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Abstract 

Background Dyslipidemia frequently coexists with hypertension in the population. Apolipoprotein B (ApoB) 
is increasingly considered a more potent predictor of cardiovascular disease (CVD). Abnormal levels of serum ApoB 
can potentially impact the mortality risk.

Methods The prospective cohort study employed data from the National Health and Nutrition Examination Sur-
vey (NHANES), which was performed between 2005 and 2016, with follow-ups extended until December 2019. 
Serum ApoB concentrations were quantified using nephelometry. In line with the NHANES descriptions and recom-
mendations, the reference ranges for ApoB concentrations are 55–140 and 55–125 mg/dL for men and women, 
respectively. Participants were categorized into low, normal, and high ApoB levels. The low and high groups were 
combined into the abnormal group. In this study, all-cause mortality (ACM) and CVD mortality (CVM) were the end-
points. Survey-weighted cox hazards models were used for evaluating the correlation between serum ApoB levels 
and ACM and CVM. A generalized additive model (GAM) was employed to examine the dose-dependent relationship 
between ApoB levels and mortality risk.

Results After a median of 95 (interquartile range: 62–135) months of follow-up, 986 all-cause and 286 CVD deaths 
were recorded. The abnormal ApoB group exhibited a trend toward an elevated risk of ACM in relative to the normal 
group (HR 1.22, 95% CI: 0.96–1.53). The risk of CVM was elevated by 76% in the ApoB abnormal group (HR 1.76, 95% 
CI: 1.28–2.42). According to the GAM, there existed a nonlinear association between serum ApoB levels and ACM 
(P = 0.005) and CVM (P = 0.009).

Conclusions In the US hypertensive population, serum Apo B levels were U-shaped and correlated with ACM 
and CVM risk, with the lowest risk at 100 mg/dL. Importantly, abnormal Apo B levels were related to an elevated risk 
of ACM and CVM. These risks were especially high at lower Apo B levels. The obtained findings emphasize the impor-
tance of maintaining appropriate Apo B levels to prevent adverse outcomes in hypertensive individuals.
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Introduction
Globally, cardiovascular disease (CVD) is the main rea-
son for mortality and disability, highlighting the necessity 
for its prevention and prompt treatment [1]. Established 
risk factors such as diabetes, hypertension, and dyslipi-
demia exert significant roles in the occurrence of cardio-
vascular events. These conditions often coexist, resulting 
in ’risk factor clustering’, and significantly increasing car-
diovascular risk [2]. The cumulative effect of these con-
current risk factors exceeds their individual effects. The 
presence of two or more mildly elevated risk factors may 
be comparable to or exceed the cardiovascular risk posed 
by a single severely elevated risk factor [3]. Therefore, it is 
essential to view these conditions not as isolated factors 
but as interconnected contributors to cardiovascular risk. 
This perspective can explain why, despite ongoing efforts 
to halt the progression of CVD and optimize treatments, 
the incidence and prevalence of CVD-related complica-
tions remain high [4].

As the most common cardiovascular risk factor glob-
ally, hypertension influences an estimated 1.28 billion 
people [5]. The INTERHEART study revealed that a sin-
gle risk factor could increase cardiovascular risk by two 
to threefold. By contrast, individuals with concurrent 
hypertension, type 2 diabetes, dyslipidemia, and smoking 
are exposed to an increased risk that exceeds 20-fold [6]. 
This accumulative and compounded risk poses a formi-
dable threat to global public health. A substantial body of 
epidemiological evidence indicates a significant correla-
tion between dyslipidemia and the onset of hypertension 
[7–10]. For a long time, low-density lipoprotein choles-
terol (LDL-C) has been considered a reliable predictor 
of atherosclerosis and the primary target of pharmaco-
logical intervention for dyslipidemia-related parameters 
[11]. Despite successful control of LDL-C levels, patients 
with metabolic syndrome and inflammation continue to 
show a significant residual cardiovascular risk [12]. As 
established by the American Heart Association (AHA) 
and the American College of Cardiology (ACC), the 2018 
clinical practice guidelines on cholesterol placed empha-
sis on the superior predictive capability of ApoB in rela-
tive to LDL-C for CVD [13]. ApoB molecules are carried 
by a variety of lipoproteins involved in the development 
of atherosclerosis, such as chymosin, LDL cholesterol 
and lipoprotein (a) particles. ApoB measurements pre-
dominantly reflect the sum of all potentially atherogenic 
lipoproteins [14]. Abnormal levels of lipoprotein B can 
accelerate the process of atherosclerosis, which aggra-
vates high blood pressure and its complications, thereby 
increasing the risk of death in hypertensive patients. 
Therefore, we hypothesized that abnormal serum lipo-
protein B levels may influence the risk of death. There-
fore, this study was aimed at exploring the relationship 

between ApoB and all-cause mortality (ACM) and CVD 
mortality (CVM) in hypertensive populations, thus pro-
viding novel theoretical foundations and therapeutic 
strategies for preventing and treating CVD.

