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Abstract 

Background  Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans 
might be explained by certain survival advantages (antagonistic pleiotropy).

Methods  Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey 
of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age 
cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates 
with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardio‑
vascular magnetic resonance (CMR).

Results  Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection 
fraction, E/e’, posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocar‑
dial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial con‑
traction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1–7%, p = 0.016) 
using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0–1%, 
p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers 
also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), 
APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0–5%, p = 0.059).

Conclusions  By triangulating results in four independent cohorts, across imaging modalities (echocardiography 
and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved 
cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number 
of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain 
its persistence in human populations.
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Introduction
Apolipoprotein ε (APOE ε) mediates the binding of low-
density lipoprotein (LDL) to peripheral receptors. Given 
the existence of two single-nucleotide polymorphisms, 
namely rs429358 and rs7412, there are three APOE ε iso-
forms coded by the alleles ε2, ε3 and ε4 giving rise to six 
genotypes namely ε2ε2, ε2ε3, ε2ε4, ε3ε3, ε3ε4 and ε4ε4 
with the commonest being ε3ε3 [1].

Apolipoprotein ε4 is regarded to be a major risk fac-
tor for developing Alzheimer’s disease [2] even from 
young age (especially in females [3]) and with a clear 
dosage effect (carriage of two ε4 alleles are associated 
with a higher risk than 1). In addition, it may associate 
with decreased physical performance in older age [4] 
and decrease cognitive performance (e.g., verbal epi-
sodic memory) in healthy young adults [5]. Yet despite 
its adverse associations, this ancestral allele has persisted 
in human populations instead of being replaced by the 
more recently evolved alleles, ε3 and ε2 [6] suggesting 
its carriage might be conferring some survival advan-
tages. Indeed, APOE ε4 carriers have been shown to 
have increased fertility [7, 8], resistance to infections [7], 
decreased perinatal and infant mortality [7], decreased 
chronic airway obstruction [9], fewer arterial aneurysms 
[9] and peptic ulcers [9], less liver disease and slight cog-
nitive advantages [7, 10].

In terms of the cardiovascular system, carriage of ε4 
(rs429358-cytosine and rs7412-cytosine) has been asso-
ciated with adverse clinical sequelae including ischaemic 
heart disease (IHD) [11], hypertension [12], diabetes [13] 
and high LDL [14]. Moreover, heart function was also 
suggested to be a mediator in the association between 
APOE ε4 and gray matter decline [15]. However, these 
findings were inconsistent and not reproducible enough 
to support a causal role of APOE ε4 in CVD and its risk 
factors.

To date it remains unclear whether APOE ε4 car-
riage independently associates with a better or worse 
long-term cardiac phenotype in terms of heart size and 
function. Using cohort data from the Avon Longitudi-
nal Study of Parents and Children (ALSPAC), Medi-
cal Research Council (MRC) 1946 National Survey of 
Health and Development (NSHD), Southall And Brent 
Revised (SABRE) and United Kingdom (UK) Biobank, we 
explored this association.

Methods
Study population
The ALSPAC is a birth cohort that recruited 14,541 preg-
nant women with an expected date of delivery in 1991–
1992 [16].

The MRC NSHD is the world’s longest-running birth 
cohort with continuous follow-up. In 1946 in Britain, 

5362 individuals (2547 males and 2815 females) born in 
the same week in March were enrolled. Participants were 
invited for periodic follow-ups in which health and socio-
economic assessments were performed which have been 
described elsewhere [17].

The SABRE study is a tri-ethnic cohort of European, 
South Asian, and African Caribbean participants living in 
North and West London. Between 1988 and 1981, par-
ticipants aged 40–69 years were randomly selected from 
5-year age and sex stratified primary care lists (n = 4063) 
and workplaces (n = 795). Full details have been described 
elsewhere [18].

The UK Biobank is a large prospective cohort study 
with more than half a million individuals recruited 
between 2006 and 2010 when study participants were 
aged 40–69 years old, and features demographic, genetic, 
health outcome and imaging data for participants [19]. 
Details of subjects’ comorbidities were obtained through 
self-reported diagnoses and International Classification 
of Disease (ICD-9 and ICD-10) codes from linked medi-
cal records This project was conducted using the UK 
Biobank (UKBB) resource under application numbers 
40,616 and 46,696.

All ALSPAC, NSHD, SABRE and UKBB participants 
from whom the APOE ε genotype was known and had 
structural cardiac imaging were included in this study.

