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Abstract
Background Atrial fibrillation (AF) is one of the most prevalent sustained cardiac arrhythmias, strongly associated 
with neutrophils. However, the underlying mechanism remain unclear. This study aims to explore the interaction 
between neutrophils and atrial myocytes in the pathogenesis of AF.

Methods Patch-clamp was employed to record the action potential duration (APD) and ion channels in HL-1 cells. 
Flow cytometry was used to assess the differentiation of neutrophils. The mRNA and protein levels of CACNA1C, 
CACNA2D, and CACNB2 in HL-1 cells were detected.

Results High-frequency electrical stimulation resulted in a shortening of the APD in HL-1 cells. Flow cytometry 
demonstrated that neutrophils were polarized into N1 phenotype when cultured with stimulated HL-1 cells medium. 
Compared to control neutrophils conditioned medium (CM), cocultured with TNF-α knockout neutrophils CM 
prolonged APD and the L-type Ca (2+) channel (LTCC) of HL-1 cells. Additionally, the expression of CACNA2D, CACNB2 
and CACNA1C in HL-1 cells were upregulated. Compared with CACNA1C siRNA-transfected HL-1 cells treated with 
TNF-α siRNA-transfected neutrophils CM, the APD and LTCC of CACNA1C siRNA-transfected HL-1 cells were shortened 
in control N1 neutrophil CM. The APD and LTCC of control HL-1 cells were also shortened in control N1 neutrophil CM, 
but prolonged in TNF-α siRNA-transfected neutrophils CM.

Conclusion These findings suggest that neutrophils were polarized into N1 phenotype in AF, TNF-α released from N1 
neutrophils contributes to the pathogenesis of AF, via decreasing the APD and LTCC in atrial myocytes through down-
regulation of CACNA1C expression.
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Introduction
Atrial fibrillation (AF) is the most common cardiac 
arrhythmia affecting approximately 33.5 million patients 
worldwide [1, 2]. Apart from bad effect on a patient’s 
quality of life, it is also associated with an heightened risk 
of death, stroke, and peripheral embolism [3], leading to 
increased morbidity and mortality [4]. The prevalence 
of AF has been increasing for the past few years and is 
becoming an urgent public health concern [5, 6]. Despite 
its growing prevalence, the development of AF is com-
plex and effective therapies remain limited [7, 8]. There-
fore, it is necessary to further understand the underlying 
mechanisms and pathology of AF.

Recent studies have revealed that AF is frequently 
associated with enhanced inflammatory response [9]. 
Neutrophils, also known as polymorphonuclear leuko-
cytes (PMN), not only functioning in innate immune 
responses to protect the host, but their elevated activa-
tion is also implicated in various cardiovascular diseases 
[10]. Immune infiltration analysis using CIBERSORT has 
shown increased neutrophil levels in persistent AF [11]. 
Infiltration of neutrophil has been observed in atrial tis-
sue of AF patients. Furthermore, it has been reported 
that leukocyte activation predisposes to AF and neutro-
phils induced AF by CD11b/CD18 integrins [12]. In addi-
tion, it is also suggested that neutrophil to lymphocyte 
is described as reliable predictor of new-onset AF [13]. 
However, the precise role neutrophils play in the patho-
genesis of AF and the underlying mechanisms remain 
unknown.

Neutrophils can generate an array of mediators of 
inflammation: Tumor necrosis factor (TNF)-α, CXCL8 
(IL-8), and macrophage inflammatory proteins (MIPs) 
[14]. Among these factors, TNF-α is an endogenous 
mediator of inflammation, playing a critical role in a vari-
ety of cellular processes during inflammatory responses. 
Its expression is upregulated in patients with AF [15] 
and was positively correlate with the progression of AF, 
which has a predictive effect in occurrence and persis-
tence of AF [9, 16]. While previous studies have focused 
mainly on the impact of TNF-α in structural remodeling 
of AF [17]. Its role in electrical remodeling of AF remains 
unclear.