Methods
Study design and subjects
The current prospective cohort utilized NHANES data 
from 2005 to 2016, with extended follow-up through 
December 2019. NHANES is a complex, multi-stage, 
stratified probability survey conducted every two years. 
The data are verified and maintained by the National 
Centre for Health Statistics (NCHS) of the US. In this 
survey, we include at-home, mobile examination center 
(MEC) interviews, physical exams, and laboratory test-
ing. The sampling methodologies and data acquisition 
procedures have previously been described in detail [15]. 
NHANES is a publicly accessible data platform, and most 
of the data is readily accessible except restricted data. The 
investigation was approved by the Institutional Review 
Board of the NCHS. All the participants were required to 
obtain written informed consent.

Totally 34,963 US adults participated in the six 
NHANES survey cycles from 2005 to 2016. The partici-
pants included in each cycle were enrolled for the first 
time and had the unique coded IDs. Initial identification 
included 6,275 hypertensive adults with recorded ApoB 
parameters. Then, one participant without follow-up 
data, two pregnant women, and 869 cancer patients were 
excluded. Therefore, 5,384 adults are included in this 
study.

Hypertension diagnosis
The diagnosis of hypertension was established using 
self-reported medical histories, medication histories 
obtained through a self-administered questionnaire 
during the clinic visit, and three distinct blood pressure 
measurements.

1). Hypertension diagnosed by a physician.
2). Antihypertensive medication use.
3). The average systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) are considered to be ele-
vated if they are equal to or greater than 140 mmHg or 
90 mmHg, respectively, as determined by a minimum of 
three measurements.

ApoB measurements
Each participant made an appointment for the labora-
tory test, at which time the venous blood samples were 
drawn and transported to standardized laboratories, 
where ApoB was measured via nephelometry. Different 
equipment was utilized across different cycles (2005–
2006: Dade Behring BN100 nephelometer, Deerfield, IL; 
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2007–2014: ProSpec nephelometer, Marburg, Germany; 
2015–2016: Roche/Hitachi Cobas 6000 Analyzer, IN, 
USA.). The implementation of the Centers for Disease 
Control and Prevention Lipid Standardization Program 
by NHANES was performed to guarantee the attainment 
of precise and accurate measurements across different 
laboratories and over varying periods. ApoB levels from 
2005 to 2016 were adjusted using NHANES-recom-
mended factors in order to explain cycle-specific varia-
tions in the laboratory and device. Measured coefficients 
of variation for ApoB ranged from 0.7% to 7.4% over six 
cycles (2005–2006: 1.5%-2.9%; 2007–2008: 2%-6.2%; 
2009–2010: 2.9%-4.6%; 2011–2012: 2.4%-5.8%; 2013–
2014: 0.7%-7.4%; 2015–2016: 2.1%-2.7%). To ensure 
accurate comparisons between old and new calibrators/
reagents, each reagent and calibrator lot was validated 
by running five to ten samples using the old calibrator/
reagent run values against the new calibration channel or 
new reagent lot. All results must be within 5% of the old 
lot analysis. If the results deviate by more than 5%, the lot 
will not be used.

Definition of outcomes
The investigation concentrated on two outcomes includ-
ing ACM and CVM, which were determined by link-
ing study data to the National Mortality Index through 
December 2019. ACM includes deaths from all causes, 
whereas the CVM was coded using International Classifi-
cation of Diseases, Tenth Revision codes I00-I09, I11, I13 
and I20-51.

Other variables of interest
A standardized questionnaire was used to collect infor-
mation in terms of age, gender, race, educational attain-
ment, family income, tobacco and alcohol consumption, 
medical history, and medication use. Participants self-
reported their medical histories. The NHANES Proce-
dures Manual for Laboratory/Medical Technologists 
provides a comprehensive guide for measuring bio-
chemical parameters [16]. Physical measurements such 
as weight, height, and blood pressure were taken at 
the MEC. Several variables were categorized for data 
integration.

i). According to the description and recommendations 
provided by the NHANES, the reference ranges for apoB 
concentrations are 55–140 and 55–125  mg/dL for men 
and women, respectively. Based on their serum ApoB 
levels, the participants were categorized into low, normal, 
and high types.

ii). The racial categories include white individuals who 
are not of Hispanic origin, black individuals who are not 
of Hispanic origin, individuals of Mexican American 
descent, and individuals of other racial backgrounds.

iii). The target audience consists of individuals who 
have completed education up to the ninth grade, those 
who have completed education from the ninth to the 
eleventh grade (or its high school equivalent), and indi-
viduals who have obtained a college degree or higher.

iv). Based on their smoking habits, individuals can be 
categorized into three groups. Never smokers are those 
who have smoked less than one hundred cigarettes dur-
ing their lifetime. Former smokers are those who have 
smoked more than one hundred cigarettes during their 
lifetime, but are not currently smoking. Current smokers 
are those who have smoked more than one hundred ciga-
rettes during their lifetime and are currently smoking, 
regardless of the frequency [17].

v). Individuals can be classified into four groups in line 
with their alcohol consumption patterns. Never drink-
ers (less than twelve drinks during their lifetime), former 
drinkers (more than twelve drinks during their lifetime, 
but not in the past year), light/moderate drinkers (on 
average, less than one drink per day for women and less 
than two drinks per day for men in the past year), and 
current heavy drinkers (on average, more than one drink 
per day for women and more than two drinks per day for 
men in the past year) [18].

