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Abstract 

Background In patients who experience out-of-hospital cardiac arrest (OHCA), it is important to assess the asso-
ciation of sub-phenotypes identified by latent class analysis (LCA) using pre-hospital prognostic factors and factors 
measurable immediately after hospital arrival with neurological outcomes at 30 days, which would aid in making 
treatment decisions.

Methods This study retrospectively analyzed data obtained from the Japanese OHCA registry between June 2014 
and December 2019. The registry included a complete set of data on adult patients with OHCA, which was used 
in the LCA. The association between the sub-phenotypes and 30-day survival with favorable neurological outcomes 
was investigated. Furthermore, adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by multi-
variate logistic regression analysis using in-hospital data as covariates.

Results A total of, 22,261 adult patients who experienced OHCA were classified into three sub-phenotypes. The fac-
tor with the highest discriminative power upon patient’s arrival was Glasgow Coma Scale followed by partial pressure 
of oxygen. Thirty-day survival with favorable neurological outcome as the primary outcome was evident in 66.0% 
participants in Group 1, 5.2% in Group 2, and 0.5% in Group 3. The 30-day survival rates were 80.6%, 11.8%, and 1.3% 
in groups 1, 2, and 3, respectively. Logistic regression analysis revealed that the ORs (95% CI) for 30-day survival 
with favorable neurological outcomes were 137.1 (99.4–192.2) for Group 1 and 4.59 (3.46–6.23) for Group 2 in com-
parison to Group 3. For 30-day survival, the ORs (95%CI) were 161.7 (124.2–212.1) for Group 1 and 5.78 (4.78–7.04) 
for Group 2, compared to Group 3.

Conclusions This study identified three sub-phenotypes based on the prognostic factors available immediately 
after hospital arrival that could predict neurological outcomes and be useful in determining the treatment strategy 
of patients experiencing OHCA upon their arrival at the hospital.
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Background
Patients experiencing out-of-hospital cardiac arrest 
(OHCA) exhibit a very low resuscitation rate [1]. The 
prognosis of patients experiencing OHCA depends on 
various clinical factors, including patient factors (age, 
cause of cardiac arrest, and rhythm of cardiac arrest), 
cardiopulmonary resuscitation (CPR) factors (bystander 
CPR, quality of CPR, and time from cardiac arrest to 
CPR), and resuscitation treatment factors (adrenaline 
administration and airway management). Due to the high 
heterogeneity of patient groups [2–10], several studies 
have failed to show any association between these clinical 
factors, although they may influence the patient’s prog-
nosis [11–18]. Improving the prognosis of patients expe-
riencing OHCA remains a major concern.

Various factors have been reported to influence the 
prognosis in the management of critically ill patients in 
disease groups with high patient heterogeneity, such as 
those with sepsis and acute respiratory distress syndrome 
(ARDS) [19–22]. Recently, subgroup classification sys-
tems based on clinical factors and biomarkers have been 
proposed for disease groups, such as sepsis, ARDS, acute 
kidney injury, and acute pancreatitis [23–25]. Machine 
learning latent class analysis (LCA) using clustering 
techniques can classify disease groups from a single 
phenotype into subgroups (sub-phenotypes) that differ 
in characteristics from other groups. Moreover, LCA is 
useful in examining the differential effects of therapeutic 
interventions [26–31]. Identifying sub-phenotypes that 
are more closely associated with clinical outcomes may 
explicate the factors associated with prognosis, which 
may be more beneficial than treating a single group of 
diseases with high patient heterogeneity. Identifica-
tion of prognosis-associated factors via discerning sub-
phenotypes may lead to a better understanding of the 
pathogenesis of the disease, discovery of new targets for 
treatment, and development of more targeted therapies 
[23–25].