In the present study, we investigated the functional 
interaction between neutrophils and atrial myocytes 
in AF. We first characterized the phenotype of neutro-
phils in AF. We then explored whether and how TNF-α 
released by N1 neutrophils effects the action potential 
duration and LTCC of atrial myocytes, as well as the 
underlying mechanism.

Materials and methods
Reagents
Mouse peripheral blood neutrophil complete medium 
(CM-M150), Dulbecco’s modified Eagle medium DMEM 
(PM150210), Fetal bovine serum FBS (164210), 0.25% 
trypsin and Penicillin-streptomycin solution were pro-
vided by Procell Life Science & Technology Co., Ltd 
(Wuhan, China). FITC anti-mouse/human CD11b 
Antibody, PE anti-mouse Ly-6  C Antibody and PerCP 
anti-mouse Ly-6G Antibody were purchased from Bio-
Legend, Inc (USA). 30% polyacrylamide, Tris-base, 
ammonium persulfate, SDS, Tween-20, and marker were 
purchased from Solarbio Science & Technology Co., 
Ltd (Beijing, China). PVDF membrane were from Milli-
pore (USA). BCA Protein Assay Kit was from Beyotime 
(Shanghai, China). Primary Antibody: rabbit monoclo-
nal CACNA2D (ab253190), rabbit monoclonal CACNB2 
(ab253193), rabbit monoclonal CACNA1C (ab283581), 
rabbit polyclonal β-actin (ab8227) and goat anti-rabbit 
HRP secondary antibody (ab6721) were purchased from 
Abcam (USA). TRIzol reagent, PrimeScript™ RT reagent 
Kit with gDNA Eraser, and SYBR® Premix Ex Taq were 
from Takara (Japan). The primers and siRNA were syn-
thesized by Hunan Fenghui Biotechnology Co. LTD 
(Hunan, China). Lipofectamine 2000 were provided by 
Invitrogen (USA).

Cell culture
HL-1 cells were purchased from Hunan Fenghui Biologi-
cal Co. LTD. Cell model of AF was established by elec-
trical stimulation of HL-1 cells. When HL-1 cell density 
reached 90%, the medium was removed and washed 
with PBS. Serum-free medium was added to each well 
and incubated in a cell incubator at 37 °C for 24 h. When 
HL-1 cells were cultured for 48  h to 90% cell density, 
serum-free medium was added and serum starvation 
assay was performed. Rapidly pacing HL-1 cells for 24 h 
(25 Hz/ 5ms, 7 V/cm, C-Pace100TM). After 24 h, the cul-
ture medium was collected and used for the culture of 
neutrophils [18].

The murine neutrophils cell line was purchased from 
Procell Life Science & Technology Co., Ltd. Polarization 
of neutrophils toward an N1-like phenotype was con-
ducted in 6-well plates (5 × 105/mL). Cells were incubated 
for 48  h at 37  °C in medium supplemented with 100 
ng/mL lipopolysaccharide (LPS), 50 ng/mL IFN-γ, and 
10,000 U/mL IFN-β [19].