Statistical analysis
Appropriate application of MEC weights served the pur-
pose of adjusting for oversampling, non-coverage, and 
non-response, thereby enhancing the accuracy of the 
estimates to align with the nation’s demographic com-
position. The baseline population is characterized by 
continuous variables expressed as means with stand-
ard errors (SE), while unweighted counts and weighted 
proportions represent categorical variables. The sur-
vey-weighted chi-square test was used for detecting dis-
parities in categorical variables among individuals with 
low, normal, and high apoB levels. Given that most con-
tinuous variables were not consistent with a normal dis-
tribution, the survey-weighted Kruskal–Wallis test was 
used to identify the differences in ApoB levels.

A Kaplan–Meier analysis, accompanied by the log-
rank test, was performed during the observation period 
to examine the cumulative hazard risk in hypertensive 
individuals with different levels of ApoB. Cox hazards 
models were fitted to determine the hazard ratios (HRs) 
and their 95% confidence intervals (CIs) for correlations 
between ApoB and the risk of ACM and CVM. Baseline 
variables exhibiting between-group differences (P < 0.1) 
were potential predictors for multiple regression mod-
els. To prevent overfitting, excluding those variables with 
a VIF of 5 or higher, the variance inflation factor (VIF) 
was employed to quantify multicollinearity between vari-
ables. Then, confounding covariates were incorporated 
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into the models. Model 1 was adjusted for race, gender, 
and education level. Model 2 was adjusted for model 1 
plus body mass index (BMI), poverty income ratio, high-
density lipoprotein cholesterol (HDL), triglycerides, SBP, 
and DBP. Model 3 was adjusted for model 2 plus coro-
nary heart disease, hyperlipidemia, heart failure, diabetes 
mellitus, heart attack, and stroke. Model 4 was adjusted 
in model 3 plus glucose-lowering drugs and lipid-lower-
ing drugs. Subgroup analyses were conducted, stratifying 
the data by gender, age, and BMI. A generalized additive 
model (GAM) was employed to visually assess the dose-
dependent relation between serum ApoB and the mortal-
ity risk. To verify the stability of the findings, sensitivity 
analyses were conducted in three ways. First, we excluded 
participants with less than two years of follow-up to 
reduce the effect of potential reverse causality. Second, 
taking into account the effects of statins, GLP-1 receptor 
agonists, and insulin on cholesterol levels, these covari-
ates were adjusted for as variables of lipid-lowering and 
glucose-lowering therapy in multivariate Cox regression 
models. Finally, all confounders at baseline were included 
in the multivariate Cox regression model. All analyses 
were conducted using R (version 4.2) and EmpowerStats 
(version 4.1). A two-tailed P value which was less than 
0.05 was regarded to be of statistical significance.

Results
This study contained 5,384 NHANES participants 
between 2005 and 2016, with a mean age of 57.8  years, 
representing an estimated 32,759,060 hypertensive indi-
viduals. In line with their ApoB levels, participants were 
divided into three groups including low, normal, and 
high. The respective counts for each group were 191, 
4743, and 450. After a median of 95 (interquartile range: 
62–135) months of follow-up, the low, normal, and high 
A poB groups experienced 60, 847, and 79 deaths, respec-
tively. No significant differences existed in age, estimated 
glomerular filtration rate, the prevalence of alcohol and 
tobacco consumption, as well as the utilization of anti-
hypertensive medications among the three groups (P 
values > 0.1). Table 1 presents the detailed baseline demo-
graphic characteristics.

Associations between ApoB and all‑cause mortality
As shown in Fig. 1A, the Kaplan–Meier curves revealed 
a statistically significant difference in ACM risk among 
the low, normal, and high ApoB groups over the obser-
vation period (P for log-rank test 0.0001), with the low 
ApoB group exhibiting a higher risk of ACM than the 
other two groups. The low ApoB group exhibited a 
1.27-fold higher risk of ACM than the normal group 
(HR 2.27, 95% CI: 1.63–3.31; P < 0.001; Table 2) in the 
unadjusted Cox regression model. The aforementioned 

trend remained consistent across Models 1 to 3, even 
after accounting for various independent variables 
through progressive adjustment. Following full adjust-
ments in Model 4, the low ApoB group maintained 
a 66% elevated risk of ACM in relative to the nor-
mal group (HR 1.66, 95% CI: 1.23 to 2.23; P < 0.001; 
Table 2). Nevertheless, in relative to the normal group, 
the elevated ApoB group did not exhibit a substantially 
elevated risk of ACM (all P values > 0.05).

