations in the recordings or
otherwise inadequately analyzable data. Thus, a total of
208 patient dynamic electrocardiograms were included in
the subsequent analyses. Among these data, 196 (94.2%)
recordings were classified as survivals and 12 (5.8%) re-
cordings were classified as cardiac deaths, including 7
sudden cardiac deaths and 5non-sudden cardiac deaths.
Among these patients, 207 of the 208 patients were used
as the “training” subjects and the remaining patient was
used as a “test” subject. Repeating the dataset from the
test subject 208 times, the classification accuracy was
then calculated by the number of correctly classified
patients divided by the total number of patients. The
clinical characteristics of the patients are shown in
Table 2. For the treatment, 112 patients (53.8%) underwent
Table 2 Patient baseline characteristics and treatment

Clinical features Survivals
(n = 196)

Cardiac deaths
(n = 12)

Study characteristics

Follow-up (months) 27.99 ± 6.02 11.17 ± 10.85

Patient characteristics

Age (years) 60.19 ± 11.39 71.83 ± 7.29*

Sex (female) 52 (27%) 6 (50%)*

LVEF 54.86 ± 11.18 46.00 ± 11.15*

LVEF < 0.35 9 (4.6%) 3 (25%)*

Smoking (ex or current) 110 (56%) 4 (33%)*

Diabetes mellitus 42 (21%) 8 (67%)*

Previous myocardial infarction 25 (13%) 2 (17%)

Hypertension 95 (48%) 11 (92%)*

Treatment

PTCA 117 (60%) 7 (58%)

Thrombolysis 44 (22%) 2 (17%)

No acute revascularization 35 (18%) 3 (25%)

Aspirin or clopidogrel 194 (99%) 12 (100%)

β-blockers 158 (81%) 10 (83%)

Statins 192 (98%) 10 (83%)*

ACEI/ARB 150 (77%) 9 (75%)

Diuretic 134 (68%) 7 (58%)

Data are number (%) unless otherwise stated. *P < 0.05.
PTCA, and thrombolysis was performed in 45 patients
(21.6%). In addition, other treatments such as β-blockers,
ACE inhibition or ARBs were used in more than 75% pa-
tients, and aspirin or statins were used in more than 97%
patients. Therefore, most patients in this study received
modern standard of care for AMI.
Among the established 10 electrocardiographic features

we evaluated, heart-rate turbulence indices depended on
the existence of ventricular premature beats. However, a
ventricular premature beat might not have existed in every
recording, a total of 83 recordings have no ventricular pre-
mature in this cohort. Inherent to the procedures of
machine learning, a missing feature in the dataset was dif-
ficult to accommodate in the analyses. To avoid biases ac-
cording to this consideration, the features with possible
missing data points were not employed. As a result, heart-
rate turbulence could not be used as a classifier in this
study. Ultimately, 8 features of extracted heart-rate dy-
namics indices were used to construct SVM models. The
electrocardiographic features of the patients after feature
selection and the differences between the two classes are
shown in Table 3.
Linear predictive models are in most cases ineffective

in solving death prediction problems. To circumvent
this challenge, we searched for the kernel’s parameters
that could be optimized to obtain the best classification
accuracy. This optimized first employed training and
testing the technique to check each combination of par-
ameter choices. Then, the parameters that resulted in the
best accuracy were selected. Next, the final models were
trained on the whole training set using the chosen pa-
rameters. The result was a 5 dimension HRV feature vec-
tor, which is called a HRV complex. In this study, we
constructed 3 SVMs using different combinations of the
features that performed better than other combinations
tested: (A) HRV complex (5 time domain measures of
HRV); (B) 6 dimension vector (HRV +DC + acceleration
capacity, with mean normal-to-normal intervals removed);
and (C) 8 dimension vector (HRV+DC + acceleration cap-
acity +mean heart rate). The results of accuracy, sensitivity,
specificity, positive predictive value and negative predictive
value of SVMs are shown in Table 4. Although SVMs had
an accuracy rate of only 0.80, they had greater sensitivities
and better negative predictive values. Among the SVMs,
the sensitivities of HRV complex and 6 dimension vector
both reached 0.91, whereas SDNN had sensitivity of only
0. 58. The results of sensitivity, specificity, positive predict-
ive value and negative predictive value of the HRV com-
plex, SDNN and DC in subgroup with LVEF > 0.35 are
shown in Table 5. The HRV complex had better sensitivity,
positive predictive value and negative predictive value as
compared with SDNN and DC in these patients.
Receiver-operator characteristic curves for predictions