Outcomes: echocardiographic data
In ALSPAC, echocardiography was performed when 
study participants were 17 and 24 years by 1–2 experi-
enced echocardiographers in accordance with the Ameri-
can Society of Echocardiography (ASE) guidelines with 
good reproducibility (both intraobserver and interob-
server correlation coefficients ranged between 0.75 to 
0.93 [20]). Since non-attendance to clinic visits is espe-
cially relevant within this group [21], echocardiography 
measurements were either averaged if more than one 
scan was available, or the one available scan was used to 
reduce the bias associated with data missingness.

In NSHD, when study members were 60–64 years 
(2006–2010), British-based NSHD participants who had 
not been lost to follow-up or withdrawn, were invited to 
attend a clinic-based assessment that included resting 
transthoracic echocardiography using General Electric 
(GE) Vivid I machines. The echocardiographic proto-
col included long and short axis (LAX and SAX), apical 
5-, 4-, 3- and 2- chamber, and aortic SAX views [17]. In 
NSHD, echocardiography quality assurance was evalu-
ated based on blind duplicate readings showing excellent 
inter- and intrareader variability (coefficients > 0.80) [22].

In SABRE, study members were invited between 2008 
and 2012 to a clinic visit in which echocardiographic data 
was acquired using a Phillips iE33 ultrasound machine 
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S5–1 phased array and a X3–1 matrix transducer and 
analyzed in line with the with the ASE guidelines. For 
structural and volumetric metrics, the inter- and intra-
observer agreement was also high in SABRE (coefficients 
> 0.71) [23].

In all three cohorts, echocardiographic data provided 
left ventricular (LV) ejection fraction (EF), E/e’, systolic 
and diastolic LV posterior wall and interventricular sep-
tal thickness (LVPWTs/d, IVSs/d), LV mass (LVmass) 
and the stroke volume (SV). Myocardial contraction frac-
tion (MCF) was calculated as the ratio between stroke 
volume and myocardial volume. Although indexation to 
body surface area (BSA), is commonly done in clinical 
practice, BSA is a poor indexation metric as it creates a 
bias for overweight individuals [24]. Although indexation 
to allometric height is a better alternative [24], indexa-
tion might lead to spurious associations, as the exposure 
might be associated with height/weight rather than with 
the outcome itself. Therefore, we used unindexed echo-
cardiographic outcomes in all subsequent analyses.

Outcomes: cardiovascular magnetic resonance data
Participants in the UK Biobank were randomly invited 
for a CMR scan on a 1.5 T Siemens Aera scanner from 
2014. Briefly, the CMR imaging protocol consisted of 
three long-axis views and a complete short axis stack of 
balanced steady state free precession cines [25]. Grey-
scale short axis cine stacks were automatically segmented 
using a deep learning neural network that has optimised 
for UKBB scan images, with human expert level perfor-
mance [26]. The short-axis segmentations underwent 
post-processing to compute end-systolic, end-diastolic 
and stroke volumes in both ventricles [27]. Left ventricu-
lar mass (LVM) was computed from left ventricular vol-
ume (assuming a density of 1.05 g/ml). Left ventricular 
wall thickness was computed as the perpendicular radial-
line distance between endocardial and epicardial surfaces 
at end-diastole for each of the 17 myocardial segments as 
defined by the American Heart Association (AHA) [28]. 
MCF was derived as above. Thickness of the IVS was cal-
culated as the mean wall thickness of segments 2, 3, 8, 9 
and 14, while PWT was taken as the mean of segments 
5,6, 11, 12, and 16. To compute longitudinal and radial 
peak diastolic strain rates, non-rigid image co-registra-
tion was performed between successive frames to enable 
dynamic motion tracking of the heart during the cardiac 
cycle [29]. Unindexed CMR metrics were used in all sub-
sequent analyses as discussed above.

Exposures: APOE ε genotype
In ALSPAC, genetic samples were available for 2009 chil-
dren. APOE ε genotype was appraised using integrated 
single-label liquid phase assay in 2011 [30].

In NSHD, blood samples were collected at age 53 by 
a trained research nurse, and DNA was extracted [31]. 
Genetic analysis of stored samples took place in in 1999 
and 2006–2010. In SABRE, blood samples were collected 
during baseline studies in 1988–1991 and during follow-
up from 2007 to 2012 [18]. Genotyping of rs439358 and 
rs7412 was conducted at the Exeter University for SABRE 
and by LGC, Huddleston, UK for NSHD [32].

Genotyping of UK Biobank participants is detailed 
elsewhere [33], however in brief, genotyping for 488,252 
subjects was performed using the UK BiLEVE or UK 
Biobank Axiom arrays and imputation based on the 
HaplotypeReference Consortium and UK10K + 1000 
Genomes panels. Imputation V3 (in GRCh37 coordi-
nates) was used for the current study. Genotypes in their 
released PLINK-format files were used on the DNANexus 
platform (https://​www.​dnane​xus.​com/).

