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Abstract
Background Previous models for predicting delirium after cardiac surgery remained inadequate. This study aimed 
to develop and validate a machine learning-based prediction model for postoperative delirium (POD) in cardiac valve 
surgery patients.

Methods The electronic medical information of the cardiac surgical intensive care unit (CSICU) was extracted from a 
tertiary and major referral hospital in southern China over 1 year, from June 2019 to June 2020. A total of 507 patients 
admitted to the CSICU after cardiac valve surgery were included in this study. Seven classical machine learning 
algorithms (Random Forest Classifier, Logistic Regression, Support Vector Machine Classifier, K-nearest Neighbors 
Classifier, Gaussian Naive Bayes, Gradient Boosting Decision Tree, and Perceptron.) were used to develop delirium 
prediction models under full (q = 31) and selected (q = 19) feature sets, respectively.

Result The Random Forest classifier performs exceptionally well in both feature datasets, with an Area Under the 
Curve (AUC) of 0.92 for the full feature dataset and an AUC of 0.86 for the selected feature dataset. Additionally, it 
achieves a relatively lower Expected Calibration Error (ECE) and the highest Average Precision (AP), with an AP of 0.80 
for the full feature dataset and an AP of 0.73 for the selected feature dataset. To further evaluate the best-performing 
Random Forest classifier, SHAP (Shapley Additive Explanations) was used, and the importance matrix plot, scatter 
plots, and summary plots were generated.

Conclusions We established machine learning-based prediction models to predict POD in patients undergoing 
cardiac valve surgery. The random forest model has the best predictive performance in prediction and can help 
improve the prognosis of patients with POD.
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Introduction
Postoperative delirium (POD) is a series of acute and 
paroxysmal neurocognitive disorders after cardiac sur-
gery. Symptoms include inattention, disorganized think-
ing, and altered states of consciousness, which are not 
attributable to other known psychiatric conditions or 
neurological disorders [1–3]. In addition, POD occurs 
in three forms: hyperactive, hypoactive, and mixed delir-
ium, which are often difficult to diagnose. The pathogen-
esis of POD remains unclear, and there are currently no 
effective diagnostic tools available to distinguish between 
ordinary agitation and POD. POD has been associated 
with increased mortality, prolonged hospitalization, 
long-term cognitive dysfunction, impaired quality of life, 
and increased healthcare costs [4–7]. As a result, health-
care providers and policymakers have recommended that 
POD prediction models be used at various stages of the 
clinical pathway to support decision-making [8].

Although ICU clinicians have focused on delirium 
in patients after cardiac surgery with cardiopulmonary 
bypass (CPB) as a unique contributor to neurocognitive 
dysfunction [6, 9, 10], current studies of prediction mod-
els often lump all cardiac surgeries together, ignoring the 
potential influence of cardiac disease and surgical modal-
ities on the onset of delirium. This study focused mainly 
on the occurrence of delirium in VHD patients after car-
diac surgery with CPB, as the number of such surgeries 
has increased over the past decades. Valve replacement 
or repair is the first option for VHD [11]. Early diagnosis 
methods have been developed to facilitate earlier valve 
replacement or repair in VHD patients. The increasing 
number of surgeries associated with VHD is attributed 
to its increasing incidence due to the aging population 
worldwide [12, 13]. Advanced age has been identified as a 
risk factor for delirium [7, 10, 14], and the prediction and 
management of delirium is particularly significant in the 
VHD surgical population.

An effective POD prediction model can greatly assist 
ICU clinicians in predicting patients at high risk of devel-
oping POD. This information can then be used to create 
better treatment plans and care protocols to help prevent 
the onset of delirium. However, few existing predictive 
models use machine learning algorithms, and many of 
these models have a high risk of bias [14–17]. We aim to 
develop and validate a prediction model using machine 
learning tools that adhere to the standards set by the 
Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
statement: a guideline specifically designed to guide the 

reporting of studies that create or validate multivariable 
prediction models [18].