of SVM models are shown in Figure 1. The mean AUCs



Table 3 Electrocardiographic characteristics of the patients, after feature selection, that were used to construct SVM
predictive models

Variables Survivals (n = 196) Cardiac deaths (n = 12) P value

Standard deviation of all normal-to-normal intervals 96.22 ± 27.86 64.52 ± 14.65 <0.001

Standard deviation of average normal-to-normal intervals 83.66 ± 26.65 58.47 ± 15.68 0.001

Average standard deviation of all normal-to-normal intervals 43.40 ± 13.67 25.74 ± 6.84 <0.001

Mean normal-to-normal intervals 893.54 ± 115.46 826.85 ± 84.21 0.051

Triangle index (number%) 27.48 ± 8.81 16.80 ± 4.20 <0.001

Heart rate deceleration capacity 6.31 ± 1.91 4.21 ± 1.44 <0.001

Heart rate acceleration capacity -6.27 ± 1.98 -4.12 ± 1.42 <0.001

Mean heart rates per hour (number) 68.36 ± 9.00 73.50 ± 7.70 0.054

Data are ms unless otherwise specified.
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of receiver-operator characteristic curves are shown
in Table 6. In SVM models, AUC of the HRV com-
plex (0.8902) was larger than that of the 6 dimension
vector (0.8880) and the 8 dimension vector (0.8579).
Compared to traditional indices, the AUCs of the SVM
models were significantly larger than those of LVEF
(0.7424, p < 0.01), SDNN (0.7932, p < 0.05) and DC
(0.7399, p < 0.01). Hence, SVM predictive models based
on heart-rate dynamics variables yield larger AUCs than
LVEF, SDNN and DC.

Discussion
In this study, we used noninvasive heart-rate dynamics
indices extracted from electrocardiographic datasets from
patients following AMI to develop a computer-aided pre-
dictive tool that improves risk stratification. By combining
the predictive power of multiple heart-rate dynamics vari-
ables, SVM models are an effective approach to quantify
the risk of cardiac death and are capable of prospectively
identifying high-risk patients in the post-AMI population.
The HRV complex we describe in this study provides a
novel analysis method to evaluate the effect of autonomic
nervous system dysfunction on cardiac death following
AMI. Moreover, this new predictive strategy has an
enhanced discriminating threshold for AMI as com-
pared to current electrocardiographic and echocardio-
graphic methods (i.e. LVEF, SDNN and DC).
Table 4 Accuracy, sensitivity, specificity, positive predictive v
6 dimension, 8 dimension, LVEF, SDNN and DC (%)