Based on the presence or absence of APOE ε4, geno-
types were categorically defined as: non-APOE ε4 carriers 
(ε2ε2, ε2ε3, ε3ε3), heterozygous-APOE ε4 (ε2ε4 and ε3ε4) 
or homozygous-APOE ε4 (ε4ε4). Heterozygous-APOE 
ε4 and homozygous-APOE ε4 were further grouped into 
APOE ε4 carriers.

Covariates
Sex was recorded as male or female. The age, weight, and 
height at the time of the imaging were used to compute 
the body mass index (BMI) in all 3 cohorts. In NSHD, 
participants’ socioeconomic position (SEP) was evaluated 
at the time of echocardiography according to UK Surveys 
Registrar General’s social class, dichotomized as manual 
or non-manual. In ALSPAC, father’s SEP was available in 
the same format as the NSHD. In UK Biobank, we used 
the Townsend deprivation index scores derived from 
national data about ownership and unemployment aggre-
gated by postcodes [34]. The presence of cardiovascular 
disease (CVD), diabetes or high cholesterol was recorded 
as 1 = present or 0 = absent. In ALSPAC, congenital heart 
disease was used instead of CVD. Congenital heart dis-
ease and CVD were self-reported or GP-based diagnoses, 
while diabetes was defined based on doctor diagnosis and 
the use of diabetes medications. High cholesterol was 
defined based on the use of lipid-lowering drugs or as a 
total cholesterol higher than 240 mg/dl.

Statistics
All analyses were performed in R 4.0 [35]. For all analy-
ses, a two-tailed p-value < 0.05 was considered statisti-
cally significant.

Distribution of data were assessed on histograms 
and using Shapiro-Wilk test. Continuous variables are 
expressed as mean ± 1 standard deviation (SD) or median 

https://www.dnanexus.com/
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(interquartile range) as appropriate; categorical variables, 
as counts and percent.

In the main analysis, we compared non-APOE ε4 car-
riers with APOE ε4 carriers. Given the skewed distribu-
tions of echocardiographic and CMR data, generalized 
linear models with gamma distribution and log link were 
used to investigate the association of APOE ε4 genotypes 
as the exposures to predict the continuous echocardio-
graphic and CMR variables as the outcomes. As the lon-
gitudinal and radial PDSR also spanned negative values, 
generalized linear models with Gaussian distribution 
and identity link were used instead. Being a combination 
of gene variants, APOE ε genotype is expected to be an 
instrumental variable and therefore unconfounded. Thus, 
Model 1 was unadjusted. To obtain more precise regres-
sion estimates, Model 2 was adjusted for factors associ-
ated with the outcome, namely age, sex, and SEP. To 
explore the mechanistic pathway downstream of APOE 
ε genotype but upstream of the echocardiographic out-
comes, subsequent models were adjusted for mediators 
as follows: Model 3 for BMI; Model 4 for the presence of 

CVD; Model 5 for diabetes; Model 6 for high cholesterol; 
and Model 7 for hypertension (Fig.  1). Model assump-
tions were verified with regression diagnostics and found 
to be satisfied.

For all the models, regression estimates were obtained 
separately for ALSPAC, NSHD, SABRE and UK Biobank 
(i.e., cohort specific analyses). Since both NSHD and 
SABRE participants had echocardiography and were of 
a similar age (i.e., > 60 years on average), random-effects 
meta-analyses were performed across these 2 cohorts. 
Heterogeneity was evaluated using the Cochran Q test 
and Higgins I2 statistic. Although ALSPAC had echocar-
diographic data, participants were < 24 years of age and 
thus were not included in the meta-analysis given the 
heterogeneity with the older cohorts. Since UK Biobank 
had CMR data, it was not included in the meta-analysis.

To explore dose responses, APOE ε4 genotypes were 
recoded as an ordered category based on the number 
of ε4 possessed. Thus, class 0 = ε2ε2, ε2ε3, ε2ε3; class 
1 = ε2ε4 and ε3 ε4; and class 2 = ε4ε4. Given the exist-
ence of 3 classes, generalized linear models with gamma 

Fig. 1  Associations between APOE ε4 genotypes and echocardiographic and cardiac MRI data in older age. As APOE ε4 carriers had a higher 
myocardial contraction fraction, the mechanistic pathways were explored by adjusting the models for mediators (body mass index, cardiovascular 
disease, diabetes, high cholesterol, and hypertension). EF, ejection fraction; IVS, interventricular septal thickness; LVmass, left ventricular mass, LVPW 
left ventricular posterior wall thickness; MCF myocardial contraction fraction; PDSR, longitudinal/radial peak diastolic strain rate
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distribution (or Gaussian distribution for longitudinal 
and radial PDSR) and orthogonal polynomial contrasts 
with 2 equally spaced levels (i.e., linear and quadratic) 
were employed to look for a dose response by ε4 variants. 
Then, we filtered significant results correcting for multi-
ple testing at a false discovery rate (FDR) of 0.15.