Even in OHCA, patient heterogeneity is high, and vari-
ous factors may influence the prognosis. Therefore, it is 
important to consider not only a single factor but also 
the combined influence of various factors in this type of 
disease group to identify the population with the great-
est impact on prognosis. Two studies on machine learn-
ing LCA for OHCA have been reported in Japan, one 
of which was classified by shockable rhythm, while the 
other by non-shockable rhythm [32, 33]. It is important 
to classify OHCA according to the initial cardiac rhythm 
and validate the sub-phenotypes. Initial rhythm may not 
be the most significant prognostic factor. This finding 
should be validated in LCA that includes other prognos-
tic factors for all OHCA cases. It is crucial to make treat-
ment decisions for patients experiencing OHCA soon 

after they arrive at the hospital. Therefore, it is impor-
tant to identify sub-phenotypes using only pre-hospital 
factors and factors that can be measured immediately 
upon arrival at the hospital to aid in making treatment 
decisions.

This study was not limited to cardiac rhythm. Herein, 
we evaluated the association between the identified sub-
phenotypes and clinical outcomes at 30  days by per-
forming LCA using machine learning with pre-hospital 
prognostic factors and factors that could be measured 
immediately upon arrival at the hospital.

Methods
Study design and setting
This was a multicenter, retrospective, observational 
study, which used the OHCA registry maintained by the 
Japanese Association for Acute Medicine (JAAM). Spe-
cifically, this is a registry of patients who experienced 
OHCA and were transported to 91 hospitals in Japan 
between June 1, 2014, and December 31, 2019. This regis-
try collects pre- and post-hospital information regarding 
patients who experience OHCA in Japan [34]. Pre-hospi-
tal information was collected from the All-Japan Utstein 
Registry of the Fire and Disaster Management Agency, 
the details of which were reported in 2010. Post-hospital 
information was collected from the medical staff, includ-
ing the physicians, at each institution. All the pre- and 
post-hospital information was registered in a web-based 
system. Information regarding extraction factors was not 
stripped or concealed because the physicians oversee-
ing the conduct of the study collected these data at each 
center, and the outcome assessors were not blinded.

Ethical considerations
Approval for collecting JAAM-OHCA information was 
obtained from the ethics committee of each participating 
hospital. Approval for the conduct of this study (that is, 
secondary analysis) was obtained from the Ethics Com-
mittee of the Jichi Medical University Saitama Medical 
Center (approval number: S19-016). Since the patients 
with OHCA evaluated in the current registry-based study 
did not receive interventions that deviated from general 
CPR practices, the typical requirement for informed con-
sent was waived by the ethics review committee of each 
participating institution. However, together with other 
institutions, we provided an opt-out procedure on the 
website of the Department of Emergency Medicine, Jichi 
Medical University Saitama Medical Center. This study 
was conducted in accordance with the guidelines speci-
fied in the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement and the 
tenets of the Declaration of Helsinki and its subsequent 
amendments [35].
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Study participants
Patients who experienced OHCA were included in this 
study. Patients younger than 18 years of age and those 
with missing factors used in the LCA were excluded.

Data collection
The pre-hospital data collected included patient factors 
(age, sex, initial cardiac rhythm, and return of sponta-
neous circulation), circumstantial factors (witness and 
bystander CPR), treatment factors (pre-hospital physi-
cian intervention, defibrillation, adrenaline administra-
tion, and advanced airway management), and time factors 
(time from call to CPR and time to hospital arrival). 
Post-hospital data obtained within minutes of arrival at 
the hospital included Glasgow Coma Scale (GCS), body 
temperature, cardiac rhythm on arrival, and blood gas 
analysis (pH,  PaO2 (partial pressure of oxygen in arterial 
blood),  PaCO2 (partial pressure of carbon dioxide in arte-
rial blood), bicarbonate, base excess, and lactate). Factors 
that required several minutes to obtain, such as creati-
nine levels, were excluded from the survey. The follow-
ing diagnostic and treatment factors were collected after 
arrival at the hospital: cause of cardiopulmonary arrest 
(CPA), extracorporeal membrane oxygenation (ECMO)- 
assisted cardiopulmonary resuscitation (ECPR), intra-
aortic balloon pumping (IABP), percutaneous coronary 
intervention (PCI), and targeted temperature manage-
ment (TTM) [36–42]. Thirty-day survival and cerebral 
performance category (CPC) were the prognostic factors 
collected. Data were collected individually by the treating 
physician, and the outcome assessors were not blinded.