In the subsequent analysis, the low and high ApoB 
groups were classified as the abnormal ApoB group. In 
the unadjusted model and Model 1, ACM was 29% (HR 
1.29, 95% CI: 1.05–1.59; P = 0.015; Table 3) and 23% (HR 
1.23, 95% CI: 1.05–1.59; P = 0.045; Table 3) higher in the 
abnormal group in relative to the normal group, respec-
tively. In Models 2 and 3, the difference in risk of ACM 
between the abnormal and normal groups was not of sta-
tistical significance(P > 0.1). A trend toward an increased 
mortality risk from all causes was observed in the abnor-
mal group in Model 4 (HR 1.22, 95% CI: 0.96–1.53; 
P = 0.096; Table 3). In Model 4, an upward trend in ACM 
risk was identified among individuals in the abnormal 
group (HR 1.22, 95% CI: 0.96–1.53; P = 0.096; Table 3).

Subgroup analyses were performed based on sex, age, 
and BMI level, as presented in Fig. 2A. In the subgroups 
of men, age > 60 years, and BMI ≥ 30 kg/m2, participants 
with low levels of ApoB had a 115% to 132% elevated risk 
of ACM. As shown in the other subgroups, the risk of 
ACM was comparable to that of the normal group in the 
low and high ApoB groups (P > 0.05).

Associations between ApoB and CVD mortality
The Kaplan-Meyer curves for CVM were similar to those 
for ACM, showing a significant risk difference among 
the low-, normal-, and high-ApoB groups (P for log-rank 
test 0.0001; Fig. 1B). Participants in the low ApoB group 
revealed a higher risk of CVM when compared with the 
other two groups. As displayed in the unadjusted Cox 
regression model, the risk of CVM in the low ApoB 
group was 2.03-fold higher than that in the normal group 
(HR 3.03, 95% CI: 1.99–4.08; P < 0.001; Table  2). Even 
after full adjustment in model 4, the risk of CVM in the 
low ApoB group was still 126% higher than in the normal 
group (HR 2.26, 95% CI: 1.40–3.40; P < 0.001; Table  2). 
However, in all models, the high ApoB group exhibited 
no correlation with the elevated risk of CVM in relative 
to the normal group (all P values > 0.05).

The unadjusted model showed a 58% higher risk of 
CVM in the ApoB abnormal group than that in the 
normal group (HR 1.58, 95% CI: 1.17–2.14; P = 0.003; 
Table  3). The result was consistent across Models 1 to 
4, where the risk of CVM in the abnormal group was 
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Table 1 Differences in survey-weighted baseline characteristics of stroke patients in different serum ApoB level groups

Low level
(N = 191)

Normal level
(N = 4743)

High level
(N = 450)

P‑value

Representative sample size 960,662 28,868,807 2,930,140

Age (years) 53.95 (1.99) 55.75 (0.34) 55.24 (0.68) 0.466

PIR 2.46 (0.15) 2.93 (0.05) 2.69 (0.11)  < 0.001

BMI (kg/m2) 30.28 (0.59) 31.22 (0.15) 31.70 (0.44) 0.064

eGFR (mL/min/1.73m2) 83.46 (2.54) 87.11 (0.51) 85.54 (1.26) 0.249

HDL (mmol/L) 1.50 (0.05) 1.37 (0.01) 1.30 (0.02) 0.003

TC (mmol/L) 3.29 (0.06) 4.94 (0.02) 6.99 (0.04)  < 0.001

LDL (mmol/L) 1.38 (0.03) 2.86 (0.02) 4.62 (0.05)  < 0.001

TG (mmol/L) 0.90 (0.04) 1.59 (0.03) 2.61 (0.10)  < 0.001

SBP (mmHg) 129.06 (1.41) 131.33 (0.38) 136.73 (1.61) 0.002

DBP (mmHg) 67.14 (1.42) 72.54 (0.31) 75.97 (0.87)  < 0.001

Statin use (%) 52 (23.94) 955 (21.59) 35 (8.46)  < 0.001

GLP-1 receptor agonists use (%) 3 (1.97) 29 (0.93) 2 (0.60) 0.508

Insulin use (%) 27 (16.11) 250 (4.51) 25 (4.08)  < 0.001

Gender  < 0.001

 Women 85 (46.27) 2289 (47.90) 313 (67.43)

 Men 106 (53.73) 2454 (52.10) 137(32.57)

Race 0.003

 Non-Hispanic white 73 (62.92) 2009 (68.27) 194 (69.81)

 Non-Hispanic black 77 (24.32) 1237 (13.81) 104 (12.22)

 Mexican American 16 (4.88) 635 (6.25) 70 (7.10)

 Other races 25 (7.88) 862 (11.68) 82 (10.88)