As a sensitivity analyses, APOE ε4 carriers were split 
into heterozygous-APOE ε4 (ε2ε4 and ε3ε4) and homozy-
gous-APOE ε4 (ε4ε4), and all the analyses were replicated 
as above.

As an extra sensitivity analysis, we explored the asso-
ciation between APOE ε4 carriage and stroke volume.

Results
Participant characteristics
Participants with available APOE ε4 genotype and at least 
one cardiac imaging metric were included, yielding a total 
of 37,023 participants (n = 1397 from ALSPAC, n = 1467 
from NSHD, n = 1187 from SABRE and n = 32,972 from 
UK Biobank). Their characteristics are shown in Table 1. 
In total, there were 843 homozygous-APOE ε4 and 9460 
heterozygous-APOE ε4 individuals, with a similar preva-
lence across ALSPAC, NSHD, SABRE, and UK Biobank. 
ALSPAC participants were younger (< 24 years), had a 
lower BMI (median 23), and were less likely to have dia-
betes, cardiovascular diseases, high cholesterol, or hyper-
tension (< 5%). SABRE participants were more likely to be 
males (76.75%), have a higher BMI (median 27 years) or 
suffer from hypertension (58.98%) compared to NSHD 
and UK Biobank  participants. On the other hand, UK 
Biobank participants were least likely to suffer from CVD 
(6.53%), diabetes (18.64%), or hypertension (27.62%).

Associations between APOE ε4 genotypes 
and echocardiographic data
In NSHD, when compared to the non-APOE ε4 group, 
APOE ε4 carriers had a 6% higher  LV MCF (95% con-
fidence interval [CI] 0–12%, p = 0.050) which per-
sisted  unattenuated after adjusting for sex and SEP 
(p = 0.038) and diabetes (p = 0.056), was attenuated to 
5% after adjusting for BMI (95% CI 0–11%, p = 0.064), 
CVD (95% CI 0–12%, p = 0.112) or hypertension (95% 
CI 1–11%, p = 0.081), and increased to 8% after adjusting 
for high cholesterol (95% CI 1–14%, p = 0.020, Supple-
mentary Table S1). Similarly, APOE ε4 carriers had a 5% 
higher LVmass p = 0.057 which was increased to 6% after 
adjusting for CVD (p = 0.040) or hypertension (p = 0.040), 
and to 7% after adjusting for diabetes (p = 0.024). No sig-
nificant associations were found in SABRE (Supplemen-
tary Table S2). Moreover, in NSHD APOE ε4 carriers had 
an 8% higher SV 95%CI 3–12% p = 0.001 (Supplementary 
Table S5).

In the NSHD + SABRE meta-analyses, compared to 
the non-APOE ε4 group, APOE ε4 carriers had similar 
cardiac phenotypes in terms of EF, E/e’, LVPWTs/d, IVSs/d 
and LVmass, but had a 4% higher MCF (95% CI 1–7%, 
p = 0.016) which persisted after adjustment for  age, sex 
and SEP (95% CI 1–7%, p = 0.008). This was attenuated 
to 3% after adjustment for CVD, diabetes or hyperten-
sion (all 95% CI 0–6%, all p < 0.070, Table 2, Fig. 1). How-
ever, no significant dose response for the number  of 
APOE ε4 alleles was found in relationship with LV MCF 
(Table 3, Supplementary Table S3). Moreover, in NSHD 
+ SABRE meta-analysis, APOE ε4 carriers had a 6% 
higher SV.

In ALSPAC, APOE ε4 carriers had a 2% higher MCF 
(95% CI 0–5%) albeit it was not statistically significant 
p = 0.059 (Table 4). In addition, ε4 carriers had a 2% lower 
IVSd (p = 0.057) and LVPWTd (p = 0.064), although these 
results were also not significant.

In the sensitivity analysis, only heterozygous-APOE ε4 
carriers had a 4% higher MCF (95% CI 1–7%, p = 0.016) 
which persisted after adjusting for sex and SEP (95% CI 
1–7%, p = 0.013), and BMI (95% CI 1–7%, p = 0.018), 
but was attenuated to 3% after adjusting for CVD (95% 
CI 0–6%, p = 0.043, diabetes (95  CI  % 0–7%, p = 0.060), 
or hypertension (95% CI 0–6%, p = 0.028, Table  5, Sup-
plementary Table S4) in the meta-analysis. Similarly, in 
ALSPAC only heterozygous ε4 carriers had a higher MCF 
when compared to non-carriers.