Materials and methods
Study population
Data on clinical characteristics and outcomes of patients 
with VHD who underwent cardiac valve surgery with 
CPB were collected from the computerized database of 
the CSICU of Guangdong Provincial People’s Hospital. 
The screening process for cases entering the group is 
shown in Fig.  1. Referring to previous studies, we have 
established the following inclusion criteria in this study 
[14, 19–21]: (I) over 18 years of age; (II) definite diagno-
sis of valvular heart disease; (III) admission to the CSICU 
after cardiac valve surgery with CPB; (IV) no history of 
schizophrenia, psychosis, or neurodevelopmental mal-
formations; (V) no diagnosis of blindness, deafness, or 
drug abuse or withdrawal; (VI) not in a terminal con-
dition with an ICU stay more than 48  h; (VII) delirium 
as assessed by trained paramedics using the Confusion 
Assessment Method for the ICU (CAM-ICU) and the 
Richmond Assessment Sedation Scale (RASS) score of − 3 
to + 4; (VIII) no reoperation during the follow-up period; 
and (IX) clinical records completed at least 90%. Our 
study comprehensively addresses the ethical, legal, and 
regulatory norms and standards for conducting research 
involving clinical data in China, including relevant inter-
national norms and standards. Throughout the data col-
lection phase, strict measures are implemented to protect 
privacy, ensuring that all information is anonymized.

Selected variables
This study identified three categories (preoperative, 
intraoperative, and postoperative) and 31 potential risk 
factors for delirium based on previous research and the 
availability of clinical records in our electronic database. 
They include demographic characteristics, lifestyle fac-
tors, cognitive function, physical function, social-psycho-
logical factors, sensory function, pre-existing diseases, 
surgical information, and postoperative laboratory test 
indicators [22]. Our sample size meets the events per 
variable (EPV) criteria, which ensures the reliability and 
effectiveness of statistical analysis [23].

In addition to the full feature set with 31 potential risk 
factors, we have also identified a simple feature set con-
sisting of 19 predictor variables. These variables have 
a lower likelihood of missing data and exhibit a strong 
correlation with delirium. They are referred to as the 
selected feature set. The selection of features in the sim-
ple set was based on existing literature and ease of data 
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collection, aiming to provide valuable insights for clini-
cians in making clinical judgments when examination 
results are insufficient. The process of selecting features 
was conducted meticulously, involving a thorough review 
by a panel of experts in the fields of cardiac surgery, delir-
ium, anesthesiology, neurology, cardiopulmonary bypass, 
postoperative management, and nursing. This iterative 
process ensured that the chosen features were relevant 
and reliable. All analyses were performed using two sets 
of features: the selected feature set (consisting of 19 fea-
tures) and the full feature set (consisting of 31 features), 
which overlapped to some extent.

Assessment of delirium
POD is a series of acute and fluctuating cognitive distur-
bances that commonly occur between postoperative days 
2 and 5 after open-heart surgery [24]. Delirium assess-
ment was performed twice daily by different paramedics 
in the CSICU for up to 7 days until a positive assessment 
result was obtained. Conversely, no change in mental 
state within seven days was considered a negative result. 

Patients who left the CSICU before the 7th day were 
assessed by trained paramedics in the wards.

First, the Richmond Assessment Sedation Scale 
(RASS score) was used to assess the sedation level of 
our patients. As previously described, patients with an 
RASS score of -4 (defined as comatose) or -5 (indicating 
no physical/verbal response) were excluded because they 
could not be screened using the Confusion Assessment 
Method (CAM) [21, 25]. After initial screening, delirium 
was assessed using the Confusion Assessment Method 
(CAM), the most widely used standardized bedside diag-
nostic tool, which has been shown in previous studies 
to be highly sensitive (94–100%) and specific (90–95%) 
[26, 27]. Patients were defined as positive when the fol-
lowing required diagnostic components were present: (1) 
an acute change in mental status over some time; (2) a 
decrease in concentration; (3) a change in level of con-
sciousness; and (4) confusion in thinking structure. As 
long as the patient had either feature 1 and 2 or feature 
3 and 4, the diagnosis of delirium was definitive [27, 28].