Outcome measures
The primary outcome of this study was good neurologi-
cal outcome 30 days after cardiac arrest. A good neuro-
logical outcome was defined as a CPC score of 1 or 2 [43]. 
These outcomes were determined based on the findings 
of previous studies [32, 33]. The secondary outcome was 
30-day survival.

Statistical analyses
Selected variables for LCA
We selected clinically important variables that could be 
measured immediately upon arrival at the hospital, with 
results available within a short time frame of 1–2  min. 
These variables were selected from the database, and a 
total of 21 variables were used as potential candidates 
for LCA. The covariates included in the LCA in this 
study were: demographic information (age and sex), pre-
hospital data (presence of witnesses, bystander CPR, 
bystander defibrillation, pre-hospital adrenaline admin-
istration, pre-hospital advanced airway management, 

initial cardiac rhythm, pre-hospital physician contact, 
time from call to CPR, time from emergency call to 
hospital arrival, and return of spontaneous circulation 
(ROSC) at hospital admission), and post-hospital data 
[initial cardiac rhythm, body temperature, blood, gas 
analysis (pH,  PaO2,  PaCO2, bicarbonate, base excess, and 
lactate), and GCS]. Missing values without imputation 
were excluded, and only complete cases were included in 
the analysis.

LCA/ model fitting/ evaluation of the model
We conducted LCA using the R package VarSelLCM (R 
Foundation for Statistical Computing, Vienna, Austria) 
to identify the underlying classes in the study popula-
tion. LCA is a statistical technique that allows the iden-
tification of unobserved subgroups within a population 
based on observed categorical variables. To determine 
the optimal number of clinically meaningful sub-phe-
notypes, we employed model selection criteria, such as 
the Bayesian Information Criterion (BIC) and adjusted 
BIC. These criteria helped us assess the goodness of fit of 
models with different numbers of latent classes and select 
the most appropriate model. Cluster analysis was con-
ducted using 2–5 classes to explore the range of poten-
tial sub-phenotypes in the population. Once the optimal 
number of classes was determined, the parameters of the 
selected model were estimated using maximum likeli-
hood estimation. This estimation enabled us to obtain 
the probabilities of class membership for each individual 
in the dataset. To evaluate the discriminative power of 
the identified latent classes, the discriminative power of 
each variable was computed by calculating the logarithm 
of the ratio of the probabilities associated with the vari-
able and its relevance to clustering. Higher variable index 
indicates a stronger association between the variable and 
the clustering process, indicating a higher discrimina-
tive power. After creating sub-phenotypes based on the 
model, the following analyses were performed: Continu-
ous variables were presented as the median and inter-
quartile range (IQR) for demographic characteristics, 
pre-hospital data, and post-hospital data. Categorical 
variables were presented as proportions and percentages. 
In addition, the Kruskal–Wallis rank sum test was used 
to test the continuous variables, whereas the Chi-square 
or Fisher’s exact tests were used to test the categorical 
variables.

Associations between sub‑phenotypes and outcomes
The primary outcome was 30-day survival with favorable 
neurological outcome (Cerebral Performance Category 1 
or 2). The secondary outcome was 30-day survival rate. 
The investigation of 30-day survival was based on the 
nationwide Utstein registry maintained by the Fire and 
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Disaster Management Agency. Neurological outcomes 
were evaluated through follow-up interviews conducted 
by the attending physicians responsible for patient care. 
The association between each identified subgroup and 
the outcomes was initially assessed using Chi-square 
or Fisher’s exact tests. Subsequently, logistic regression 
analysis was performed with treatment interventions 
as covariates to calculate the odds ratios (ORs) and 95% 
confidence intervals (CIs) for each subgroup. The final 
model included the following covariates: IABP, ECMO, 
PCI, and TTM. There is no standardized method for esti-
mating the appropriate sample size for LCA.

Based on several simulation studies aimed at consist-
ently high accuracy, a target sample size of > 500 was set. 
Statistical analyses were conducted using R software (R 
Foundation for Statistical Computing, Vienna, Austria), 
and statistical significance was set at p < 0.05.

Results
Study participants
Of the 51,199 patients who experienced OHCA and 
were included in the JAAM OHCA Registry, 1,064 were 
excluded as they were under the age of 18  years and 
27,874 were excluded due to the lack of one of the vari-
ous factors used in the LCA. Finally, 22,261 adult patients 
who experienced OHCA were included in the LCA 
(Fig. 1).