Methods Accuracy Sensitivity Specif

HRV complex 79.81 91.67 79.08

SVM 6 dimension 79.33 91.67 78.57

8 dimension 79.33 83.33 79.08

LVEF 91.83 25.00 95.41

SDNN 83.65 58.33 85.20

DC 80.77 50.00 82.65
Autonomic nervous system dysfunction has a signifi-
cant adverse effect on outcomes in post-AMI patients.
Therefore, quantitative assessment of autonomic dys-
function could enhance the predictability of cardiac death
[18,19]. The effects of autonomic modulators on the
heart can be quantified by noninvasive HRV methods,
and conventional indices of HRV developed by simple
calculation of R-R series have demonstrated prognostic
value for mortality [20]. Nevertheless, individual HRV in-
dices do not reflect the combined effects of the auto-
nomic nervous system on heart rate, and therefore these
traditional measures have only a partial predictive cap-
ability. In this study, to advance our ability to predict out-
comes in AMI patients, individual HRV indices were
regarded as the features of high-risk of cardiac death, and
a SVM was used to combine the predictive power of
multiple HRV indices. As a result, we developed a novel
HRV analysis method, termed HRV complex, which was
effective at predicting cardiac death after AMI. Whether
our method will be effective to quantify entire auto-
nomic nervous system dysfunction will require add-
itional studies. Nevertheless, our results clearly show
that the HRV complex has a better prognostic capacity
compared with SDNN or DC of heart rate. The HRV
complex also outperforms the combination of HRV in-
dices and DC. In this sense, the HRV complex is a better
prognostic tool than individual HRV indices, and the
alue and negative predictive value of HRV complex,

icity Positive predictive value Negative predictive value

21.15 99.36

20.75 99.35

19.61 98.73

25.00 95.41

19.44 97.09

15.00 96.43



Table 5 Sensitivity, specificity, positive predictive value and negative predictive value of HRV complex, SDNN and DC
in patients with LVEF > 0.35 (%)

Methods Sensitivity Specificity Positive predictive value Negative predictive value

HRV complex 88.89 80.21 17.78 99.34

SDNN 55.56 86.63 16.67 97.59

DC 55.56 82.89 13.51 97.48
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classifiers that incorporate the combined effects of vagal
and sympathetic modulators are better than a single nerve
modulator.
An ideal risk stratification tool needs to be accurate,

cost effective and have the capacity to reduce the risk of
death across different patient populations [21,22]. In this
study, the specificity of LVEF is higher than other
methods; however, the sensitivity is quite low. Due to
the fact that the number of survivals and cardiac deaths
are unbalanced, the higher specificity does not reflect
the capacity of classification. This leads to a lower pre-
dictive value than a tool based on LVEF. To overcome
this limitation, machine-learning approaches, which utilize
“training” and “testing” exercises with a well-characterized
dataset, were used. SVM is a good learning method that is
well suited for small samples, and it does not involve prob-
ability measures. Thus, SVM is different from the existing
statistical methods and not easily susceptible to over-
fitting. SVM uses insights from training samples to forecast
probabilities and greatly simplifies the classification and
Figure 1 Receiver-operator characteristic curves for predicting cardia
and DC. Sensitivity is determined from the proportion of cardiac deaths id
survivors identified as low risk.
regression problems. In this study, we used the leave-one-
out and cross-validation method to carry out “training”
and “testing.” this method achieves most of the benefits of
machine learning [23]. In the subgroup of patients with
LVEF > 0.35, the sensitivity of HRV complex is about 0.89,
meaning that the HRV complex could recognize ~89% of
high risk patients which were otherwise identified as low
risk by LVEF.
To verify the HRV complex’s usefulness for the dis-

crimination of patients likely to benefit from post-AMI
therapy, the SVM model was designed to test the ability
of HRV variables to stratify an AMI patient population.
In the present study, we used cardiac death, which may
arise clinically as the result of an autonomic disorder
after severe cardiovascular damage (e.g. a fall in blood
pressure eliciting a surge in sympathetic outflow), as the
main endpoint. The HRV complex has several potential
advantages over a single stratification tool. First, it com-
bines predictive variables and is therefore more accurate.
Through “training” and “testing”, the SVM predictive
c deaths by HRV complex, 6 dimension, 8 dimension, LVEF, SDNN
entified as high risk; specificity is determined from the proportion of



Table 6 Average AUCs of ROC of HRV complex,
6 dimension, 8 dimension, LVEF, SDNN and DC