In ALSPAC, NSHD, or SABRE, neither a linear nor a 
quadratic dose effect based on the number of ε4 alleles 
was observed. The association between ε4 and MCF in 
the SABRE + NSHD meta-analysis persisted at an FDR 
of 0.15.

Associations between APOE ε4 genotypes and CMR data
In UK Biobank, when compared to the non-APOE ε4 
group, APOE ε4 carriers had a 1% higher MCF 95% 
(CI 0–1%, p = 0.020) which persisted after adjusting 
for age, sex and SEP (Model 2, p = 0.080), CVD (Model 
4, p = 0.006), high cholesterol (Model 5, p = 0.0001) 
or hypertension (Model 7, p = 0.034), but was attenuated 
to 0% (95% CI 0–1%) after adjusting for BMI (Model 3, 
p = 0.079) or diabetes (p = 0.058, Table  6, Fig.  1). There 
was a dose-response relationship based on the number 
of ε4 alleles, especially when adjusting for CVD in Model 
4 (p = 0.036) and high cholesterol in Model 6 (p = 0.006, 
Table 3). However, although heterozygous-APOE ε4 car-
riers had a higher MCF, the association was not signifi-
cant for homozygous-APOE ε4 carriers (Table 5).

In addition, APOE ε4 carriers had a 2% higher longi-
tudinal PDSR (95% CI 0–3%, p = 0.045), which persisted 
after adjusting for CVD and diabetes, but was attenuated 
to 0% in Model 2 and to 1% after adjusting for diabetes 



Page 6 of 17Topriceanu et al. BMC Cardiovascular Disorders          (2024) 24:172 

Table 1  General characteristics of study participants

Participants were included in the study if they had the apolipoprotein APOE ε genotype and at least one echocardiographic parameter available

−/−, no APOE ε4 carriage; +/−, heterozygous APOE ε4 carriage; +/+, homozygous; ALSPPAC, Avon Longitudinal Study of Parents and Children; APOE ε4 carriage; APOE, 
apolipoprotein E, BMI, body mass index; CVD, cardiovascular disease; Echo, echocardiography; EF, ejection fraction; IQR, interquartile, IVSs/d, interventricular septal thickness 
in systole/diastole; LVmassi, left ventricular mass indexed to body surface area, LVPWTs/d left ventricular posterior wall thickness in systole/diastole; MCFi, myocardial 
contraction fraction; N/A, not applicable; NSHD, National Survey of Health and Development; L/RPDSR, longitudinal/radial peak diastolic strain rate; SABRE, Southall and Brent 
Revisited

NSHD SABRE UK Biobank ALSPAC

Variable Count (%), n = 1467 Count (%), n = 1187 Cohort (%), n = 32,972 Cohort (%), n = 1397

Exposure: APOE ε4 geno-
type

ε2ε2 8 (0.55%) 6 (0.51%) 178 (0.54%) 12 (0.86%)

ε2ε3 169 (11.54%) 130 (11.95%) 4046 (12.27%) 200 (14.32%)

ε2ε4 44 (3.00%) 27 (2.28%) 773 (2.34%) 35 (2.50%)

ε3ε3 855 (57.36%) 726 (61.16%) 19,587 (59.41%) 801 (57.34%)

ε3ε4 343 (23.41%) 269 (22.66%) 7647 (23.19%) 322 (23.05%)

ε4ε4 46 (3.14%) 29 (2.44%) 741 (2.25%) 27 (1.93%)

Echo at 60–64 years APOE ε4 status Median (IQR) Median (IQR) Median (IQR) Median (IQR)

EF −/− 65.06 (60.02, 69.27) 62.17 (55.81, 68.51) 59.75 (55.84, 63.69) 65.77 (61.67, 69.29)

+/− 64.73 (59.33, 69.43) 63.05 (57.66, 69.74) 59.64 (55.85, 63/66) 65.61 (60.90, 69.47)

+/+ 66.68 (61.94, 69.34) 62.07 (56.71, 67.73) 60.10 (56.37, 63.95) 65.26 (62.57, 67.21)

E/e’ −/− 7.72 (6.51, 9.20) 8.12 (7.11, 10.78) N/A 5.42 (4.69, 6.20)

+/− 7.52 (6.30, 8.87) 8.91 (7.51, 10.53) N/A 5.43 (4.71, 6.19)

+/+ 7.18 (6.07, 8.37) 8.35 (6.73, 9.86) N/A 5.16 (4.47, 5.55)

