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Background: Peak first derivative of femoral artery pressure (arterial dP/dt.,) derived from fluid-filled catheter
remains questionable to assess left ventricular (LV) contractility during shock. The aim of this study was to test if
arterial dP/dt4 is reliable for assessing LV contractility during various hemodynamic conditions such as endotoxin-

Methods: Ventricular pressure-volume data obtained with a conductance catheter and invasive arterial pressure
obtained with a fluid-filled catheter were continuously recorded in 6 anaesthetized and mechanically ventilated
pigs. After a stabilization period, endotoxin was infused to induce shock. Catecholamines were transiently
administrated during shock. Arterial dP/dt,.x was compared to end-systolic elastance (Ees), the gold standard

Results: Endotoxin-induced shock and catecholamine infusion lead to significant variations in LV contractility.
Overall, significant correlation (r = 0.51; p < 0.001) but low agreement between the two methods were observed.
However, a far better correlation with a good agreement were observed when positive-pressure ventilation
induced an arterial pulse pressure variation (PPV) < 11% (r = 0.77; p < 0.001).

Conclusion: While arterial dP/dt,,,., and Ees were significantly correlated during various hemodynamic conditions,
arterial dP/dt. was more accurate for assessing LV contractility when adequate vascular filling, defined as PPV <

Keywords: Left ventricular function, Aortic pressure, Septic cardiomyopathy, Preload responsiveness, Endotoxin-

Background

Sepsis-induced myocardial dysfunction occurs more fre-
quently than expected while its severity is often under-
estimated [1]. Indeed, quantification of left ventricular
(LV) inotropic function during sepsis is an ongoing pre-
occupation of clinicians. The theoretical gold standard
for assessment of LV contractility is the end-systolic
pressure volume relation (ESPVR). The slope of the rela-
tion defines the maximum elastance, also called end-sys-
tolic elastance (Ees), a load-independent index of LV
contractility [2]. However, this method is difficult to
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apply in clinical practice because requiring preload
reduction and catheterization of the left ventricle with a
high-fidelity pressure catheter. Several other contractility
indices have been proposed but most of them are influ-
enced by cardiac loading conditions [3-8]. A relative
exception to this is the peak first derivative of LV pres-
sure (LV dP/dt,,,,) which is relatively afterload indepen-
dent [9]. Most critically ill patients with hemodynamic
instability are instrumented with a femoral fluid-filled
catheter for accurate arterial pressure monitoring. dP/
dtmax can be derived from the arterial pressure curve
(the maximal ascending slope of the peripheral arterial
pressure curve). However, the use of arterial dP/dt,,, as
an index of LV contractility remains questionable
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because dP/dty,., is derived from arterial pressure
obtained with a fluid-filled catheter and is influenced by
preload and vascular filling conditions [4,10]. Vascular
filling and fluid requirement in critically ill patients are
usually assessed by positive-pressure ventilation-induced
arterial pulse pressure variation (PPV), which is a sensi-
tive and specific predictor of preload responsiveness.
PPV is measured over a single respiratory cycle and
defined as the maximal pulse pressure (systolic-diastolic
pressure) less the minimal pulse pressure divided by the
average of these two pressures. In hypovolemic states,
PPV due to cycling pressure gradient from mechanical
ventilation is high. However, when adequate vascular
filling is obtained, PPV is low [11]. The purpose of this
study was to investigate whether arterial dP/dt;,.x
derived from fluid-filled femoral artery catheter can be
used to assess LV contractility in different hemodynamic
conditions. To test this hypothesis, arterial dP/dty,,,, LV
dP/dt,. and Ees were compared during various altera-
tions in LV contractile function resulting from endo-
toxin-induced shock and catecholamine infusion. PPV
was continuously monitored to assess the vascular
filling.

Methods

All experimental procedures and protocols used in this
investigation were reviewed and approved by the ethical
committee of the Medical Faculty of the University of
Liege and conformed to the Guide for the Care and Use
of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised
1996).