Methods AUC P value

SVM

HRV complex 0.8902 -

6 dimension 0.8880 >0.05

8 dimension 0.8579 >0.05

LVEF 0.7424 <0.01

SDNN 0.7932 <0.05

DC 0.7399 <0.01
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model combines the prognostic power of several estab-
lished stratification tools. Second, the HRV complex
provides a digital risk estimate rather than a binary
distinction of just “high” or “low” risk. This quantified
risk assessment can aid clinicians in determining optimal
cost-effective preventive strategies. Finally, the HRV com-
plex reflects the underlying mechanism of cardiac death
after AMI, and as a result will better predict outcomes as
compared with current methods. We suspect that auto-
nomic dysfunction as the trigger of cardiac death could
be determined by our method. Thus, this stratification
tool could improve the discrimination of patients eligible
for cardioverter-defibrillator implantation [24].
We assessed the accuracy of prediction by our model

by calculating the AUCs of the receiver-operator charac-
teristic curves. This method accounts for dependency of
specificity on sensitivity and is independent of specific
cut-off values. Classifiers with AUCs > 0.80 are consid-
ered good in classification [25]. AUCs of methods A, B,
and C in our study of SVMs were all higher than 0.80,
demonstrating their strong predictive abilities. The HRV
complex yielded the largest AUC (0.8902), exhibiting the
largest prognostic capability, which was slightly larger
than the 6 or 8 dimension vector models (0.8880 and
0.8579, respectively). This is likely because some fea-
tures, such as mean heart rate, mean N-N intervals or
acceleration capacity of heart rate, have relatively small
effects on the distinction between high and low-risk
populations. In the present population studied, the lar-
gest separation of receiver-operator characteristic curves
between HRV complex and SDNN or DC had a sensi-
tivity level of about 90%. The HRV complex-based risk
assessment was especially suitable for accurate identifi-
cation of high-risk patients who would benefit from
further interventions or device implantation. Impaired
DC of heart rate has been reported as a powerful pre-
dictor of all-cause mortality after AMI [14]. However, it
did not play an important role in this study. This may
be due to the sample size in the present study and/or
because DC is not suitable to specifically predict cardiac
(as opposed to all-cause) death after AMI. The accuracy of
SVMs was quite good, but the size of the training dataset
was small and the number of deaths was small. Hence, it is
necessary to evaluate how a larger training set affects the
predictive accuracy of SVMs in future studies.
There are several limitations to this study. First, we

only use traditional established risk predictors of HRV
to construct predictive models without including other
strong risk markers, such as some nonlinear measure-
ments of heart rate dynamics and T wave alterations
[26,27]. The addition of these markers may provide in-
cremental predictive power. Second, we employed HRV
indices from 24-hour Holter recordings and did not de-
termine the difference of risk classification by the HRV
complex during daytime versus nighttime. We only ob-
tained a single Holter recording in the second week after
AMI; it is possible that serial or more frequent measure-
ments would reveal differential risk amongst these pa-
tients. Third, whether the proposed SVM models can
perform well using other datasets remains unknown.
Therefore, this novel predictive algorithm should be
studied in a larger number of patients. Fourth, we used
cardiac death as the main endpoint. Although sudden
cardiac death includes a subset of patients who succumb
to lethal arrhythmias and who would therefore benefit
from prophylactic interventions, no universally accepted
definition for sudden cardiac death is available. Thus, we
could not estimate how many of the patients in our
study would be candidates for device therapy to prevent/
respond to arrhythmias. In this study, we showed that
the HRV complex was a useful risk predictor following
AMI. However, we have no data to show whether spe-
cific treatments in response to such a predictor will im-
prove patient outcomes. This goal will be pursued in a
future study.

Conclusions
This study identifies a novel risk predictor that we have
termed the HRV complex, which improves stratification
of post-AMI patients. The predictive accuracy of HRV
complex is better than LVEF, individual established indi-
ces of HRV and DC of heart rate. The performance sug-
gests that the HRV complex is an accurate, non-invasive,
quantitative screening metric for improving risk stratifi-
cation of the post-AMI population. It has great potential
to provide a framework to aid clinical decision-making
in the prediction of cardiac deaths.
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