LCA
Three sub-phenotypes were identified in the dataset of 
this study due to LCA. Patient backgrounds along with 
pre- and in-hospital characteristics in each latent class 

are listed in Table  1 and missing values are shown in 
e-Tables  1–3 in Supplementary file 1. The factor with 
the highest discriminative power upon patient’s arrival 
was the GCS score, followed by  PaO2 (Fig. 2). The values 
obtained were as follows: Group 1, median (IQR) GCS: 7 
(6–13),  PaO2: 117.3 (64.0–241.7); Group 2, median (IQR) 
GCS: 3 (3–3),  PaO2: 49.6 (19.5–120.0); and Group 3, 
median (IQR) GCS: 3 (3–3),  PaO2: 29.1 (16.5–57.9).

Sub‑phenotypes and prognosis
Thirty-day survival with favorable neurological outcomes 
(CPC scores 1 and 2) as a primary outcome was evi-
dent in 66.0% participants belonging to Group 1, 5.2% in 
Group 2, and 0.5% in Group 3. Thirty-day survival as a 
secondary outcome was observed in 80.6% of the partici-
pants in Group 1, 11.8% in Group 2, and 1.3% in Group 3 
(Table 2).

Logistic regression analysis
Logistic regression analysis after adjustment for covari-
ates for 30-day survival with favorable neurological out-
come revealed OR (95% CI) of 137.1 (99.4–192.2) in 
Group 1 and 4.59 (3.46–6.23) in Group 2 in comparison 
to Group 3. For 30-day survival, the OR (95%CI) was 
161.7 (124.2–212.1) in Group 1 and 5.78 (4.78–7.04) 
in Group 2, compared with Group 3 (Supplementary 
e-Tables 4 and 5).

Discussion
Main findings
The pre-hospital clinical factors and factors available 
immediately after patient’s arrival at the hospital aided 

Fig. 1 Flow of study participants and the number of participants in each sub-phenotype. OHCA, out-of-hospital cardiac arrest
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Table 1 Pre-hospital and in-hospital characteristics in each latent class

Variables Group 1 Group 2 Group 3 P value

(n = 783) (n = 11,750) (n = 9,728)

Pre‑hospital variables

 Age, median (IQR), year 69 (56–79) 76 (65–85) 75 (63–84) <0.0001

 Male, n (%) 563 (71.9) 7,290 (62.0) 5,740 (59.0) <0.0001

 Witness, n (%) 0.0005

  EMS personnel 478 (61.0) 6,556 (55.8) 1570 (16.1)

  Others 201 (25.7) 807 (6.9) 1,104 (11.3)

  None 104 (13.3) 4,387 (37.3) 7,054 (72.5)

 Bystander CPR, n (%) 380 (48.5) 5,548 (47.2) 4,060 (41.7) <0.0001

 Initial cardiac rhythm monitored, n (%) 0.0005

  Vf/pulseless VT 340 (43.4) 1,795 (15.3) 160 (1.6)

  PEA 231 (29.5) 4,392 (37.4) 1,264 (13.0)

  Asystole 57 (7.3) 5,146 (43.8) 7,797 (80.2)

  others 155 (19.8) 417 (3.5) 507 (5.2)

 Pre-hospital physician contact, n (%) 135 (17.2) 1,441 (12.3) 1,023 (10.5) <0.0001

 Pre-hospital shock delivery, n (%) 406 (51.9) 2,455 (20.9) 444 (4.6) <0.0001

 Pre-hospital adrenaline administration, n (%) 104 (13.3) 4,266 (36.3) 3,001 (30.8) <0.0001

 Pre-hospital advanced airway management, n (%) 192 (24.5) 7,114 (60.5) 5,568 (11.4) <0.0001

 Time from call to CPR, median (IQR), min 9 (7–12) 8 (7–10) 9 (8–13) <0.0001

 Time from call to hospital arrival, median (IQR), min 32 (26–40) 32 (26–38) 35 (29–44) <0.0001

