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Abstract
Objective To construct a nomogram for predicting the responsiveness of cardiac resynchronization therapy (CRT) in 
patients with chronic heart failure and verify its predictive efficacy.

Method A retrospective study was conducted including 109 patients with chronic heart failure who successfully 
received CRT from January 2018 to December 2022. According to patients after six months of the CRT preoperative 
improving acuity in the left ventricular ejection fraction is 5% or at least improve grade 1 NYHA heart function 
classification, divided into responsive group and non-responsive group. Clinical data of patients were collected, 
and LASSO regression analysis and multivariate logistic regression analysis were used to explore relative factors. A 
nomogram was constructed, and the predictive performance of the nomogram was evaluated using the calibration 
curve and decision curve analysis (DCA).

Results Among the 109 patients, 61 were assigned to the CRT-responsive group, while 48 were assigned to the non-
responsive group. LASSO regression analysis showed that left ventricular end-systolic volume, diffuse fibrosis, and left 
bundle branch block (LBBB) were independent factors for CRT responsiveness in patients with heart failure (P < 0.05). 
Based on the above three predictive factors, a nomogram was constructed. The ROC curve analysis showed that the 
area under the curve (AUC) was 0.865 (95% CI 0.794–0.935). The calibration curve analysis showed that the predicted 
probability of the nomogram is consistent with the actual occurrence rate. DCA showed that the line graph model 
has an excellent clinical net benefit rate.

Conclusion The nomogram constructed based on clinical features, laboratory, and imaging examinations in this 
study has high discrimination and calibration in predicting CRT responsiveness in patients with chronic heart failure.
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Introduction
Chronic heart failure, referred to the gradual appear-
ance of symptoms and signs of heart failure on the basis 
of original chronic heart diseases, stands as a major car-
diovascular cause of hospitalization and mortality. Epi-
demiological surveys reveal that among individuals aged 
35 and above in China, the occurrence of heart failure 
soars to 1.3% [1]. Cardiac resynchronization therapy 
(CRT) has emerged as a widely utilized clinical treatment 
for heart failure, both domestically and internationally 
[2]. In recent years, CRT has progressed into a practical 
non-pharmacological approach for chronic heart fail-
ure, which could mitigate the desynchronization of the 
heart’s mechanical contractions, enhance cardiac func-
tionality, and reduce mortality. Nevertheless, the CRT 
response varies significantly. Despite stringent patient 
selection based on clinical guidelines, approximately 30% 
of patients remain non-responsive to CRT [3, 4]. Given 
the intricacies of CRT procedures and the significant 
financial burden of treatment, developing an efficient 
CRT response prediction model holds immense clinical 
significance in ensuring individualized medical treatment 
and alleviating economic burden. This study endeavors 
to establish a nomogram risk prediction model based on 
clinical features, laboratory tests, and imaging examina-
tion indicators, hoping to aid clinicians in determining 
optimal CRT patients and ultimately enhancing their 
quality of life.

Method
Study population
We retrospectively collected comprehensive data from 
109 patients admitted to the First Affiliated Hospital 
with Nanjing Medical University from January 2018 to 
December 2022. All patients in this cohort successfully 
underwent CRT implantation and met the inclusion 
criteria: (1) preoperative New York Heart Association 
(NYHA) functional class II to IV; (2) completed 6-month 
postoperative follow-up; (3) had complete clinical data. 
The exclusion criteria included: (1) incomplete follow-
up data or a follow-up period of fewer than 6 months; 
(2) upgrading of other types of pacemakers to CRT; (3) 
presence of other severe comorbidities such as acute 
coronary syndrome, malignant tumors, severe liver, and 
kidney failure. Patients who had improved NYHA clas-
sification by at least one level or a left ventricular ejec-
tion fraction increase of ≥ 5% compared to baseline after 
six months of follow-up were categorized into the CRT-
responsive group [5].