Education Levels 0.032

 Less than 9th grade 29 (12.67) 612 (7.22) 77 (11.00)

 9-11th grade/high school grade or equiva-
lent

81 (41.50) 1937 (37.88) 170 (38.90)

 College graduate or above 76 (45.82) 2136 (54.89) 201 (50.10)

Congestive heart failure 0.030

 No 161 (90.08) 4390 (95.16) 426 (95.94)

 Yes 24 (9.92) 280 (4.84) 23 (4.06)

Diabetes mellitus 0.072

 No 109 (60.40) 3133 (71.65) 278 (69.12)

 Yes 82 (39.60) 1610 (28.35) 172 (30.88)

Stroke  < 0.001

 No 158 (85.65) 4435 (94.48) 421 (94.51)

 Yes 33 (14.35) 308 (5.52) 29 (5.49)

Heart attack 0.068

 No 164 (87.86) 4383 (93.40) 423 (94.52)

 Yes 27 (12.14) 360 (6.60) 27 (5.48)

Hyperlipidemia  < 0.001

 No 67 (33.37) 935 (18.58) 1 (0.09)

 Yes 124 (66.63) 3808 (81.42) 449 (99.91)

Coronary heart disease 0.004

 No 160 (86.01) 4426 (93.69) 421 (93.97)

 Yes 31(13.99) 317 (6.31) 29 (6.03)

Alcohol user 0.782

 Never 30 (13.64) 696 (12.70) 76 (15.19)

 Former 43 (18.96) 1046 (19.90) 103 (21.17)

 Mild/moderate 64 (36.69) 1413 (37.02) 116 (32.12)
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increased by 50% (HR 1.50, 95% CI: 1.11–2.02), 59% (HR 
1.59, 95% CI: 1.15–2.20), 69% (HR 1.69, 95% CI: 1.23–
2.32), and 76% (HR 1.76. 95% CI: 1.28–2.42).

In subgroup analyses, an elevated risk of CVM was 
observed in participants with lower ApoB levels in the 
subgroup of men, age ≤ 60  years, and BMI ≥ 30  kg/m2. 

Table 1 (continued)

Low level
(N = 191)

Normal level
(N = 4743)

High level
(N = 450)

P‑value

 Heavy 37 (30.71) 1211 (30.38) 117 (31.53)

Smoking 0.325

 Never 89 (45.26) 2391 (49.42) 241 (51.97)

 Former 58 (28.85) 1376 (30.79) 114 (25.40)

 Current 40 (25.89) 935 (19.79) 92 (22.63)

Antihypertensive medication 0.385

 No 54 (36.45) 1660 (36.02) 184 (40.47)

 Yes 137 (63.55) 3083 (63.98) 266 (59.53)

Glucose‑lowering drugs 0.010

 No 135 (71.61) 3792 (83.34) 364 (85.27)

 Yes 56 (28.39) 951 (16.66) 86 (14.73)

Lipid‑lowering drugs  < 0.001

 No 93 (51.16) 3102 (66.00) 354 (80.68)

 Yes 98 (48.84) 1641 (34.00) 96 (19.32)

Low levels < 55mg/dL, normal levels (55–125 mg/dL for women and 55–140 mg/dL for men), high levels (> 125mg/dL for women and > 140 mg/dL for men)

Continuous variables are expressed as weighted mean (Standard error, SE)

Categorical variables are expressed as counts (weighted %)

NHANES National Health and Nutrition Examination Survey, PIR Poverty income ratio, BMI Body mass index, HB Hemoglobin, TC Total cholesterol, LDL Low-density 
lipoprotein cholesterol, TG triglycerides, HDL High-density lipoprotein cholesterol, SBP Systolic blood pressure, DBP Diastolic blood pressure, eGFR Estimated 
glomerular filtration rate

Fig. 1 A Kaplan–Meier survival curve for all-cause mortality risk in different serum ApoB level groups. B Kaplan–Meier survival curve for the risk 
of CVD mortality in the different serum ApoB level groups. In the multivariate model the HRs have been fully adjusted for gender, race, 
education levels, poverty income ratio, body mass index, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, diastolic 
blood pressure, coronary heart disease, hyperlipidemia, congestive heart failure, diabetes mellitus, stroke, heart attack, glucose-lowering 
and lipid-lowering drugs
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As depicted in Fig. 2B, the increased risk ranged from 
3.65 to 4.87-fold. Compared to the normal group in the 
other subgroups, CVM risk between the low and high 
groups presented no statistically significant difference 
(P > 0.05).

Dose‑dependent relationship
As depicted in Fig. 3, the relationship between ApoB lev-
els and ACM (P for nonlinearity = 0.005) and CVM (P 
for nonlinearity = 0.009) in the hypertensive population 
was U-shaped. ACM and CVM risk was the lowest with 
ApoB levels being around 100 mg/dL. In instances where 
ApoB levels were below 100 mg/dL, there was a consist-
ent decline in risk with the increase of ApoB levels. By 
contrast, when ApoB levels exceeded 100  mg/dL, there 
was an observed elevation in the mortality risk as ApoB 
levels increased.