HL-1 cells were co-cultured with conditioned neutro-
phils medium, in brief, neutrophils were treated with 
TNF-α siRNA or control siRNA, and then the medium 
was collected for culturing HL-1 cells. After culturing, 
HL-1 cells were collected for Patch-clamp recording, 
qPCR and Western blot assay.
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Patch-clamp recording
The bath solution contained 120 mM KCl, 2 mM MgCl2, 
1 mM CaCl2, 11 mM EGTA, 10 mM HEPES, and 11 mM 
glucose were dissolved in 10 mL of distilled water, and 
the PH was all adjusted to 7.4 with 100mM Tris-HCl. The 
internal solution contained 120 mM KCl, 2 mM MgCl2, 1 
mM CaCl2, 11 mM EGTA, 10 mM HEPES, and 11 mM 
glucose were dissolved in 10 mL of distilled water, and the 
PH was all adjusted to 7.4 with 100mM Tris-HCl. Adjust 
the parameters of glass microelectrode puller (P-1000, 
Sutter Instrument Co) to achieve a water inlet resistance 
value of 7.0–11.0 for BF150-86-10 hollow silicon glass 
tube. Take out the glass slide with cells, place it in the 
plexiglass sample tank on the inverted microscope stage, 
and perfuse the cells with perfusate (extracellular fluid). 
Under the microscope, cells with relatively stretched sur-
faces were selected for electrophysiology experiments. 
Micro operation 10X under the mirror clamp, using a 
three-stage artificial negative pressure suction film, mak-
ing the sealing impedance reach 1.0-2.0G Ω or above. 
Provide C-fast compensation. High negative pressure 
aspiration, forming a whole cell recording mode, and pro-
viding C-slow compensation. Maintain Rm above 600 M 
Ω and Ra around 30 M Ω. Convert to voltage clamp and 
record K current protocol (-50mv -+80mv) [20].

Flow cytometry
Neutrophils (2 × 105/mL) were seeded into a 6-well plate, 
and then were co-cultured with stimulated HL-1 cell 
medium or control HL-1 cells medium for 72  h. After 
washing twice with PBS, the cells were stained with 
fluorescein isothiocyanate (FITC)-anti-mouse/human 
CD11b Antibody, PE anti-mouse Ly-6  C Antibody, and 
PerCP anti-mouse Ly-6G Antibody. Then cells were incu-
bated in a dark ice bath for 20 min. After incubation, cells 
were centrifuged at 4 ℃ for 5 minutes and resuspended 
in PBS. FITC, PE and PerCP were selected for detection, 
according to the fluorescence. The data was collected by 
FACSVerse flow cytometry (BD Biosciences, USA).

Small interfering (si) RNA and plasmid transfection
HL-1 cells and neutrophils were seeded at 1 × 105/mL 
in 12-well plates, then 1 mL of medium (without anti-
biotics) was added to each well and incubated for 12  h. 
For neutrophils transfection, TNF-α siRNA and con-
trol siRNA were diluted with 200 µL Opti-MEM and 
left for 5 min at room temperature. 5 µL Lipofectamine 
2000 was diluted with 200 µL Opti-MEM and left for 5 
min at room temperature. The diluted siRNA and Lipo-
fectamine 2000 were mixed and left at room temperature 
for 25 min, then added to the cells. The cells were placed 
in a 37℃ 5% CO2 incubator for 30 h and the mRNA level 
of TNF-α was detected by qPCR after 48  h. For HL-1 
cells transfection, CACNA1C siRNA and control siRNA 

were diluted with 200 µL Opti-MEM and left for 5 min at 
room temperature, and the rest of the steps are the same.

Real-time PCR
Extraction of the total RNA was performed according 
to the instructions of the TRIzol reagent. The RNA was 
then reverse transcribed into cDNA by PrimeScript™ RT 
reagent Kit with gDNA Eraser. Next, the SYBR® Premix 
Ex Taq was applied to perform real-time PCR according 
to the manufacturer’s instructions on the RT-PCR (ABI-
7500, Applied Biosystems, USA). The primers used were 
as follows:

CACNA2D forward-5’CCGCTCTTGCTCTTGCTG3’,
reverse-5’CCAGTGCTGCATCGTGTG3’;

C A C N B 2  f o r w a r d -
5’CAGCCTTGGAGTCGACTTTTT3’,

reverse-5’CTATTTTTCCTCCTGGCTCCTT3’;

CACNA1C forward-5’GTCCAGAAGCTTCCAGA3’,
reverse-5’GATGTTCACTGAGACCAAGA3’;

GAPDH forward-5’GTGGCCTCTGGGATGATG3’,
reverse-5’ACTCCTCAGCAACTGAGGG3’;