 Origin of cardiac arrest, n (%) 0.0005

  Acute coronary syndrome 271 (34.6) 988 (8.4) 279 (2.9)

  Cardiac origin 190 (24.3) 1,048 (8.9) 366 (3.8)

  Presumed cardiac origin 89 (11.4) 4,525 (38.5) 4,718 (48.5)

  Non-cardiac origin 233 (29.8) 5,189 (44.2) 4,365 (44.9)

 ROSC at hospital admission, n (%) 687 (87.7) 2,614 (22.2) 171 (1.8) <0.0001

In‑hospital variables

 Glasgow coma scale on arrival, median (IQR) 7 (6–13) 3 (3–3) 3 (3–3) <0.0001

 Body temperature on arrival, median (IQR), °C 36.0 (35.3–36.4) 35.8 (35.1–36.3) 35.5 (34.0–36.3) <0.0001

 Cardiac rhythm on arrival, n (%) 0.0005

  Vf/pulseless VT 55 (7.0) 785 (6.7) 148 (1.5)

  PEA 47 (6.0) 3,155 (26.9) 1,325 (13.6)

  Asystole 32 (4.1) 5,412 (46.1) 8,113 (83.4)

  Others 649 (82.9) 2,398 (20.4) 142 (1.5)

 ECMO pump-on, n (%) 59 (7.5) 749 (6.4) 201 (2.1) <0.0001

 IABP, n (%) 103 (13.2) 647 (5.5) 86 (0.9) <0.0001

 Percutaneous coronary intervention, n (%) 211 (26.9) 596 (5.1) 71 (0.7) <0.0001

 Targeted temperature management, n (%) 243 (31.0) 1,267 (10.8) 189 (1.9) <0.0001

 pH at hospital arrival, median (IQR) 7.26 (7.12–7.34) 6.99 (6.90–7.10) 6.76 (6.66–6.985) <0.0001

  PaO2 at hospital arrival, median (IQR), mmHg 117.3 (64.0–241.7) 49.6 (19.5–120.0) 29.1 (16.5–57.9) <0.0001

  PaCO2 at hospital arrival, median (IQR), mmHg 41.6 (34.4–53.2) 75.3 (56.3–93.5) 102.2 (77.4–130.0) <0.0001

 Bicarbonate at hospital arrival, median (IQR), mEq/L 18.0 (14.7–21.1) 17.3 (13.7–20.8) 13.4 (10.0–16.4) <0.0001

 Base excess at hospital arrival, median (IQR), mmol/L -8.3 (-13.8 – -4.7) -14.2 (-18.2 – -9.8) -23.0 (-27.0 – -19.0) <0.0001

 Serum lactate level at hospital arrival, median (IQR), mEq/L 63.9 (41.7–93.8) 96.3 (73.0–118.8) 153.0 (126.0–180.6) <0.0001

 Glucose level at hospital arrival, median (IQR), mg/dL 226 (178–289) 233 (149–309) 211 (113–321) <0.0001

  NH3 at hospital arrival, median (IQR), 59 (38–115) 172 (97–278) 436 (273–661) <0.0001

  PaO2 at 24 h from hospital arrival, median (IQR), mmHg 109.0 (85.7–132.3) 113.0 (88.9–151.1) 106.4 (82.0–145.0) 0.004

 Bae excess at 24 h from hospital arrival, median (IQR), mmol/L 0.3 (-2.1–1.9) -0.9 (-3.4–1.6) -1.9 (-5.3–0.9) <0.0001

 Serum lactate level at 24 h from hospital arrival, median (IQR), mEq/L 11.7 (9.0–16.2) 16.2 (9.9–26.1) 18.9 (12.6–32.4) <0.0001
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in classification of the three sub-phenotypes. Univari-
ate analysis of neurological outcomes at 30 days showed 
66.0% of the study participants belonging to sub-phe-
notype group 1, 5.2% to sub-phenotype group 2, and 
0.5% to sub-phenotype group 3. The results of multi-
variate logistic regression analysis adjusted for diagno-
sis and treatment (cause of CPA, ECPR, IABP, PCI, and 
TTM) after admission also showed a similar trend. The 
most important factor contributing to sub-phenotype 

classification was the GCS score on admission, followed 
by  PaO2 on admission.