Data source
Clinical data collection
Collect clinical data of patients through outpatient and 
inpatient records, including the following contents: age, 

gender, clinical manifestations, family history, medical 
history, comorbidities, electrocardiogram, cardiac ultra-
sound, cardiac magnetic resonance, intraoperative condi-
tions and other results.

Electrocardiogram examination
Using a standard 12-lead electrocardiogram (ECG) 
machine(FUKUDA DENSHI, FX-8322) with a paper 
speed of 25 mm/s and a calibration of 10 mm/mV, pre-
operative ECG data were collected from CRT patients, 
specifically focusing on the QRS duration and the QTc 
interval, which was calculated using the Bazett’s square 
root correction formula. Left ventricular high voltage 
was defined as Rv5 > 2.5 mV, or Rv5 + Sv1 > 4.0 mV (for 
males) or > 3.5 mV (for females).

Cardiac ultrasound examination
Using the Philips-IE33 color Doppler ultrasound diag-
nostic instrument with a probe frequency of 2–4  MHz, 
the left atrial diameter (LAD), left ventricular diastolic 
diameter (LVDd), left ventricular systolic diameter 
(LVSd), aortic root diameter (Aod), ventricular septal 
thickness (IVS), left ventricular posterior wall thickness 
(LVPW), right atrial diameter (RAD), right ventricu-
lar diastolic diameter (RVDd), shortening fraction (FS), 
and ejection fraction (EF) were measured before and six 
months post- surgery for each patient. All measurements 
were completed by a professional physician.

Cardiac magnetic resonance imaging
Cardiac magnetic resonance imaging was performed 
using the Siemens 3.0 T MR scanner (MAGNETOM 
Skyra, Siemens Healthcare, Erlangen, Germany) with 
multimodal imaging. All cardiac magnetic resonance 
images were independently evaluated by a senior car-
diovascular MR diagnostic expert to obtain left ven-
tricular functional parameters, including End-diastolic 
volume(EDV), End-systolic volume(ESV), Stroke 
volume(SV), Cardiac output(CO), Left ventricular 
end diastolic mass(LVMED), End-diastolic volume 
index(EDVI), End-systolic volume index(ESVI), Stroke 
volume index(SVI), cardiac index(CI), Left ventricular 
end diastolic mass index(LVMIED). Diffuse fibrosis was 
quantitatively evaluated using T1 mapping technique of 
cardiac magnetic resonance imaging.

Statistical analysis
Statistical analysis was performed using SPSS 24.0 soft-
ware. Quantitative data were validated for normal dis-
tribution through Kolmogorov Smirnov (K-S) test, 
with P > 0.05 indicating a normal distribution. Variables 
that followed a normal distribution were expressed as 
mean ± standard deviation (x ± s), while those did not 
follow normal distribution were represented by the 
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median and interquartile range. For comparison between 
groups, t-tests and non-parametric rank-sum tests were 
employed. Categorical and ordinal data were expressed 
as frequencies and percentages, and χ² test was used for 
comparison between groups. R software version 4.2.1, 
along with various R packages such as “CBCgrps“ [6], 
“pROC“ [7], “rms”, “rmda”, and “ggplot2”, were utilized to 
perform nomogram, calibration plot, ROC curve, Deci-
sion Curve Analysis (DCA), and visualization analysis. 
The significance level was set at a two-tailed test with 
P < 0.05.

Results
A total of 109 patients with chronic heart failure were 
included in this study, including 32 female patients. 
Among them, 69 patients had dilated cardiomyopathy, 
7 had ischemic heart disease, and 33 had heart disease 
due to other reasons. All patients successfully received 
CRT implantation (Table 1). Of the 109 patients, 61 were 
classified as responsive, while the remaining 48 were 
classified as non-responsive. Baseline data before CRT 
implantation for both groups was presented in Table  1. 
There were significant differences between the two 
groups in terms of the proportion of LBBB, RBBB, atrio-
ventricular block, LVDs, LVDd, IVS, EDV, ESV, EDVI, 
ESVI and the proportion of diffuse fibrosis (P < 0.05).