Sensitivity analyses
Sensitivity analyses were performed by three strate-
gies, and the results consistently showed a higher risk of 
all-cause and CVD mortality in the lower ApoB group 
compared with the normal group (Table  S1). Similarly, 
abnormal ApoB levels were associated with a significantly 
increased risk of CVD mortality compared to the normal 
group (Table  S2). These results are consistent with the 
main study.

Table 2 Weighted univariate and multivariate Cox regression to assess the association between different serum ApoB levels and the 
risk of all-cause and CVD mortality in stroke patients

Model 1 adjust gender, race and education levels

Model 2 adjust Model 1 plus PIR, BMI, HDL, TG, SBP and DBP

Model 3 adjust Model 2 plus coronary heart disease, hyperlipidemia, congestive heart failure, diabetes mellitus, stroke, and heart attack

Model 4 adjust Model 3 plus glucose-lowering drugs and lipid-lowering drugs

Normal ApoB level Low ApoB level p‑value High ApoB level p‑value

All‑cause Mortality
 Number of deaths 847 60 79

 Unadjusted 1 2.27 (1.65–3.11)  < 0.001 1.01 (0.77–1.30) 0.961

 Model 1 1 2.23 (1.62–3.07)  < 0.001 0.94 (0.73–1.23) 0.665

 Model 2 1 1.93 (1.38–2.69)  < 0.001 0.91 (0.66–1.24) 0.542

 Model 3 1 1.72 (1.28–2.31)  < 0.001 0.95 (0.68–1.34) 0.774

 Model 4 1 1.66 (1.23–2.24)  < 0.001 1.0 (0.71–1.40) 0.983

CVD Mortality
 Number of deaths 243 17 26

 Unadjusted 1 3.03 (1.99–4.62)  < 0.001 1.16 (0.74–1.81) 0.520

 Model 1 1 2.89 (1.87–4.46)  < 0.001 1.09 (0.69–1.72) 0.712

 Model 2 1 2.57 (1.56–4.25)  < 0.001 1.15 (0.69–1.94) 0.587

 Model 3 1 2.44 (1.52–3.91)  < 0.001 1.29 (0.78–2.15) 0.319

 Model 4 1 2.26 (1.40–3.63)  < 0.001 1.44 (0.87–2.40) 0.160

Table 3 Weighted univariate and multivariate Cox regression to 
assess the association between different serum ApoB levels and 
the risk of all-cause and CVD mortality in stroke patients

The abnormal ApoB group contains both low and high ApoB groups

Model 1 adjust gender, race and education levels

Model 2 adjust Model 1 plus PIR, BMI, HDL, TG, SBP and DBP

Model 3 adjust Model 2 plus coronary heart disease, hyperlipidemia, congestive 
heart failure, diabetes mellitus, stroke, and heart attack

Model 4 adjust Model 3 plus glucose-lowering drugs and lipid-lowering drugs

Normal 
Apo 
B level

Abnormal Apo B level p‑value

All‑cause Mortality
 Number of deaths 847 60

 Crude 1.29 (1.05–1.59) 0.015

 Model 1 1 1.23 (1.0–1.50) 0.045

 Model 2 1 1.19 (0.96–1.48) 0.117

 Model 3 1 1.19 (0.95–1.50) 0.138

 Model 4 1 1.22 (0.96–1.53) 0.096

CVD Mortality
 Number of deaths 243 17

 Crude 1.58 (1.17–2.14) 0.003

 Model 1 1 1.50 (1.11–2.02) 0.008

 Model 2 1 1.59 (1.15–2.20) 0.005

 Model 3 1 1.69 (1.23–2.32) 0.001

 Model 4 1 1.76 (1.28–2.42)  < 0.001
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Fig. 2 A Subgroup analysis of the association between different serum ApoB levels and the risk of all-cause mortality (hazard ratios, 95% CIs). B 
Subgroup analysis of the association between different serum ApoB levels and the risk of CVD mortality (hazard ratios, 95% CIs). The normal group 
was used as the reference group. The HRs have been fully adjusted for gender, race, education levels, poverty income ratio, body mass index, 
total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, diastolic blood pressure, coronary heart disease, hyperlipidemia, 
congestive heart failure, diabetes mellitus, stroke, heart attack, glucose-lowering and lipid-lowering drugs

Fig. 3 A Smoothing spline of the relationship between serum ApoB levels and risk of all-cause mortality. B Smoothing spline of the relationship 
between serum ApoB levels and risk of CVD mortality. Smoothing splines were performed by a generalized additive model, and adjusted 
for the following covariates: gender, race, education levels, poverty income ratio, body mass index, total cholesterol, high-density lipoprotein 
cholesterol, systolic blood pressure, diastolic blood pressure, coronary heart disease, hyperlipidemia, congestive heart failure, diabetes mellitus, 
stroke, heart attack, glucose-lowering and lipid-lowering drugs
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Discussion
This is the first study to explore the relationship between 
serum ApoB levels and the risk of ACM and CVM in 
individuals with hypertension. Our findings suggest that 
abnormal ApoB levels are independently related to a 
higher risk of ACM and CVM, especially in individuals 
with lower ApoB levels. There was a U-shaped relation-
ship between serum ApoB levels and the risk of ACM 
and CVM, with the lowest risk around 100 mg/dL.