Association between GCS and prognosis
Previous studies on GCS on arrival have also reported an 
impact on neurological outcomes in patients who expe-
rienced OHCA [44, 45]. Nadolny et al. used multivariate 
logistic regression analysis in patients who experienced 
OHCA and achieved ROSC upon arrival and found that 

Table 1 (continued)
CPR cardiopulmonary resuscitation, ECMO extracorporeal membrane oxygenation, EMS emergency medical services, IABP intra-aortic balloon pumping, IQR 
interquartile range, PaCO2 partial pressure of carbon dioxide in arterial blood, PaO2 partial pressure of oxygen in arterial blood, PEA pulseless electrical activity, ROSC 
return of spontaneous circulation, SD standard deviation, Vf ventricular fibrillation, VT ventricular tachycardia

Fig. 2 Discriminative power of each variable in descending order. GCS, Glasgow coma scale;  PaCO2, partial pressure of carbon dioxide in arterial 
blood;  PaO2, partial pressure of oxygen in arterial blood

Table 2 Clinical outcomes of the study population in each latent class

Variables Group 1 Group 2 Group 3 P value
(n = 783) (n = 11,750) (n = 9,728)

30-day favorable neurological outcome, n (%) 517 (66.0) 611 (5.2) 53 (0.5) <0.0001

30-day survival, n (%) 631 (80.6) 1,389 (11.8) 128 (1.3) <0.0001

30-day cerebral performance category, n (%) 0.0005

 1, good cerebral recovery 454 (54.2) 426 (3.6) 43 (0.4)

 2, moderate cerebral disability 93 (11.9) 185 (1.6) 10 (0.1)

 3, severe cerebral disability 75 (9.6) 237 (2.0) 27 (0.3)

 4, coma or vegetative state 39 (5.0) 541 (4.6) 48 (0.5)

 5, death or brain death 152 (19.4) 10,361 (88.2) 9,600 (98.7)
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GCS > 4 was an independent predictor of in-hospital sur-
vival after OHCA (OR 6.4; 95% CI 2.0–20.3; p < 0.0001) 
[44]. Sondergaard et  al. also reported that the 30-day 
survival for patients who experienced OHCA, achieved 
ROSC, and were conscious (GCS > 8) was higher than 
that for patients who attained ROSC but were coma-
tose or hospitalized with ongoing CPR [45]. Among 
the patients in the current study, sub-phenotype group 
1, with the most favorable neurological outcome, had a 
median (IQR) GCS of 7 (6–13) at arrival, whereas sub-
phenotype group 3, with the worst neurological outcome, 
had a median (IQR) GCS of 3 (3–3), which was signifi-
cantly different (p < 0.0001). A GCS score of 3 does not 
necessarily indicate that brain function has ceased; how-
ever, as in previous studies, a high GCS score suggests 
that brain function remains consistent with the possibil-
ity of a favorable neurological outcome.

Association between  PaO2 and prognosis
A high  PaO2 on arrival indicates that circulation and res-
piratory control were well maintained during CPR and 
after ROSC and that blood flow to the major organs of 
the body, including the brain, is maintained. Adequate 
oxygenation of the brain tissue is an essential component 
of good neurological outcomes [46–48]. Several stud-
ies using near-infrared spectroscopy have shown that 
maintaining a balance between oxygen demand and sup-
ply in the brain surface tissues can predict neurological 
outcomes in patients who experienced OHCA [49, 50]. 
Therefore, it is theoretically consistent that maintaining 
 PaO2 within normal limits is associated with favorable 
neurological outcomes in patients with OHCA. The rela-
tionship between arrival  PaO2 and favorable neurological 
outcomes in this study was as follows: group 1 sub-phe-
notype, which had the best prognosis, had a median 
arrival  PaO2 of 117.3 mmHg; group 2 sub-phenotype had 
a median arrival  PaO2 of 49.6 mmHg; and group 3 sub-
phenotype had the worst neurological outcome with a 
median arrival  PaO2 of 29.1 mmHg. Patients with higher 
arrival  PaO2 have better neurological outcomes. Consist-
ent with our findings, previous studies have also reported 
an association of  PaO2 with ROSC and subsequent sur-
vival [46–48]. The absence of extreme hyperoxemia has 
also been reported to be associated with favorable neuro-
logical outcomes, which is consistent with the findings of 
the present study [51, 52].