All patients completed CRT implantation surgery. 43 
cases in the reactive group had left ventricular electrodes 
placed in the left ventricular lateral vein, 18 cases in the 
left ventricular lateral posterior vein, 57 cases with atrial 
electrodes open, and 59 cases with biventricular pacing; 
In the non responsive group, 31 left ventricular elec-
trodes were placed in the left ventricular lateral vein, 14 
in the left ventricular lateral posterior vein, 43 with atrial 
electrodes open, and 45 with biventricular pacing. There 
was no significant difference in left ventricular electrode 
position, atrial electrode opening ratio, and biventricular 
pacing ratio between the two groups (P > 0.05).

Using the “glmnet” package in R version 4.2.2, we 
perform a LASSO regression analysis to select vari-
ables. Using the CRT responsiveness of patients as the 
dependent variable (coded as non-responsive = 0 and 
responsive = 1), we considered clinical data and relevant 
examination indicators independent variables. Through 
applying the LASSO regression model, we identified 
three potential influencing factors that significantly 
affected CRT responsiveness: ESV, diffuse fibrosis, and 
LBBB. The results of this analysis are graphically repre-
sented in Figs. 1 and 2, which provide a clear visualization 
of the identified factors and their respective contribu-
tions to CRT responsiveness.

Using the CRT responsiveness of patients as the depen-
dent variable and the influencing factors identified 
through LASSO regression as the independent variables, 

a multivariate Logistic regression analysis was conducted. 
As summarized in Table 2, the analysis revealed that ESV, 
diffuse fibrosis, and LBBB were significant independent 
predictors of CRT responsiveness among patients with 
heart failure (P < 0.05).

Based on the factors above, a nomogram model was 
constructed to predict the responsiveness of CRT treat-
ment in patients with chronic heart failure (Fig. 3). ROC 
curve analysis revealed that the area under the curve 
(AUC) for the nomogram model in predicting a positive 
response to CRT treatment was 0.8648 (95% CI 0.7941–
0.9354) (Fig.  4). Calibration curve analysis showed that 
the calibration curve of the nomogram model for pre-
dicting CRT responsiveness in patients with heart failure 
closely resembled the ideal curve (Fig.  5). DCA results 
suggested that the nomogram model exhibited a high 
clinical net benefit rate (Fig. 6).

Discussion
In recent years, with the development of machine learn-
ing theory, machine learning algorithms have been 
widely used to reveal the occurrence and development of 
cardiovascular diseases [8, 9]. In this study, we aimed to 
develop and validate a nomogram model that could pre-
dict the responsiveness of CRT implantation in patients 
with chronic heart failure. This model was constructed 
based on a comprehensive analysis of clinical character-
istics, laboratory tests, and imaging examination indi-
cators. We employed the LASSO regression analysis 
technique to ensure our predictions’ accuracy and reli-
ability. The method effectively compressed the patient’s 
multi-factorial characteristics’ regression coefficients, 
helping us identify the most significant predictors. This 
process narrowed the potential predictive variables to 
three key factors: ESV, diffuse fibrosis, and LBBB. This 
approach reduced the risk of overfitting and ensured that 
our logistic regression analysis was based on the most 
relevant variables. Subsequently, we used these three pre-
dictive variables to construct our nomogram model. The 
model was designed to provide a visual and quantitative 
tool for predicting CRT responsiveness. Through calibra-
tion curve and decision curve analysis, we found that the 
nomogram model exhibited excellent consistency and 
accuracy in predicting CRT responsiveness. Importantly, 
all the indicators used to construct this model are easily 
obtainable in clinical practice. This makes our nomogram 
a convenient and practical tool for clinicians to use in 
assessing the potential benefits of CRT in their patients 
with chronic heart failure.

ESV refers to the minimum volume of the ventricle 
after contraction. In clinical practice, the stroke vol-
ume is usually calculated by calculating the difference 
between EDV and ESV. This value is of great significance 
for evaluating left ventricular function, and a decrease in 
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ESV is also an important indicator for evaluating CRT 
responsiveness. Chronic heart failure is a progressive 
disease. CRT can alleviate or reverse ventricular remod-
eling when the ventricular function is impaired within a 
specific range. At this time, the ESV is still within nor-
mal range, but when it reaches an irreversible stage, the 
heart has been severely damaged, and even through CRT 
means, there will be no significant effect. At this time, 
the ESV increases significantly and cannot compensate. 