Experimental model

Experiments were performed on 6 healthy pure Pietran
pigs of either sex weighing from 16 to 28 kg. The ani-
mals were premedicated with intramuscular administra-
tion of tiletamine (250 mg) and zolazepam (250 mg).
Anaesthesia was then induced and maintained by a con-
tinuous infusion of sufentanil (0.5 pg/kg/h) and pento-
barbital (5 mg/kg/h). Spontaneous movements were
prevented by cisatracurium (0.1 mg/kg/h). After endo-
tracheal intubation via a cervical tracheostomy, the pigs
were connected to a volume-cycled ventilator (Datex
Ohmeda, Engstrom Carestation, General Electric, USA)
set to deliver a tidal volume of 10 ml/kg at a respiratory
rate of 20/min with a FiO, of 0.4 and a PEEP of 5 cm
H20. A 7F, multi-electrode (9-mm interelectrode dis-
tance) conductance micromanometer-tipped catheter
(Scisense, Canada) was inserted through the left carotid
artery into the left ventricle and positioned so that all
electrodes remained in the LV cavity. A central venous
line was inserted into the right jugular vein and placed
inside the superior vena cava. Arterial blood pressure
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was monitored via a 4F fluid-filled catheter (Pulsiocath,
Pulsion Medical System, Germany) inserted into the
right femoral artery. A 6F Fogarty balloon catheter (Bax-
ter Healthcare Corp., Oakland, CA, USA) was advanced
into the inferior vena cava through a right femoral
venotomy. Inflation of this balloon produced a gradual
preload reduction.

Experimental protocol

After surgical preparation, the animals were allowed to
stabilize for 30 min (‘basal’ period). Hemodynamic data
including mean arterial blood pressure, heart rate (HR),
cardiac output (CO), LV volume and pressure, were
continuously recorded. Then, the animals had a 0.5 mg/
kg intravenous infusion of a freshly prepared endotoxin
solution (lipopolysaccharide from E.coli serotype 0127:
B8, Sigma, St Louis, MO, USA) over 30 min (‘'endo’ per-
iod). When systolic arterial pressure significantly
dropped, dobutamine (5 mcg/kg/min) and norepinephr-
ine (0.05 mcg/kg/min) were administrated during 60
minutes (‘catechol” period) and then stopped ('shock’
period). Fluid administration with Hartmann’s solution
was continuously controlled by preload responsiveness.
When PPV was < 11%, animals were considered as ade-
quately filled.

Data collection and analysis

All analog signals were continuously digitalized and
recorded (Notocord-hem evolution, Notocord, Paris,
France). During each period of measurement, three tran-
sient occlusions of the inferior vena cava using the
Fogarty balloon were performed during apnea. Analysis
of the signals was performed offline. Arterial dP/dt.y
and LV_dP/dt,,,, were calculated on 6 steady-state
cycles just before occlusion of the vena cava. These
indices were compared with the gold-standard Ees, cal-
culated during transient preload reduction.

Statistical analysis

Arterial dP/dt,. LV dP/dt,,.x and Ees were compared
using linear regressions. A normalized Bland-Altman
test (Statistica version 7, StatSoft) was also performed.
Changes in hemodynamic parameters were evaluated by
a repeated-measures analysis of variance. Data were
expressed as mean + standard deviation (SD).

Results

The effects of endotoxin infusion and catecholamine
administration on arterial pressure, HR, ejection fraction
(EF) and cardiac output (CO) are summarized in Table
1. The evolution of LV contractility assessed by both
Ees and arterial dP/dt,. is shown in Figure 1. Ees sig-
nificantly decreased from 1.63 + 0.4 to 1.18 + 0.55 mm
Hg/mL during the state of shock. Arterial and LV dP/
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Table 1 Hemodynamic data

SAP (mm DAP (mm HR (b/ EF (%) CO (L/

Hg) Hg) min) min)
Basal 113+ 12 69 +9 98 + 12 55+7 47409
Endo 109 £ 9 64+ 11 106+16 57+8 49+08
Catechol 88 + 12 * 41 +£8% 129+13 69+7 63+£09
Shock 46 £ 15 % 24 +£10* 77 £ 16 41+7 20+11