Differences from previous studies
Two previous Japanese studies that identified the sub-
phenotypes of OHCA differed from the present study 
in terms of the factors used for the identification of sub-
phenotypes, which were associated with the neurologi-
cal outcomes of OHCA [32, 33]. Three sub-phenotypes 

were identified in shockable rhythm, including  PO2, 
 PCO2, and cardiac rhythm upon arrival at the hospital, 
and the estimated glomerular filtration rate contributed 
to sub-phenotype identification [33]. In contrast, four 
sub-phenotypes were identified in the non-shockable 
rhythm, with  PaO2, age, serum potassium, and estimated 
glomerular filtration rate contributing to sub-phenotype 
identification [32].  PaO2 was a common factor in all three 
OHCA sub-phenotype studies, including the present 
study, whereas other factors varied. Two previous stud-
ies used phenotypes restricted to the cardiac rhythm at 
the time of cardiac arrest. The present study used a phe-
notype that was not restricted to cardiac rhythm and 
included cardiac rhythm as a factor in the sub-phenotype 
classification. Cardiac rhythm (shockable or non-shocka-
ble) had no significant impact on sub-phenotype classifi-
cation. Of the factors included in this study, the influence 
of initial cardiac rhythm was the sixth most important 
factor. Although the results of this study cannot be gener-
alized to other populations, as different phenotypes may 
be identified and prognostic factors may differ depending 
on the set of phenotypes, we believe that it is important 
to include the effect of initial cardiac rhythm for the iden-
tification of the sub-phenotypes. Treatment decisions 
must be made immediately upon the arrival of patients 
at the hospital who experienced OHCA. In this study, 
we identified sub-phenotypes based on pre- and post-
hospital factors that can be measured immediately upon 
arrival at the hospital, which would aid in making imme-
diate treatment decisions. Factors that required a longer 
duration to obtain results, such as creatinine levels used 
in existing studies, were excluded from the analysis. This 
resulted in a time-oriented classification, and the prog-
nostic factors were considered different from those in 
existing studies due to the different time ranges.

The importance of basic life support and time lapse
Basic life support is extremely important for patients 
experiencing OHCA [53]. CPR is one of the most effec-
tive interventions and should be performed immediately 
after a cardiac arrest. Therefore, the time from call to CPR 
is important, because previous studies have reported that 
the earlier is the CPR started, the better are the neuro-
logical outcomes [54, 55]. However, in the present study, 
the time from call to CPR was similar for the sub-pheno-
types with the best and worst neurological outcomes. We 
hypothesized that the main reason for the lack of differ-
ence in the time from the call to CPR in this study was 
the fact that we dealt with the data regarding time from 
the emergency call, not the time from the actual cardiac 
arrest to the emergency call. If the actual cardiac arrest 
time is longer, it can be inferred that a shorter duration 
from the call to CPR does not contribute to improved 
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neurological outcomes. Factors related to CPR, such as 
the time from cardiac arrest to CPR, time from cardiac 
arrest to hospital arrival, and the presence of witnesses, 
may affect neurological outcomes.

Clinical applications
Although it is possible to estimate the groups with a good 
prognosis even with clinical acumen, the classification 
of sub-phenotypes that contribute to differences in neu-
rological outcomes in patients who experience OHCA 
has significant implications for treatment strategies. 
For patients with favorable neurological outcome fac-
tors, more intensive monitoring and therapeutic inter-
ventions may further improve the patient’s prognosis. 
However, for patients with poor neurological outcome 
factors, treatment discontinuation may help avoid futile 
treatment. Among the sub-phenotypes identified in this 
study, patients with higher GCS and  PaO2 upon their 
arrival at the hospital had better neurological outcomes; 
otherwise, they were more likely to have poor neurologi-
cal outcomes. Such information may influence decision-
making regarding therapeutic interventions for patients 
with OHCA after they arrive at the hospital. As men-
tioned above, it may possible to estimate that GCS and 
 PaO2 are related to prognosis with clinical acumen. How-
ever, recognition of these clinical data will be necessary 
for clinical practice and for future studies investigating 
prognostic factors. Since the data utilization rules of the 
OHCA registry did not allow for analysis other than the 
predefined tasks in this study, we intend to investigate the 
prognostic factor in future studies with clinically subdi-
vided groups based on the clearly good prognosis (Group 
1) and poor prognosis (Groups 2 and 3) phenotypes and 
the hypotheses proposed in this pilot study.