LPDSR −/− N/A N/A 1.59 (1.23, 2.00) N/A

+/− N/A N/A 1.61 (1.25, 2.01) N/A

+/+ N/A N/A 1.62 (1.27, 2.00) N/A

RPDSR −/− N/A N/A −5.70 (−7.03, −4.38) N/A

+/− N/A N/A −5.77 (−7.05, −4.43) N/A

+/+ N/A N/A −5.71 (−7.05, − 4.43) N/A

LVmass −/− 108.89 (92.86, 131.80) 93.38 (79.59, 107.72) 82.71 (68.41, 100.79) 123.90 (105.44, 150.22)

+/− 108.38 (87.62, 137.70) 93.75 (80.83, 109.64) 82.53 (68.51, 100.49) 123.4 (102.7, 148.7)

+/+ 113.25 (98.08, 127.13) 91.24 (80.83, 109.2) 81.69 (68.78, 100.88) 132.65 (015.95, 162.72)

MCF −/− 0.47 (0.37, 0.59) 0.58 (0.49, 0.70) 1.07 (0.95, 1.21) 0.45 (0.39, 0.51)

+/− 0.51 (0.39, 0.65) 0.60 (0.50, 0.71) 1.08 (0.95, 1.22) 0.46 (0.40,0.52)

+/+ 0.53 (0.42, 0.60) 0.62 (0.55, 0.68) 1.09 (0.97, 1.23) 0.45 (0.38, 0.50)

LVPWTs −/− 1.57 (1.40, 1.74) 1.48 (1.35, 1.62) N/A 1.32 (1.23, 1.44)

+/− 1.58 (1.42, 1.80) 1.45 (1.32, 1.59) N/A 1.32 (1.22, 1.43)

+/+ 1.60 (1.47, 1.74) 1.39 (1.26, 1.60) N/A 1.33 (1.24, 1.48)

LVPWTd −/− 0.98 (0.87, 1.09) 1.02 (0.92, 1.13) 5.65 (5.14, 6.21) 0.86 (0.79, 0.95)

+/− 0.98 (0.88, 1.10) 1.01 (0.91, 1.12) 5.64 (5.15, 6.23) 0.85 (0.78, 0.93)

+/+ 0.96 (0.87, 1.04) 0.98 (0.90, 1.10) 5.67 (5.17, 6.26) 0.85 (0.78, 0.94)

IVSs −/− 1.50 (1.34, 1.68) 1.58 (1.42, 1.74) N/A 1.17 (1.07, 1.30)

+/− 1.51 (1.35, 1.69) 1.57 (1.40, 1.76) N/A 1.17 (1.07, 1.28)

+/+ 1.50 (1.36, 1.64) 1.51 (1.44, 1.70) N/A 1.15 (1.04, 1.29)

IVSd −/− 1.04 (0.91, 1.18) 1.15 (1.03, 1.30) 5.59 (4.98, 6.13) 0.83 (0.75, 0.92)

+/− 1.04 (0.90, 1.18) 1.14 (1.01, 1.29) 5.58 (4.98, 6.12) 0.82 (0.74, 0.90)

+/+ 1.09 (0.93, 1.15) 1.09 (1.04, 1.21) 5.58 (4.97, 6.12) 0.84 (0.76, 0.92)

Covariates Count (%) or Median (IQR) Count (%) or Median (IQR) Count (%) or Median (IQR) Count (%) or Median (IQR)

Age 62 (0) 52.08 (7.27) 63.63 (7.57) 20.5 (0)

Sex, male 708 (48.32%) 911 (76.75%) 15,750 (47.77%) 581 (41.59%)

BMI 26.94 (24.49, 30.22) 27.00 (24.35, 29.90) 25.84 (23.46, 28.77) 22.96 (20.73, 25.60)

CVD, Yes 875 (8.72%) 232 (19.55%) 2153 (6.53%) 0 (0%)

Diabetes, Yes 321 (21.88%) 256 (21.57%) 1991 (6.04%) 8 (0.57%)

High cholesterol, Yes 282 (19.22%) 235 (19.80%) 6145 (18.64%) 60 (5.16%)

Hypertension 719 (50.65%) 700 (58.98%) 9106 (27.62%) 64 (5.72%)
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(Model 5). Conversely, they had a 5% lower radial PDSR 
(95% CI 0.90–1.00, p = 0.05) which behaved similar to 
longitudinal PDSR on adjustment (Table 6).

The associations between ε4 carriage and MCF, radial 
and longitudinal PDSR persisted at an FDR of 0.15 in the 
UK Biobank.