Western blot
Cells were lysed by using RIPA lysis buffer, the total pro-
teins were extracted from HL-1 cells and quantified using 
the BCA Protein Assay Kit. Next, the protein samples 
were separated on the SDS-PAGE Electrophoresis Sys-
tem (Mini Protean 3, Bio-Rad, USA), and these proteins 
were transferred onto a PVDF membrane. After block-
ing with TBST buffer added in 5% bovine serum albumin, 
the PVDF membranes were incubated overnight at 4  °C 
with the following primary antibodies: rabbit monoclonal 
CACNA2D, rabbit monoclonal CACNB2, rabbit mono-
clonal CACNA1C, and rabbit polyclonal β-actin. The 
chemiluminescence was carried out by chemilumines-
cence immune detection system (Tanon 5200, Shanghai, 
China). The images were analyzed by Image J software.

Statistical analysis
The experimental data were expressed as Mean ± stan-
dard error (Mean ± SEM), and all data were processed 
and analyzed by GraphPad Prism 6. The t-test was used 
to compare the means of two groups of samples, and the 
ANOVA test was used to compare the means of multiple 
groups of samples. P < 0.05 was considered statistically 
significant.
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Results
AF promoted neutrophils polarization of N1 phenotype
We first established Atrial fibrillation model by using 
HL-1 cells. The results are shown in Fig.  1A, after 24  h 
electrical stimulation, the APD of HL-1 cells was 307.267 
ms (left), which was significantly shorter than HL-1 cells 
without any stimulation (right, 351.556 ms). After 24 h of 
stimulation and culturing, HL-1 cells CM was collected 

and used for culturing neutrophils. Then, neutrophils 
were co-cultured with stimulated HL-1 cells CM or con-
trol HL-1 cells CM for 72  h. Several typical N1 surface 
markers were investigated to determine the neutrophils 
phenotype by flow cytometry. As shown in Fig. 1B, when 
neutrophils co-cultured with stimulated HL-1 cells CM, 
the percentages of CD11b+/Ly6G+/Ly6C+ positive cells 
(N1 phenotype) were 68.64%. When cells co-cultured 

Fig. 1 (A) The action potential duration (APD) of HL-1 cells was prolonged after 24 h of electrical stimulation. (B) Co-cultured with control HL-1 cells 
medium, the proportion of N1 neutrophil (CD11b+/Ly6G+/Ly6C+) was 54.06%, co-cultured with stimulated HL-1 cells medium, the proportion of N1 
neutrophil was 68.64%
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with control HL-1 cells CM, N1 phenotype accounted for 
54.06%.

Effect of TNF-α released from N1 neutrophils on the 
electrophysiology of HL-1 cells
N1 neutrophils were generated by incubation with LPS, 
IFN-γ, and IFN-β [19], and flow cytometry was used to 
detect the proportion of N1 neutrophils. The results were 
shown in Fig. 2A, N1 phenotype accounts for 85.35% of 
all cells. To investigate the electrophysiological effect of 
N1 neutrophils on HL-1 cells, HL-1 cells were treated 
with TNF-α siRNA-transfected N1 neutrophils CM. 
The APD and LTCC of cells were detected and shown 
in Fig.  2B. Compared with control N1 neutrophils CM, 
APD and LTCC of cells were significantly prolonged in 
TNF-α knockout group. Furthermore, we investigated 
the expression of LTCC genes, including CACNA2D, 
CACNB2, and CACNA1C, and the related proteins in 
these two groups. The mRNA expression of CACNA2D, 
CACNB2, and CACNA1C were increased in TNF-α 
knockout group when compared with control group 
(Fig. 2C). The expression of indicated proteins was shown 
in Fig. 2D, compared with control group, the expression 
of CACNA2D, CACNB2 and CACNA1C proteins in 
TNF-α knockout group were significantly upregulated, 
among which CACNA1C protein showed the largest 
increase.