*

SAP = systolic arterial pressure, DAP = diastolic arterial pressure, HR = heart
rate, EF = left ventricular ejection fraction, CO = cardiac output, *P < 0.01
compared to basal

dt.x significantly decreased from 1004 + 41 and 2414 +
514 to 795 £ 305 and 1235 + 224 mm Hg/sec, respec-
tively. However, during catecholamine infusion, Ees sig-
nificantly increased to 2.5 + 0.77 mm Hg/mL and
arterial and LV dP/dty,,, significantly increased to 1872
+ 491 and 3181 + 485 mm Hg/sec, respectively.

Overall, arterial dP/dt,,,x and Ees were significantly
correlated (r = 0.51, p < 0.001) but there was low agree-
ment (Figures 2 and 3). LV dP/dt,,, and arterial dP/
dt;.x were significantly correlated (r = 0.58, p < 0.001)
but arterial dP/dt,.x systematically underestimated LV
dP/dt .. (bias = 1018 + 364 mmHg/sec). LV dP/dtax
and Ees were significantly correlated (r = 0.78, p <
0.001) (Figure 4).

When adequate filling (PPV < 11%) was obtained, a
far better correlation between arterial dP/dt,,,, and Ees
was found (r = 0.77, p < 0.001) (Figure 2). In that case,
normalized Bland-Altman analysis revealed a good
agreement between the two methods (Figure 3). Correla-
tion between LV dP/dt,,., and arterial dP/dt,,,, was also

O arterial dP/dtmax
Ees

2500 4

2000

3
1500 %
1000 % 2
500 %
0
-500 0
Basal Endo Catechol Shock

arterial dP/dtmax (mmHg/s)
Ees (mmHg/mL)

Figure 1 LV contractility assessed by both Ees and arterial dP/
dtax. Basal conditions (basal), immediately after endotoxin
infusion (‘endo’), during shock with and without catecholamine
infusion (‘catechol and ‘shock’ respectively). Values are given as
mean + SD. All directional changes in contractility were significant
(p < 0.05) for each challenge, except between ‘basal’ and ‘endo’.
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improved when adequate filling was achieved (r = 0.66,
p < 0.001) while correlation between LV dP/dt,,, and
Ees did not significantly changed (r = 0.76, p < 0.001)
(Figure 5).

Discussion
Determination of LV contractility is a cornerstone in
clinical practice [6,12]. Numerous methods for assessing
LV contractility have been reported but none have been
adequately validated in clinical practice, or require the
presence of an intraventricular pressure catheter, prohi-
biting routine use in clinical practice [13,14]. The gold
standard method, Ees, requires both ventricular pressure
and volume measurements on a beat to beat basis with
preload variation [2]. Single beat analysis has been
developed, but requires the whole ventricular pressure
waveform [15]. dP/dt,., can be easily calculated in clini-
cal practice but is sensitive to both LV contractility and
preload [9]. In the present study, we tested whether
arterial dP/dt,,,,, derived from femoral fluid-filled cathe-
ter, was accurate for assessing LV contractility. While
LV dP/dt.x is considered as a good index of LV con-
tractility despite its preload dependence, little is known
about arterial dP/dt,,x [16,17]. One study performed in
perioperative patients found that arterial dP/dt,., and
LV dP/dt,.x were significantly correlated and concluded
that changes in arterial dP/dt,,., were accurate for
assessing changes LV contractility [18]. To the best of
our knowledge, despite its wide use in critically ill
patients, arterial dP/dt,,, has never been directly com-
pared with Ees during changes in LV function, at differ-
ent levels of vascular filling. Our results demonstrated
that there was significant correlation between arterial
dP/dt,,.« and Ees. Furthermore, a far better correlation
with a good agreement between arterial dP/dt,,x and
Ees were observed when adequate vascular filling was
achieved. Similar improvement was observed between
arterial and LV dP/dt,,.,. However, correlation between
LV dP/dt,., and Ees did not significantly change when
adequate vascular filling was achieved. Arterial dP/dt,.y
is an ejection phase index depending on arterial compli-
ance and waves reflections from periphery to aorta. All
factors that may affect arterial compliance and waves
reflections (vascular filling conditions, vasoactive agents)
may also affect arterial dP/dt,,, independently of LV
contractile function. As a result, the combination of
fluid responsiveness and changes in arterial compliance
and waves reflections due to endotoxin and/or catecho-
lamines could enhance discrepancies between arterial
and LV dP/dt,,,, and consequently between arterial dP/
dt;.x and the reference method, Ees [19]. In this study,
fluid administration was directed by PPV.