Discussion
Data from 37,000 young and older British persons show 
that APOE ε4 carriage associates with slightly advanta-
geous myocardial performance manifesting as higher MCF 
and longitudinal strain rates, but slightly lower radial strain 
rates. A graphical abstract of this work is presented in Fig. 2.

Fig. 2  Graphical abstract. Combining data from four British cohorts–1946 National Survey of Health and Development (NSHD), Southall and Brent 
Revised (SABRE), UK Biobank and Avalon Longitudinal Study of Parents and Children (ALSPAC)–we explored whether APOE ε4 carriage associates 
with beneficial or unfavorable left ventricular (LV) structural and functional parameters by echocardiography and cardiovascular magnetic 
resonance (CMR). Based on the presence of APOE ε4, genotypes were divided into: APOE ε4 (ε2ε4, ε3ε4, ε4ε4) and non-APOE ε4 carriers. Compared 
to the non-APOE ε4 group, APOE ε4 carriers had a higher myocardial contraction fraction resulting in greater LV stroke volume generation per 1 mL 
of myocardium and better longitudinal strain rates compared to non APOE ε4 carriers
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APOE ε4 might be another example of antagonistic 
pleiotropy [6] as ε4 carriage appears to be both beneficial 
(e.g., fertility and resistance to infections [7]) and detri-
mental (e.g., Alzheimer’s disease) to human health. The 
occurrence of the latter further down the fertility time-
line in older age might explain the allele’s persistence in 
spite of natural selection.

In terms of cardiovascular health, APOE ε4 carriage 
was previously associated with CVD (IHD [14] and 
myocardial infarction [36]) and CVD risk factors (such 
as hypertension [12] and diabetes [13]). Although the 
exact mechanism is yet to be elucidated, it is postulated 
that APOE ε4 might contribute to the development of 
metabolic syndrome [37]. APOE ε4 differs from APOE 
ε3 at amino acid position 112 where arginine (positively 
charged side chain) is present instead of cysteine (non-
polar side chain). Given its ability to bind to peripheral 
and hepatic lipoprotein receptors, it is plausible for the 
APOE ε isoforms to have different binding affinities 
explaining the link with dyslipidemia [14]. However, 
emerging evidence points to more a complex mechanism 
as APOE ε can also alter the levels of APOB [38] which is 
itself also associated with CVD [39]. In addition, APOE 
ε is mainly produced by the liver, but can also be synthe-
sized in and regulate the activity of adipocytes [40] which 
might explain the relationship between APOE ε4 and 
insulin resistance [37, 41].

Here we show that APOE ε4 carriage appears to associ-
ate with a higher MCF. The MCF is a volumetric index 
of LV myocardial shortening which captures maladaptive 
myocardial hypertrophy otherwise missed by conven-
tional biomarkers such as EF, mass, and wall thickness, 
as it considers the relationship between LVmass and SV 
[42]. It has been previously associated with CV morbidity 
and mortality independent of conventional risk factors 
[43]. In addition, it is regarded as a highly-sensitive met-
ric of systolic function, and low values have been linked 
to negative outcomes even in the presence of apparently 
normal LV EF [44] indicating its strength as a subclinical 
disease marker. Interestingly, MCF was higher in CMR 
compared to echocardiography since the later underesti-
mates LV volumes such as stroke volume [45]. A higher 
MCF in the context of APOE ε4 carriage might mean a 
slightly advantageous cardiac phenotype in terms of 
heart function. Dissociable effects of APOE ε4 carriage 
have been previously reported in the context of better 
attention despite the higher risk of Alzheimer’s disease 
[10]. Although the literature is sparse, APOE ε4 carriage 
has been previously linked to higher levels of androgens 
[46] or dysregulated glucose and ketone metabolism [7] 
which could putatively increase myocardial contractil-
ity leading to a higher stroke volume per unit of LV mass 
which is being captured by the MCF [47].

Importantly, we found a dose response relationship 
for MCF based on the number of ε4 alleles carried by an 
individual in the UK Biobank (n = 32,972) using CMR 
data. This finding aligns with biological plausibility sug-
gesting that there is a consistent relationship between ε4 
and higher MCF. However, this dose effect relationship 
was not apparent in ALSPAC, NSHD or SABRE which is 
likely because these studies were underpowered. Indeed, 
the number of homozygous ε4 carriers were n = 27 for 
ALSPAC, n = 46 for NSHD and n = 29 for SABRE com-
pared to n = 741 in the UK Biobank. Another explana-
tion is that healthier APOE ε4 carriers may have been 
more likely to survive and/or to participate in the older 
age cohort studies resulting in selection bias. This would 
fit with the known effects of APOE ε4 carriage on IHD, 
HT, lipids, and cognitive function. Previous studies have 
described cognitive advantages in heterozygotes that 
were not replicated in the homozygotes [48] potentially 
mirroring some of our data.