Mechanism of electrophysiological changes in HL-1 cells 
induced by N1 neutrophils
When treated with TNF-α knockout N1 neutrophils CM, 
the CACNA1C expression showed the largest increase 
among these three proteins. Therefore, we transfected 
HL-1 cells with CACNA1C siRNA to investigate the 
underlying mechanism. The APD of CACNA1C siRNA-
transfected HL-1 cells in the presence of TNF-α siRNA-
transfected N1 neutrophils CM was 355.510 ms (Fig. 3A), 
which is longer than that of CACNA1C siRNA-trans-
fected HL-1 cells in the presence of control N1 neutro-
phil CM (339.560 ms, Fig. 3B). The APD of control HL-1 
cells in the presence of control N1 neutrophil CM was 
342.021 ms (Fig.  3D). In contrast, the APD of control 
HL-1 cells in the presence of TNF-α siRNA-transfected 
neutrophils CM was 364.843 ms (Fig.  3C). The LTCC 
results of these four groups were showed in Fig. 3E and 
H. The LTCC was 958.813 pA of CACNA1C siRNA-
transfected HL-1 cells in the presence of TNF-α siRNA-
transfected N1 neutrophils CM (Fig. 3E), which is longer 
than that of CACNA1C siRNA-transfected HL-1 cells in 
the presence of control N1 neutrophil CM (602.862 ms, 
Fig. 3F). The APD of control HL-1 cells in the presence of 
control N1 neutrophil CM was 690.631 ms (Fig. 3H). In 
contrast, the APD of control HL-1 cells in the presence of 
TNF-α siRNA-transfected neutrophils CM was 1111.763 
ms (Fig. 3G).

Fig. 2 (A) N1 neutrophils accounted for 85% of all cells. (B) Co-culture with TNF-α siRNA-transfected neutrophil conditioned medium significantly pro-
longed the APD and the LTCC of HL-1 cells. (C) Co-culture with TNF-α siRNA-transfected neutrophil conditioned medium significantly elevated the mRNA 
level of CACNA1C, CACNB2, and CACNA2D in HL-cells. (D) Co-culture with TNF-α siRNA-transfected neutrophil conditioned medium significantly elevated 
the protein level of CACNA1C, CACNB2, and CACNA2D in HL-1 cells. Data were compiled from three independent experiments. *P < 0.05, **P < 0.01, and 
***P < 0.001 vs. control group
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Discussion
The main findings of the present study are as follows: [1] 
Stimulated HL-1 cells induced N1 polarization of neu-
trophils [2]. The prolonged effect of N1 neutrophils on 
APD and LTCC of HL-1 cells was mediated by TNF-α 
knockout, which significantly upregulated the expression 
of CACNA2D, CACNB2 and CACNA1C expression in 
HL-1 cells [3]. Further confirmed that knockout TNF-α 
in N1 neutrophils induced electrophysiological changes 
of HL-1 cells by affecting CACNA1C expression.

AF is a common arrhythmia in clinics with a charac-
teristic of the alteration of electrophysiology that pro-
motes persistent AF [21, 22]. This phenomenon is often 
described as atrial remodeling, which is associated with 
downregulation of LTCC and shortening of atrial APD 
[23, 24]. LTCCs are a common Ca-signaling element in 
cardiac myocytes, which is essential for calcium influx 
[25] and the excitation-contraction coupling process 
[26]. In our study, we established a cell model of AF by 
stimulating HL-1 cell with electricity for 24 h. Our results 
showed that the APD of HL-1 cells was shortened com-
pared with non-stimulated cells. Subsequently, we treated 
the neutrophils with stimulated HL-1 cells conditioned 
medium. Previous studies have reported the increased 
number of neutrophils in AF, but the phenotype and 
functions remained unknown. The study by He demon-
strated neutrophil extracellular traps (NETs) can directly 
interact with cardiomyocytes, leading to alterations in 

electrical signaling and structural remodeling of the 
atrial tissue [27]. What’s more, neutrophils can undergo 
functional polarization, leading to selective activity pat-
terns associated with different diseases. Two neutrophil 
phenotypes have been described, the pro-inflammatory 
(N1) and the suppressor (N2), based on their abilities to 
degranulate [28, 29]. We found that stimulated HL-1 cells 
medium triggers the polarization of N1 neutrophils. This 
may verify the presence of N1 neutrophils at the site of 
atrial. The N1 phenotypes could increase the inflamma-
tion by secreting TNF-α and IL-6. Which supported pre-
viously report that inflammation was closely related with 
AF [30, 31].