Dyslipidemia contributes substantially to atheroscle-
rosis, and LDL-C is a widely studied indicator. As the 
protein component of plasma lipoproteins, ApoB-con-
taining apolipoproteins play a causal role in the onset of 
atherosclerosis [19]. Non-HDL cholesterol refers to the 
cumulative quantity of cholesterol in lipoprotein particles 
containing ApoB [20]. Overemphasis on LDL-C at the 
expense of other apolipoprotein cholesterol may under-
estimate the atherosclerosis risk in specific populations 
[21]. The recent findings from the Framingham study 
did not identify LDL-C as a crucial risk factor for coro-
nary artery disease [22]. A US population-based cross-
sectional study found no significant association between 
LDL-C and the progression of atherosclerotic disease, 
suggesting that LDL-C might not be the optimal target 
for lipid-lowering therapies [23]. The INTERHEART 
study compared the disparities in cardiovascular risk 
between ApoB and non-HDL-C, suggesting that ApoB 
was a superior predictor of cardiovascular events [6]. 
Both the 2021 guidelines for CVD by the European Soci-
ety of Cardiology [24] and the 2022 atherosclerotic CVD 
risk assessment practice statement by the American Soci-
ety for Preventive Cardiology (ASPC) [25] underscored 
the superiority of ApoB over LDL-C in assessing cardio-
vascular events, due to ApoB’s effectiveness as a repre-
sentative for the total concentration of dense lipoprotein 
particles.

In addition to the dyslipidemia observed in the nor-
mal population, monogenic dyslipidemias (MDs) are a 
spectrum of inherited conditions resulting from genetic 
anomalies in lipoprotein metabolism, leading to atypical 
levels of plasma lipids and lipoproteins, including LDL-C, 
HDL-C, and triglycerides [26]. One of the most frequent 
outcomes of MDs is the early onset of atherosclerosis, 
closely linked to elevated concentrations of LDL-C [27]. 
Familial hypercholesterolemia (FH), an autosomal domi-
nant genetic disorder, emerges as the most prevalent 
and often underdiagnosed condition within MDs [28]. 
In populations where there is a high clinical suspicion of 
FH (indicated by a Simon Broome DFH or Dutch Lipid 
Clinic Network score of > 8), the prevalence of a mono-
genic cause ranges between 40 to 80%, whereas, in less 
suspicious cases, detection rates hover around 20%-30% 
[29]. Characterized by lifelong elevated LDL-C levels, FH 

manifests in two primary clinical forms: heterozygous 
FH (HeFH) and homozygous FH (HoFH), both attribut-
able to mutations in the LDL receptor (LDLR), APOB, 
and PCSK9 genes [30]. In HeFH, pathogenic mutations 
in any one of these genes can instigate the disorder. It is 
reported that over 90% of HeFH cases involve loss-of-
function mutations in the LDL receptor gene, 5%-10% 
are due to specific mutations in the LDLR binding 
domain of the APOB gene, and less than 1% result from 
gain-of-function mutations in the PCSK9 gene [31]. The 
cornerstone of treatment for FH, particularly for hyper-
cholesterolemia, involves statin therapy. Recognized 
globally as the most frequently prescribed medications, 
statins are deemed both safe and effective [32]. Sensitivity 
analyses conducted in this study, incorporating statin use 
into the Cox regression model, yielded consistent results, 
underscoring the independent association between 
abnormal ApoB levels and the higher risk of all-cause and 
CVD mortality, irrespective of statin usage.

Arterial stiffness is a major contributor to human 
aging, and abnormal ApoB levels increase atherosclerosis 
and cardiac load, potentially increasing the risk of CVD 
and death. Nevertheless, understanding the relation-
ship between ApoB and mortality needs to be improved. 
Stettler C. et  al. demonstrated that when ApoB levels 
exceeded 0.96 g/L in patients suffering from type 1 dia-
betes, the risk of ACM doubled, and the risk of CVM 
skyrocketed by as much as sevenfold [33]. In 2021, Johan-
nesen C discovered that ApoB concentrations predicted 
ACM more accurately than LDL-C in a cohort of 13,015 
high cardiovascular risk individuals [34]. In a study per-
formed in 2022, Li H et  al. discovered a positive linear 
relationship between elevated ApoB concentrations and 
an increased long-term ACM risk among a cohort of 
patients diagnosed with coronary artery disease [35]. 
Notably, they also discovered that low ApoB levels at 
baseline were related to a high risk of a poor prognosis, 
possibly due to malnutrition. ApoB is the leading pro-
tein component of LDL, occupying approximately 95% 
of the total protein component of LDL. Johannesen et al. 
reported a U-shaped relationship between LDL-C levels 
and ACM risk in the general individuals, with the lowest 
risk at a level of 140 mg/dL [36].