Study limitations
This study has a few limitations. First, the number of 
factors used in the analysis may not have been suffi-
cient. The factors used in the LCA in this study were 
extracted from the data in the Japanese OHCA Regis-
try based on their clinical usefulness and importance. 
When different factors are included in LCA, different 
sub-phenotypes may be identified. Thus, there may be 
another sub-phenotype that predicts neurological out-
comes more accurately. Second, the factors used in the 
LCA in this study were limited to pre-hospital factors 
and factors that could be measured immediately upon 
arrival at the hospital (i.e., factors that could be meas-
ured within a few minutes, such as blood gas findings). 
Factors that took longer to measure (e.g., blood tests 
and imaging findings) were not included in the factors 

used for sub-phenotype classification. This is because 
the aim of this study was to use sub-phenotype classi-
fication to determine whether invasive medical proce-
dures such as Advanced Cardiovascular Life Support 
(ACLS) and ECPR should be performed in the Emer-
gency Department soon after the patient arrives at the 
hospital. However, it might have been better to perform 
LCA by dividing patients according to the presence or 
absence of ROSC upon arrival at the hospital, because 
the treatment strategy, including ACLS, is likely to be 
different for patients who have ROSC upon arrival at 
the hospital and those who do not. Third, there were 
several missing data used in this study. The most com-
mon missing data were body temperature and blood 
gas analysis, both of which should be measured in the 
OHCA Registry. In cases where they were not meas-
ured, it is assumed that the condition was difficult to 
measure for unintentional and accidental reasons (e.g., 
understaffed conditions with other priorities for treat-
ment). There was no consistent reason for the lack of 
measurement, and the missing data were assumed to be 
random and not imputed. Fourth, there is a wide range 
of clinical situations in which  PaO2 is measured, and 
the physiological significance of  PaO2 is likely to be dif-
ferent in patients with and without ROSC. Therefore, 
although  PaO2 is an important factor, it should be con-
sidered that specific clinical situations and the lack of 
 FiO2 can limit its interpretation. Fifth, this LCA cannot 
be applied immediately to clinical practice. However, it 
is possible to classify phenotypes with different prog-
noses using factors that are available immediately upon 
arrival at the hospital, and to have a model that can pre-
dict which phenotype a patient will have on presenta-
tion to the hospital. As in previous LCAs, no attempts 
have been made to create that model [24, 30]. The aim 
of this LCA was not the classification itself, but rather 
to classify the patients and homogenize the clinical 
heterogeneity to identify factors that influence prog-
nosis since it is considered a guide for the generation 
of hypotheses to improve prognosis. Sixth, no valida-
tion was performed in this study; therefore, it remains 
unknown whether the identified sub-phenotypes would 
apply to other populations. Finally, the external valid-
ity of this study was limited. The criteria for transport-
ing patients who experience OHCA vary widely among 
healthcare systems globally, and there is a high degree 
of heterogeneity in the context in which patients are 
transported to hospitals. Therefore, the sub-pheno-
types identified in this study may have low external 
validity for countries with healthcare systems different 
from Japan; however, the results of this study can be 
extrapolated to regions where patients who experience 



Page 9 of 11Tamura et al. BMC Cardiovascular Disorders          (2024) 24:303  

OHCA are transported under healthcare systems simi-
lar to those in Japan.

Conclusions
Three sub-phenotypes were identified in patients with 
OHCA by performing LCA of factors available immedi-
ately upon arrival at the hospital to predict neurological 
outcomes. The prognostic factors identified in this study 
may be useful in guiding the management of patients 
who suffer OHCA upon hospital arrival. However, these 
factors may have low external validity and require further 
investigation.
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