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Abstract

Background: Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive
surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical
practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility.
Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which
mimicked the tunica intima of the native arterial vessels and were tested in Sprague-Dawley (SD) rats.

Methods: Vascular grafts with aligned and smooth topography were prepared by electrospinning and were
connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet
adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively.

Results: We observed a significant higher patency rate (p=0.021) and less thrombus formation in vascular graft
with aligned topography than vascular graft with smooth topography. However, no significant difference between
the adhesion rates on both vascular grafts (smooth/aligned: 0.35%0/0.12%o, p > 0.05) was observed. Moreover, both
vascular grafts had few adherent activated platelets on the luminal surface.

Conclusion: Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography.
Therefore, it has considerable potential for using in clinical application.
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Background

Cardiovascular diseases are the leading cause of morbid-
ity and mortality worldwide, and arterial reconstructive
surgery of the heart or the lower extremity remains the
common surgical solution for a number of patients [1].
In the United States alone, about 1.4 million cases of ar-
terial bypass operations are performed each year [2].
Despite the clinical success of large diameter (>6 mm)
vascular graft [3], the patency rates of small diameter
(<6 mm) vascular graft are very poor [4-7], which largely
limit their application in coronary and peripheral vascu-
lar bypass graft procedures. As thrombosis at the blood-
material interface is the predominant cause of the failure
of small diameter vascular graft [8], it is necessary to
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develop a new type of small diameter vascular graft with
enhanced blood compatibility [9,10].

Polyurethane (PU), which has excellent antithrom-
bogenicity, biocompatibility and elastic mechanical prop-
erties, has become the principal candidate material for
small diameter vascular grafts [11-14]. However, as far as
its blood compatibility is concerned, PU is still far from
the ideal. As an ideal blood compatible material, after
contacting with blood, it doesn’t damage blood compo-
nents and/or change the structure or function of plasma
proteins [15]. From the material science point of view, a
native blood vessel is the best blood compatible material.
The intimal layer of blood vessel can resist platelet adhe-
sion and prevent undesirable thrombus formation [16]. It
has been found that the tunica intima of abdominal aorta
in rat was composed of submicron-scaled grooves and
ridges along the longitudinal axis and nano-scaled protu-
berances. Thereafter, a planar polydimethylsiloxane-based
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material with multiscale interlaced submicron ridges
and nano-protrusions was developed [17]. This biomim-
etic topography can effectively reduce the adhesion of
activated platelets under flow conditions. However, such
planar material with bionic micro/nano structure can’t
be used in vascular bypass surgery without 3D vascular
graft configuration.

Electrospinning is a very effective method to fabricate
nanofiber-based tissue engineering scaffolds which bear
biomimetic extra cellular matrix topography and consider-
able mechanical characteristics [18,19]. Most nanofibers
produced by electrospinning have a random microstruc-
ture, however, many human tissues have anisotropic mi-
crostructures such as blood vessel, nerve conduits and
ligaments [20-22]. Several researches have proved vascular
graft with circumferentially aligned topography, which
mimics the anisotropic microstructures of the media layer
in native blood vessel, can regulate macroscopic mechan-
ical properties and guide the regeneration of vascular
tissue [23,24]. So far, there are few researches about the
fabrication of vascular graft with longitudinally aligned
topography and its influence on blood compatibility.

In the present study, a bionic small diameter vascular
graft with longitudinally aligned topography was fabri-
cated. The vascular grafts were connected to the abdom-
inal aorta to assess the platelet adhesion, thrombosis and
patency rate, with vascular graft bearing smooth topog-
raphy as a control. The results indicated the bionic vas-
cular graft had improved blood compatibility.