TNF-α is a pro-inflammatory cytokine, which enhances 
intracellular Ca2+ signaling [32, 33]. Relevance to this 
study, it has been reported that TNF-α was elevated 
in AF and promote it [17]. In our present study, knock-
out TNF-α in neutrophils prolonged APD and induced 
LTCC activation in HL-1 cells. TNF-α also plays a role 
in electrical remodeling of AF. Previously study has dem-
onstrated that increase of LTCC prolongs the APD [34], 
which contributes to electrical remodeling in AF. There-
fore, we speculated that neutrophils might be involved 
in electrical remodeling in AF. However, some stud-
ies have indicated that TNF-α had no effect on LTCC 
in ventricular myocytes from neonatal mice [35]. Our 
study further showed that TNF-α knockout upregulated 
the mRNA and protein levels of CACNA2D, CACNB2, 

Fig. 3 The APD of CACNA1C siRNA-transfected HL-1 cells treated with TNF-α siRNA-transfected N1 neutrophil CM (A); CACNA1C siRNA-transfected HL-1 
cells treated with control N1 neutrophil CM (B); Control HL-1 cells treated with TNF-α siRNA-transfected N1 neutrophil CM (C); Control HL-1 cells treated 
with control N1 neutrophil CM (D); The L-type calcium channel currents of CACNA1C siRNA-transfected HL-1 cells treated with TNF-α siRNA-transfected 
N1 neutrophil CM (E); CACNA1C siRNA-transfected HL-1 cells treated with control N1 neutrophil CM (F); Control HL-1 cells treated with TNF-α siRNA-
transfected N1 neutrophil CM (G); Control HL-1 cells treated with control N1 neutrophil CM (H)
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and CACNA1C in HL-1 cells. These three subunit genes 
encoded the subunits proteins that compose LTCC, with 
CACNA1C expression showing the most significant 
increase among them. It has been reported that CAC-
NA1C-encoded cardiac LTCC α1c subunits is essential 
for APD [36] and CACNA1C regulated atrial electric 
remodeling in AF [21]. Targeting CACNA1C could atten-
uate atrial fibrillation [37]. TNF-α also upregulated LTCC 
in primary mouse tracheal smooth muscle cells via pro-
tein kinase C-Src-CaV1.2 pathways, which indicated that 
this pathway may be involved in underlying mechanism 
of AF. We further examined CACNA1C, finding that 
its reduction may inhibit LTCC activation and lead to a 
decrease in APD. CACNA1C knockdown HL-1 cells was 
used. We found that the TNF-α released by neutrophil 
may inhibit CACNA1C expression, thereby shortening 
the APD and activity of LTCC in HL-1 cells. Targeting 
TNF-α may represent a novel therapeutic approach for 
treating AF and its inhibition could help mitigate the pro-
gression or onset of this condition.

Our study has several limitations. First, the interaction 
between neutrophils and atrial myocytes should be fur-
ther investigated in mouse model of AF to validate the 
conclusions drawn in our vitro experiments. Second, we 
found that N1 neutrophil promote AF, the function of 
N2 neutrophil and N1/N2 ratio in AF remains unclear. 
Finally, the exact mechanisms of which TNF-α mediated-
CACNA1C expression need to be further investigated.

Conclusion
We evaluated the roles of neutrophil infiltration in AF. 
Neutrophils were polarized into N1 phenotype in AF 
models, and knockdown of N1 neutrophils shorten the 
APD and activity of LTCC in HL-1 cells through inhibit-
ing CACNA1C expression.
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