Cheng Q et  al. analyzed the relationship between 
non-HDL cholesterol and ACM and CVM in hyper-
tensive populations from 1999 to 2014 in the NHANES 
dataset [37]. They discovered a U-shaped relationship 
between non-HDL cholesterol and mortality, consistent 
with the obtained findings. ApoB is a product of non-
HDL cholesterol. According to this study, lower ApoB 
levels are correlated with an elevated risk of ACM and 
CVM. Full adjustment for multiple variables did not 
affect these results. In addition, most models showed 
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that abnormal ApoB levels exhibited an association 
with an elevated risk of ACM and CVM. The obser-
vation was confirmed by the dose–response analysis, 
revealing a U-shaped relationship between ApoB levels 
and the risk of ACM and CVM. With ApoB levels being 
approximately 100 mg/dL, ACM and CVM risk was the 
lowest. Given that current guidelines do not specify an 
optimal range for ApoB, the obtained results suggest 
that either too high or too low ApoB levels can nega-
tively affect survival outcomes.

In subgroup analyses, abnormal ApoB levels are 
strongly associated with mortality risk in men and 
obese populations. The exact mechanism behind this is 
still unknown. However, several preliminary explana-
tions can be made. At first, women may be less at risk 
for cholesterol-related mortality because estrogen could 
lower cholesterol and help prevent vascular disease in 
premenopausal women [38]. Second, obese individuals 
often have multiple coexisting chronic diseases, including 
diabetes and cardiovascular disease. These patients often 
receive early pharmacological interventions, includ-
ing using GLP-1 receptor agonists and statins, which 
can effectively improve lipid levels. This could lower the 
effect of lipid levels on mortality risk.

Clinical implications and further perspectives
The study uncovers that abnormal ApoB levels, particu-
larly low levels, showed a correlation with the elevated 
ACM and CVM in hypertensive individuals. This associ-
ation suggests that maintaining optimal ApoB levels may 
be critical in reducing mortality risk. The current work 
also reveals a non-linear correlation between ApoB levels 
and mortality risk, with the lowest risk at an ApoB level 
of around 100 mg/dL. Men and obese populations appear 
to be more impacted by abnormal ApoB levels. There-
fore, healthcare providers may need to pay particular 
attention to maintaining appropriate ApoB levels in these 
subgroups. These insights emphasize the potential value 
of incorporating ApoB monitoring into personalized, 
risk-based strategies to manage hypertensive patients.

Furthermore, these results suggest that health strate-
gies tailored to an individual’s specific ApoB level could 
be beneficial. For instance, if ApoB levels are too high or 
too low, interventions such as lifestyle modifications or 
specific medications could bring ApoB levels to an opti-
mal range. These personalized strategies, aimed at main-
taining appropriate ApoB levels, may improve patient 
outcomes by lowering the associated mortality risks. 
While this study points to the potential effectiveness of 
such tailored interventions, further research is required 
to verify these findings and establish a cause-and-effect 
relationship.

Limitations
However, this study still has the following limitation. 
First, the inability to establish a causal relationship 
between ApoB and mortality risk was attributed to the 
observational nature of this investigation. Second, it 
should be noted that the cohort utilized was exclusively 
derived from the US, which may limit the generalization 
of the results of this study to other diverse populations. 
The United States is a multiethnic country, which con-
tributes to the heterogeneity of the cohort populations 
and influences the results. Third, the exposure factor in 
this study was circulating levels of ApoB. In the human 
circulatory system, the predominantly detected form of 
ApoB is ApoB-100. Due to limitations in the raw data, 
subclasses of ApoB could not be further analyzed. In 
addition, apolipoprotein A-related analyses could not be 
performed because apolipoprotein A measurements were 
not included in the NHANES laboratory testing proto-
col. Finally, multiple models with iterative adjustments 
for distinct variables were performed in the regression 
models to confirm the stability of the results. The effect 
of residual variables remains unknown. In addition, vari-
ous generations and operators may have influenced the 
results of ApoB assays. Although NHANES corrected the 
results, this effect could not be ruled out.

Conclusions
In the US hypertensive population, serum ApoB levels 
were U-shaped and related to ACM and CVM risk, with 
the lowest risk at 100  mg/dL. Importantly, abnormal 
ApoB levels showed a relationship to the elevated risk 
of ACM and CVM, and the risks were especially high at 
lower ApoB levels. These findings emphasize the impor-
tance of maintaining appropriate ApoB levels to prevent 
adverse outcomes in these individuals.
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