Indeed, APOE ε4 carriage was associated with a 
greater longitudinal and lower radial strain both of 
which are markers of a positive cardiac phenotype. This 
suggests that different myocardial contraction dynam-
ics might be contributing to the observed association 
with MCF (Fig. 3). The observed trend linking APOE ε4 
carriage with slightly better echocardiographic LV fill-
ing pressures (lower E/e’ may suggest less ventricular 
stiffness in some but not all cases [49]), albeit attenu-
ated in multivariable models, lends plausibility to this 
theory. The CMR analyses indicated a slight associa-
tion between APOE ε4 carriage and thinner ventricu-
lar walls, and similarly the echocardiographic analyses 
found no association between APOE ε4 carriage and LV 
hypertrophy biomarkers (LVPWTs/d, IVSs/d, LVmass). 
Moreover, ε4 carriage had a higher SV only in SABRE 
and NSHD but not in ALSPAC or UK Biobank. MCF 
is a dimensionless metric as the SV is divided by the 
myocardial volume meaning that size related contribu-
tions to these metrics cancel out. Whilst a higher SV 
may partly drive the larger MCF, it is the SV per 1 ml of 
myocardium which is improved.

Interestingly, the effect sizes capturing the association 
APOE ε4 and MCF were higher after adjusting for high 
cholesterol. In addition to being a precursor for andro-
gens higher level of which were observed in ε4 carriers 
and which can promote contractility [46], high choles-
terol in order age was linked to increased longevity due to 
lower mortality from cancer and infection [50]. However, 
since a higher MCF was also observed in ASLPAC in 
< 24 years individuals, the benefit is not restricted to the 
elderly. These data collectively suggest that the observed 
MCF enhancement is not mediated by pathological ven-
tricular thickening but through improved myocardial 
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energetics and contractility, with calcium potentially 
implicated [46, 47]. Since the models were attenuated 
after adjusting for CVD, diabetes and hypertension, the 
benefits which stem from ε4 carriage are reduced as an 
individual starts to develop APOE ε4 related negative 
outcomes.

The effect size of the association between APOE ε4 
carriage and MCF was < 5% across all cohorts. Indeed, 
genome wide association studies (GWASs) highlighted 
that individual gene effects on cardiac phenotypes are 
usually small [51–53]. Indeed, polygenic scores which are 
calculated as weighted sums of SNPs may provide a more 
meaningful estimate of an individual’s genetic liability to 
cardiac disease [54].

The main strength of our study is that we were able 
to replicate the findings in four independent cohorts 
encompassing 37,000 individuals, across two imag-
ing modalities (echocardiography and CMR) suggest-
ing that there is an advantageous phenotype in terms 
of MCF in ε4 carriers. In addition, as the MRC NSHD 
and ALSPAC are birth cohorts, the participants were 
implicitly age-matched across all the analyses, exposed 
to similar epoch-related risk factors and had access to 

similar treatment facilities across the decades. Since 
NSHD, SABRE and UK Biobank are longitudinal 
cohorts in which timing of genotyping and imaging 
were not necessarily contemporaneous, selective fol-
low-up may have potentially excluded homozygous or 
heterozygous individuals who already passed away with 
the worst cardiac phenotypes. However, we managed 
to replicate our findings in a young cohort (< 24 years) 
which lends credence to the notion that ε4 carriage 
associates with an improved cardiac phenotype in 
terms of MCF. Although most study participants were 
unrelated, family ties do exist and not controlling them 
is a limitation of this study.

Conclusion
APOE ε4 carriage associates with improved myocardial 
performance from adolescence to older age resulting in 
greater LV stroke volume generation per 1 mL of myo-
cardium and better longitudinal strain rates compared 
to non APOE ε4 carriers. This potentially favorable car-
diac phenotype adds to the growing number of reported 
survival advantages attributed to APOE ε4 carriage that 
might collectively explain its persistence in humans.

Fig. 3  Directed acyclic graph highlighting potential mechanism underpinning the association between APOE ε4 and MCF. APOE ε4 carriers had 
a better strain profile characterized by higher absolute (i.e., better) longitudinal and radial PDSRs using CMR in the UK Biobank. In addition, ε4 
carriers had a slightly lower E/e’ (in ALSPAC and NSHD) and LVmass (in SABRE and UK Biobank) albeit not statistically significant. In the literature, 
ε4 has been linked to a higher level of androgens which can increase myocardial calcium and ε4 has also been linked to pro-catabolic glucose 
and ketone metabolism. Thus, we postulate that enhanced myocardial dynamics, contractility, and energetics rather than pathological hypertrophy 
mediate this association
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