Adequate vascular filling was defined as PPV < 11%.
On the basis of clinical settings, this PPV threshold
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Figure 2 Linear regression between arterial dP/dt,,,x and Ees.
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value allows the best discrimination between responders
and nonresponders to intravascular fluid administration
[20-23]. In perioperative patients, De Hert et al. showed
that changes in femoral dP/dt,.. accurately reflected
changes in LV dP/dt,,,, during various interventions.
However, absolute values of LV contractility are
required for potential ventriculo-arterial interaction ana-
lysis [24]. These authors also found that leg elevation
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Figure 3 Normalized Bland-Altman plot of the agreement
between Ees and arterial dP/dt,,,,. Average = (Ees® + arterial dP/
dtmay)/2 and difference = Ees® - arterial dP/dt,,° where X° is the
normalized value of X [X° = (value of X - mean of X)/standard
deviation of X]. Lines represent mean difference (solid lines) and
95% confidence interval (light dashed line) (PPV < 11%).

induced significant increase in central venous pressure
and LV end-diastolic pressure, but arterial and LV dP/
dt.x remained unaltered [18]. However, it is well recog-
nized that static indices (like central venous pressure or
LV end-diastolic pressure) are poor indicators of vascu-
lar filling and preload responsiveness [11]. Masutani et
al. showed that LV dP/dt,,,, can be predicted from aor-
tic dP/dt,ax but their method requires aortic impedance
which is difficult to calculate in clinical practice [25].
Therefore, assessing LV contractility from arterial dP/
dtae When adequate vascular filling is achieved, could
be a simple and accurate method with the potential for
ventriculo-arterial interaction analysis.

Other methodological issues should be taken into
account. First, the use of a fluid-filled catheter could be
another source of discrepancy between arterial dP/dt,,y
and Ees. As pointed out by numerous authors, pressure
waves measured with a fluid-filled catheter have to be
interpreted cautiously, because the pressure waveform
may be distorted by the dynamic response of the cathe-
ter. By taking care of a properly flushed catheter system
and by filtering out artifacts, the catheter response were
optimized in our study [26]. Secondly, arterial and LV
dP/dty.x could also be influenced by heart rate. Heart
rate variability was not significant enough to analyze its
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Figure 4 Linear regression between left ventricular (LV) dP/dt,,.x and Ees.
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Figure 5 Linear regression between left ventricular (LV) dP/
dt.ax and arterial dP/dt,,.x.

influence on arterial
observations.

dP/dt,. in the present

Conclusions

Arterial dP/dty.,, the minimally invasive method
derived from femoral artery fluid-filled pressure catheter
and Ees, the reference method for assessing LV contrac-
tility, derived from intraventricular conductance micro-
manometer-tipped catheter, were significantly correlated
over a wide range of hemodynamic conditions resulting
from endotoxin-induced shock and catecholamine infu-
sion. However, arterial dP/dt,,,, was more accurate for
assessing LV contractility when adequate vascular filling,
defined as PPV < 11%, was achieved. Using dynamic
indices to ensure adequate vascular filling, LV contracti-
lity could be accurately predicted by arterial dP/dty.x
derived from femoral artery fluid-filled pressure catheter
in critically ill patients.
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