The clinical course of heart failure is determined by car-
diac remodeling [10]. A decrease in left ventricular ESV 
means reverse remodeling. EF, as an indicator of left 
ventricular systolic function, is less suitable as a sur-
rogate indicator, possibly because EF depends more on 
left ventricular end-diastolic volume and heart rate [11]. 
Liu Liwen et al. proposed that ESV is an independent 
risk factor for CRT non-responsiveness [12], and Uhm 
et al. also demonstrated that ESV can predict the 1-year 

Table 1 Baseline data of patients with chronic heart failure
Variables non-responsive group (n = 48) responsive group (n = 61) P value
Age(year) 64.1 ± 10.7 63.2 ± 11.7 0.666
Female, n (%) 14 (29%) 18 (30%) 0.969
Hypertension, n (%) 22 (46%) 26 (43%) 0.888
CHD, n (%) 12 (25%) 13 (21%) 0.822
Atrial fibrillation, n (%) 17 (35%) 17 (28%) 0.525
COPD, n (%) 2 (4%) 2 (3%) 0.807
Diabetes, n (%) 10 (21%) 9 (15%) 0.564
Chronic kidney disease, n (%) 5 (10%) 1 (2%) 0.085
BNP(pg/mL) 1238.5 (681, 2763.7) 1727 (912, 4847) 0.086
Electrocardiogram examination
LBBB, n (%) 22 (46%) 53 (87%) < 0.001
RBBB, n (%) 8 (17%) 1 (2%) 0.01
Atrioventricular Block, n (%) 17 (35%) 10 (16%) 0.031
Left ventricular high voltage, n (%) 3 (6%) 7 (11%) 0.508
QRS(ms) 169.52 ± 28.99 171.15 ± 26.17 0.762
QTc(ms) 497.25 ± 41.23 494.18 ± 35.03 0.681
Electrocardiogram examination
Aod(mm) 29.40 ± 3.67 29.49 ± 3.22 0.885
LAD(mm) 47.06 ± 8.15 47.39 ± 6.91 0.819
LVDd(mm) 65.65 ± 8.86 72.00 ± 10.83 0.001
LVDs(mm) 55.81 ± 9.55 62.11 ± 10.63 0.002
IVS(mm) 9 (8, 11) 8 (8, 10) 0.021
LVPW(mm) 8.59 ± 1.52 8.48 ± 1.24 0.693
RAD(mm) 38.92 ± 7.07 37.84 ± 6.67 0.415
RVDd(mm) 36.96 ± 5.34 37.57 ± 7.42 0.629
FS(%) 14.9 (12.3, 17.62) 13.4 (11.5, 16.9) 0.107
EF(%) 31.15 (25.67, 36.1) 28 (24.2, 34.3) 0.086
Cardiac Magnetic Resonance Imaging
EDV(ml) 381.5 (281.12, 497) 272 (206, 321) < 0.001
ESV(ml) 310 (222.35, 417.08) 209 (142.8, 270) < 0.001
SV(ml) 66.79 ± 25.00 61.09 ± 16.30 0.154
CO(l/mim) 4.37 ± 1.97 4.19 ± 1.13 0.563
LVMED(g) 206.64 ± 65.84 203.36 ± 53.11 0.78
EDVI(ml/m^2) 207.5 (162.27, 278.22) 161 (129, 190) < 0.001
ESVI(ml/m^2) 168.55 (125.5, 249.38) 120 (88, 158) < 0.001
SVI(ml/m^2) 38.21 ± 13.21 35.59 ± 9.00 0.223
CI(l/min/m^2) 2.50 ± 1.03 2.46 ± 0.65 0.826
LVMIED(g/m^2) 119.21 ± 31.69 118.68 ± 30.06 0.93
Diffuse fibrosis, n (%) 18 (38%) 3 (5%) < 0.001
CHD: Coronary heart disease; COPD: Chronic obstructive pulmonary disease; LBBB: Left bundle branch block; RBBB: Right bundle branch block; Aod: inner diameter of 
the ascending aorta; LAD: Left atrial diameter; LVDd: left ventricular diastolic inner diameter; LVDs: left ventricular systolic inner diameter; IVS: interventricular septal 
thickness; LVPW: posterior wall thickness of the left ventricle; RAD: right atrial diameter; LVDd: right ventricular diastolic inner diameter; FS: fractional shortening; 
EF: ejection fraction; EDV: End-diastolic volume; ESV: End-systolic volume; SV: Stroke volume; CO: Cardiac output; LVMED: Left ventricular end diastolic mass; EDVI: 
End-diastolic volume index; ESVI: End-systolic volume index; SVI: Stroke volume index; CI: cardiac index; LVMIED: Left ventricular end diastolic mass index
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Fig. 2 Lasso regression generates the best penalty coefficient