Methods

Preparation and characterization of vascular grafts

Two types of vascular grafts ie. vascular graft with
aligned topography and vascular graft with smooth top-
ography were prepared as follows;
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Vascular graft with aligned topography

This graft was prepared by dissolving a medical graded
polyurethane (PU) (Sigma-Aldrich, Hong Kong, China) in
Tetrahydrofuran (THF)/N, N-Dimethylformamide (DMF)
(Yili Fine Chemical Co., Ltd., Beijing, China) (3:7, w/w) to
make 13% PU solution. The schematics of fabricating vas-
cular graft with biomimetic topography are represented in
Figure 1. The solution was fed through a syringe pump at
a flow rate of 0.6 mL h™. A rotating drum covered with
aluminum foil acted as the collector. The distance be-
tween the collector and the tip (23-G) was 25 cm, and the
applied voltage to the tip was 25 kV. An aligned nano-
fibrous mat was fabricated at a rotating speed of 5000 rpm
for 0.5 h. Thereafter, the aligned nanofibrous mat was
rolled around a metal needle (1 mm) to produce a tubular
form, which acted as the intimal layer of vascular graft.
Then the vascular graft with aligned topography was
thickened by electrospinning PU solution onto the as-
prepared tubular construct at a rotating speed of 500 rpm.
The condition of electrospinning was the same as afore-
mentioned, and 3 mL solution was used for each graft.

Vascular graft with smooth topography
To produce the vascular grafts with smooth topography,
a smooth film was prepared from the same PU solution
described above by spin coating on a silicon wafer. Prior
to spin coating, silicon wafer was cleaned by rinsing
with acetone, methanol and isopropanol several times
and dried under nitrogen. The PU solution was then
spin coated onto the silicon wafer at 1000 rpm for 25 s.
The construction of intimal layer with smooth mat and
external layer with random PU nanofibers was the same
as provided above.

The vascular grafts samples were sputter coated with
gold, and characterized by field-emission scanning electron

aligned intimal topography and random external surface.

Figure 1 Schematics of fabricating vascular graft with submicron longitudinally aligned topography. (a) Electrospinning PU onto high
velocity rotating drum. (b) Removing the aligned nanofibrous mat from the drum. (c) Production of tubular construct by rolling the nanofibrous
mat around a metal needle. (d) Electrospinning of random PU nanofibers on the top of aligned tubular scaffold. (e) The vascular graft with
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microscopy (JEOL JSM-6700 F). NIH Image] software was
used to analyze the electrospinning fibers size.

Cannula insertion

Fourteen Adult Sprague—Dawley rats (WeiTongLiHua
animal center, Beijing, China), weighing 400 + 20 g, were
randomly divided into two groups: cannula insertion with
vascular graft bearing aligned topography (n=7) and
smooth topography (n=7). Each rat was operated in the
supine position under general anesthesia with pentobar-
bital sodium (50 mg/kg ip), and approximately 1.2 cm
length abdominal aorta was exposed using blunt and
sharp dissection. After clamping the distal and proximal
portion of the abdominal aorta, the vascular graft (1 cm in
length), which had been previously connected to cannulas
(outer diameter 1.5 mm) on both ends, was inserted into
the abdominal aorta. Then the bull-dog clamps at the
distal and proximal end were removed sequentially to re-
store the blood flow. All surgical protocols were approved
by the Institutional Animal Care and Use Committee at
the First Affiliated Hospital of Sun Yat-sen University
(Permit Number: 2012-019), and every effort was made
to minimize suffering.

Measurement of Graft patency and platelet adhesion

The patency (the state of being open or unobstructed) of
the vascular grafts can be initially evaluated by palpation of
the distal artery, and then confirmed by the color Doppler
ultrasound (HDI 5000, Philips Medical Systems, Bothell,
WA, USA) at 15 min. After that, the vascular grafts were
harvested, opened longitudinally and photographed. The
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removed grafts were flushed with PBS to remove the re-
sidual blood, and horizontally divided into two pieces. One
piece was fixed with 2.5% glutaraldehyde at 4°C for 4 hours,
and then dehydrated with a series of ethanol solution (30,
50, 70, 85, 95 and 100%), followed by critical point dried, fi-
nally observed by a low vacuum scanning electron micro-
scope (SEM) (FEI Quanta 200). The other piece was fixed
in 95% ethanol for 20 min, and then indirect immunofluor-
escence was performed to measure quantitatively platelet
adhesion. The anti-CD62P mAb (Abcam, Cambridge, UK)
was used as the primary antibody [25] and FITC-labeled
goat anti-mouse antibody (Abcam, Cambridge, UK) as the
secondary antibody. After immunofluorescence staining,
the graft was observed with fluorescence microscopy
(Nikon Ti-E) equipped with DG-4 (Sutter Instrument),
and analyzed with Metamorph software.