 

Fig. 1 Lasso regression screening variables
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stratified clinical composite endpoint in patients under-
going cardiac resynchronization therapy [13].

Myocardial fibrosis serves as a crucial indicator of myo-
cardial injury and dysfunction, characterized primarily 
by the proliferation of fibroblasts and excessive deposi-
tion of collagen in the extracellular matrix of normal 
myocardial tissue. This pathological condition can alter 
the mechanical and electrophysiological functions of the 
heart, potentially leading to heart failure and even sud-
den cardiac death. Myocardial fibrosis plays a pivotal role 
in the progression of heart failure, as it not only accel-
erates deterioration but also serves as a crucial marker 
for assessing myocardial remodeling. Cardiac magnetic 
resonance (CMR) imaging [14] has emerged as a power-
ful tool for detecting myocardial fibrosis’s presence, loca-
tion, and extent within the ventricle. This non-invasive 
technique offers insights into the microstructure of the 
heart, providing clinicians with valuable information for 
diagnosis and treatment planning. Extensive research has 
demonstrated a close association between the morphol-
ogy and phenotype of myocardial delayed enhancement 

observed on CMR and patient prognosis. Specifically, 
patients exhibiting myocardial delayed enhancement 
tend to have a poorer clinical outcome. Furthermore, 
the extent of delayed enhancement appears to correlate 
with the severity of the prognosis, with more diffuse 
enhancement indicating a worse prognosis. The degree 
of diffuse myocardial fibrosis assessed by CMR pro-
vides insights into the extent of myocardial remodeling. 
A lower degree of fibrosis suggests less severe remodel-
ing, which may indicate a more favorable response to 
therapeutic interventions. In the context of CRT, the 
assessment of myocardial fibrosis becomes particu-
larly relevant. CRT involves the placement of electrodes 
within the left ventricle to restore coordinated contrac-
tion. The ability of these pulses to effectively stimulate 
viable myocardial tissue and restore contractile function 
in previously dysfunctional myocardium is influenced by 
the degree of fibrosis [15]. Therefore, assessing myocar-
dial fibrosis and its extent using CMR holds significant 
prognostic value for patients undergoing CRT. By under-
standing the extent and distribution of fibrosis, clinicians 
can gain insights into the potential benefits of CRT and 
tailor treatment strategies accordingly. This personalized 
approach to therapy optimization can lead to improved 
clinical outcomes and a better quality of life for patients 
with heart failure.