Statistical analysis

The adhesion rates were expressed as the median and
the other results were shown as mean + SD. Statistical
tests were performed using SPSS for Windows. Fisher’s
exact probabilities were used to assess differences in pa-
tency rates and non-parametric test was applied to com-
pare the platelet adhesion rate of two groups. The p
values less than 0.05 were considered to be significant.

Results

Morphological assessments

Both types of the vascular grafts i.e. vascular graft with
smooth topography and vascular graft with aligned topog-
raphy had smooth and flawless appearances (Figure 2a).

surface topography, while different intimal topography.

Figure 2 Morphology of vascular grafts. (a) Macroscopic image of vascular grafts with different topography. (b) SEM image of external surface
topography on vascular grafts. (c) ~ (d) SEM image of smooth, aligned topography on vascular grafts. The vascular grafts had similar external
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Table 1 Fisher’s exact probabilities for comparison of
patency rate of vascular grafts with different topography
(p=0.021)

Intimal topography  Vascular Vascular  Total  Patency rate
occlusion  patency

Smooth topography 525) 2 (4.5) 7 28.60%

Aligned topography 0(2.5) 7 (4.5) 7 100%

Total 5 9 14 -

The number in the bracket represents expected count. As N < 40, Fisher’s exact
probability was chosen to compare the patency rate of vascular grafts with
different topography.

The inner diameter of the vascular graft was 1.5 mm, and
the wall thickness was 210+ 30 pm. The SEM image
showed the external surface of the vascular grafts were
both composed of random nanofiber networks (Figure 2b),
while the intimal surface of them had different topog-
raphy, namely smooth topography (Figure 2c) and aligned
topography (Figure 2d). The diameters of nanofiber in the
external and intimal surface were 350 + 80 nm and 267 +
40 nm respectively.

The patency rate of vascular grafts and thrombosis

The patency rates of vascular grafts were listed in Table 1.
The vascular graft with aligned topography had signifi-
cantly higher (Table 2) patency rate than vascular graft
with smooth topography. After removing from the abdom-
inal aorta, there was much less thrombus formation on
vascular grafts with aligned topography (Figure 3) as com-
pared to the vascular graft with smooth topography. These
results were consistent with the result of patency rates.

In vivo platelets adhesion

The low vacuum SEM image showed that there were few
platelet clots adhered on the both vascular grafts (Figure 4a
and 4c). However the luminal surface conditions were dif-
ferent, that is, the luminal surface of vascular grafts with
smooth topography was almost bare except a small
amount of cellular debris, whereas the surfaces of aligned
ones were covered by protein-like substances.

Platelet adhesion was also quantified with immuno-
fluorescence experiments. Both of the vascular grafts
had few activated platelet adhesions on the luminal sur-
face (Figure 4b and 4d), which was in accordance with our
results of SEM. With the help of software Metamorph, we
calculated the adhesion rate of the activated platelets on
different vascular grafts using the following equation:

area adhered with activated platelets

Adhesi teYo =
estor ratezo total field area

x1000%o

We observed that there was no significant difference
between the adhesion rates on different vascular grafts
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(smooth/aligned: 0.35%0/0.12%o, p = 0.058), although they
had showed an obvious difference in patency rate (Table 2).
Though two types of vascular grafts had different luminal
surface conditions, they both showed little platelet adhe-
sion. Considering that the vascular graft with smooth
intimal topography had lower patency rates and more
thrombus, there may be different reasons for less platelet
adhesion.

Discussion

After 4 billion years of evolution, nature has developed a
wide variety of amazing structures and functions [26],
therefore learning from nature can pave the way for de-
signing and preparing new materials. It has been proved
in most cases that the structure especially micro/nano
structure of the natural biomaterials often determine its
function in the actual situation [27-30]. The new type of
vascular graft we designed has similar submicron longi-
tudinally aligned topography with the native blood
vessel, and it also showed higher patency rate and less
thrombus formation.

The adhesion of platelets to blood-contacting surface
directly influenced the blood compatibility of vascular
graft. Once platelets adhered, they become activated and
aggregate to form platelet thrombus, and then gradually
diminish blood flow, consequently lead to vascular oc-
clusion [31]. A commonly accepted fact is that increase
the surface roughness can lead to more platelet adhe-
sion, because extra surface roughness usually means lar-
ger area exposed to the platelets [32]. However, with the
development of nanotechnology, the definition of rough-
ness is further refined on the basis of roughness dimen-
sions, and the roughness dimensions can impact the
relationship between roughness and platelet adhesion. It
has been proved that the materials with micrometer-
scale topography exhibit more platelet adhesion at early
blood contact times (2 to 5 min) [33,34]; however, the
ones with submicron-scale topography can decrease the
number of the adhered platelets [35,36]. In our study,
we chose the vascular graft with smooth topography as
the less surface roughness model, and evaluated the in-
fluence of surface topography on the blood compatibility
through the platelet adhesion, patency rates and throm-
bosis. As the dimension of topography on the bionic
vascular graft (267 + 40 nm) is smaller than the diameter

Table 2 Non-parametric test result for comparing platelet
adhesion rate of vascular grafts with different
topography

Adhesion rate-a*
0.12%o0

Adhesion rate-s*
0.35%o0

Test statistic p
0.058

Mann-Whitney Test

* Adhesion Rate-S stands for adhesion rate of vascular graft with
smooth topography.
* Adhesion Rate-A stands for adhesion rate of vascular graft with
aligned topography.
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formation on the grafts with aligned topography.

Figure 3 Thrombosis on vascular grafts. (a) Obvious thrombus formation on the vascular graft with smooth topography. (b) Less thrombus

of individual platelet (2—4 pm), the effective contact area
between platelets and actual surface is reduced, which
decreases the number of the adhered platelets.

Under flow conditions, the collision frequency of plate-
lets with the surface can also influence the interaction
between material surface and platelets, which is negatively
correlated with the velocity of the boundary layer [37,38].
Previous research has indicated that if a hydrophobic

surface is covered with micro/nanostructure such as posts,
grooves, or others, the interstitial pores of patterned struc-
ture will not be filled with liquid due to the effect of
surface tension. This non-wetting state will reduce solid/
liquid contact area and friction of the fluid passing the
boundaries, resulting in increased boundary velocity
[39-41]. In our study, the PU vascular graft with biomim-
etic topography had a hydrophobic surface (contact angle

Figure 4 Low vacuum SEM and immunofluorescent image of platelet adhesion on vascular grafts with different topography. (a)
Nothing but small amount of cellular debris adhered on the smooth topography. (c) Protein-like substances adhered on the aligned topography
along the direction of blood flow and aligned nanofibers. (b) ~ (d) Few platelets adhered on both topography. Broken black arrows indicate the
direction of the blood flow, and white arrows indicate the adhered platelets.
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132.5+£3.5°) and submicron longitudinally groove-like
topography. They concertedly remodeled the boundary
conditions of the blood flow, which in turn largely acceler-
ated the velocity of the boundary layer and decreased the
collision frequencies of platelets with the surface, conse-
quently leading to less platelet adhesion.

It is interesting that vascular grafts with smooth top-
ography also had few activated platelets adhered on the
surface, but both the lower patency rate and more
thrombosis indicated that there were different reasons
for that. We speculated that when blood flowed through
the graft, the platelets were activated, aggregated and
thrombus formation was triggered. Then the thrombus
was detached from the grafts by the blood flow of ab-
dominal aorta, and embolized the distal portion of the
vessels. Actually, the in vitro platelet adhesion experi-
ments under flow condition had confirmed that the vas-
cular graft with smooth topography had more platelet
adhesion in highly activated form [42]. Our results, once
again, indicated the importance of minor differences in
the surface topography in directing a desired platelet
response.

Conclusions

In summary, we fabricated a small diameter vascular
graft with submicron longitudinally aligned topography
by electrospinning technique, and evaluated the blood
compatibility. The results indicated that the bionic vas-
cular graft showed enhanced blood compatibility due to
the effect of surface topography, and could be very
promising in clinical applications.

As platelet adhesion, which we focus on in this study,
occurred shortly after restoring the blood flow, and
acute occlusive thrombosis of rat can happen within
15 min [43-45], we choose 15 min as a time point to
evaluate the hemocompatibility of vascular grafts. How-
ever, further in vivo studies such as long term implant-
ation are needed to confirm our findings.
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