LBBB serves as a pivotal predictor of mortality among 
heart failure patients who have not undergone resyn-
chronization therapy and exhibit EF of 39% or below [16]. 
However, the situation reverses in patients selected to 
receive Cardiac Resynchronization Therapy (CRT), with 

Table 2 Multivariate logistic regression analysis of CRT 
responsiveness
Variables B SE Waldχ2 P value OR(95%CI)
LVDd 0.0584 0.0319 1.83 0.0674 1.06(1-1.13)
ESV -0.0097 0.0034 -2.82 0.0049 0.99(0.98-1)
Diffuse fibrosis -2.4287 1.1417 -2.13 0.0334 0.09(0.01–0.83)
LBBB 1.8229 0.6622 2.75 0.0059 6.19(1.69–22.66)
LVDd: left ventricular diastolic inner diameter; ESV: End-systolic volume; LBBB: 
Left bundle branch block

Fig. 3 Nomogram model for predicting responsiveness to CRT therapy in patients with chronic heart failure
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Fig. 5 Calibration curve of nomogram model for predicting the occurrence of CRT response in patients with chronic heart failure

 

Fig. 4 ROC curve of nomogram model predicting the occurrence of CRT response in patients with chronic heart failure
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LBBB often associated with more favorable clinical out-
comes [17]. Research conducted by Ginks et al. [18]. has 
identified two distinct electrical activity patterns within 
LBBB. Type I is characterized by a uniform spread of 
electrical excitation from the interventricular septum to 
the lateral wall, indicating a more coordinated electrical 
activity. Conversely, Type II exhibits a “U-shaped” spread 
due to a linear functional block between the septum and 
lateral wall, leading to delayed trans-septal conduction 
time. Patients with Type I electrical activity patterns tend 
to respond better to CRT. Multiple studies have also con-
firmed that LBBB is an independent predictor of response 
to CRT. Killu et al. found that LBBB can increase the like-
lihood of an super-response(SR) to CRT [19]. Rickard J 
et al. systematically analyzed multiple studies from 1995 
to 2014 to identify variables associated with “response” to 
CRT, and the results suggested that LBBB is significantly 
associated with improved prognosis after CRT implanta-
tion [20]. Similarly, Xiao Pei-Lin et al. developed a nomo-
gram model based on clinical variables, which indicated 
that patients without intrinsic LBBB are less likely to 
benefit from CRT [21]. Current research has introduced 
an alternative pacing strategy for the conduction sys-
tem, known as left bundle branch pacing (LBBP), which 
aims to improve LVEF by correcting LBBB with a low 
and stable threshold. A novel prospective, multicenter, 
case-control study suggests that upgrading to LBBP is 

feasible and effective for patients who are unresponsive 
to cardiac resynchronization therapy (CRT), indicating 
the potential of LBBP as an alternative treatment to CRT 
[22]. A separate prospective, multicenter observational 
study comparing LBBP, left ventricular septal pacing, 
and biventricular pacing revealed that LBBP outperforms 
both left ventricular septal pacing and biventricular pac-
ing in improving heart failure (HF)-related hospitaliza-
tions and all-cause mortality [23]. Consequently, we can 
anticipate that LBBP has the potential to become a rea-
sonable and promising pacing strategy.

Our study, while offering valuable insights, has its limi-
tations. Firstly, the study subjects’ relatively small sample 
size may affect the research findings’ generalizability. A 
larger sample size likely enhanced the representativeness 
of the results. Secondly, the retrospective nature of the 
study introduces potential biases. The selection of indi-
cators was constrained by the available data, which may 
cause selection bias. To mitigate this, future prospective 
studies are warranted to validate the predictive model 
obtained in this study. Furthermore, the follow-up period 
for the patients was relatively short. Long-term follow-up 
data would provide a more comprehensive assessment of 
CRT effectiveness. This is particularly important given 
the chronic nature of heart failure and the potential for 
long-term changes in patient outcomes.

Fig. 6 DCA decision curve of nomogram model predicting the occurrence of CRT response in patients with chronic heart failure
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In conclusion, our study has successfully constructed 
a nomogram prediction model for CRT treatment in 
chronic heart failure patients. The model, which incor-
porates left ventricular end-systolic volume, diffuse myo-
cardial fibrosis, and left bundle branch block, exhibits 
strong consistency, accuracy, and clinical utility. It effec-
tively predicts patient response to CRT treatment, aid-
ing clinicians in predicting response rates and ultimately 
reducing the burden on the healthcare system.
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