Fig. 1 The screening process for patient enrollment in this study

 



Page 4 of 16Li et al. BMC Cardiovascular Disorders           (2024) 24:56 

Machine learning algorithms and analysis
A total of 507 patients who met our inclusion criteria 
were analyzed retrospectively. All computations and 
analyses were performed using Python version (3.12.0) 
and databases in Python such as pandas [29], numpy 
[30], random [31], seaborn [32], matplotlib [32], and 
sklearn [33], were applied. The features we selected are 
the information categories that must be recorded in the 
admission medical records and the routine monitoring 
items after entering the cardiac surgery ICU. To ensure 
the completeness of the data, we removed patients with 
a high proportion of missing data. The overall data miss-
ing rate is 0.18%. Among all variables, the height feature 
has the highest missing rate, accounting for 0.10% of the 
total sample size (Patients admitted to wheelchairs or 
stretchers often have missing data). For most of the miss-
ing data, we used the mode-filling method for processing. 
For the height and weight features, which have obvious 
differences between males and females, we calculated the 
mean weight for different genders and filled in the miss-
ing values according to the patient’s gender [34].

We employ the StratifiedShuffleSplit method to parti-
tion the dataset into two segments, a training set (80%, 
N = 405) and a validation set (20%, N = 103). The stratified 
sampling technique guarantees that the distribution of 
classes in both the training and test sets closely resembles 
that of the entire dataset [14, 35]. The random seed is set 
to 1 to ensure the reproducibility of the results. Normal-
ization is carried out to eliminate variations in feature 
values, thereby improving the stability and dependability 
of the model. To ensure data privacy and prevent infor-
mation leakage, a clear separation between the train-
ing and test sets is established before normalization. By 
employing the statistical properties derived solely from 
the training set, normalization is performed on the train-
ing set. Subsequently, the same transformation approach 
is applied to normalize the test set, ensuring consistent 
treatment across both datasets [36].

We applied several supervised machine learning meth-
ods to both the full and selected feature sets to con-
struct predictive models of delirium, Specifically, we 
utilized classical machine learning algorithms commonly 
employed for classification problems, including Random 
Forest Classifier [37], Logistic Regression [38, 39], Sup-
port Vector Machine Classifier (SVC) [40], K-nearest 
Neighbors Classifier [41], Gaussian Naive Bayes [42], 
Gradient Boosting Decision Tree [43] and Perceptron 
[44]. The selection of these algorithms was determined by 
factors such as the sample size and number of features.

To better evaluate the model’s performance, we gener-
ated confusion matrices for each model on the training 
and testing sets. From these matrices, we calculated the 
accuracy (ACC), precision, recall, and F1-score for the 
full feature and selected feature datasets. Additionally, 

we used bootstrap sampling to estimate the area under 
the curve (AUC) and average precision (AP), along with 
their confidence intervals, for both the training and test-
ing sets. This approach provided further insight into the 
stability and reliability of the models.

To enhance the interpretability of the machine learning 
model predictions and understand the relative impor-
tance of features in predicting outcomes, we used SHAP 
(Shapley Additive Explanations). Based on the Shapley 
value concept in cooperative game theory, this method 
allowed us to assess the contribution of each feature to 
the prediction results, and to identify any interactions 
between features. Furthermore, SHAP enabled us to 
explain individual sample behavior and overall model 
performance [45]. To quantitatively measure the cali-
bration performance of a classification model, we uti-
lize a metric called Expected Calibration Error (ECE). 
ECE calculates the average difference between predicted 
probabilities and the corresponding empirical probabili-
ties, indicating the model’s calibration. By computing the 
ECE, we obtain a numerical value that represents the 
model’s calibration, enabling us to gain a better under-
standing and explanation of the model’s predictive qual-
ity [46].

RESULT
Participants characteristics
A brief description of the overall steps of this study is 
provided in Fig.  1. A total of 507 patients who met all 
inclusion criteria were enrolled between 30th June 2019 
and 30th June 2020. According to the grouping methods 
employed in previous research, the enrolled cases were 
randomly allocated into a training group (80%, N = 405) 
and a validation group (20%, N = 103) [14]. Table  1 dis-
plays the baseline data for both the full feature set and the 
selected feature set. Continuous variables are presented 
as mean and standard deviation (SD), while categorical 
variables are presented as percentages.

The incidence of delirium, which reached up to 28% in 
our study, suggested that an accurate predictive model 
for patients with VHD was essential. As for the assess-
ment of educational attainment, we developed a scoring 
scheme by converting multi-categorical variables into 
continuous variables. According to our admission scor-
ing system, the educational level of patients was divided 
into three categories: junior high school education and 
below (score as 0); high school education or undergradu-
ate degree (score as 1); postgraduate degree and above 
(score as 2). The average education score of the over-
all samples was 0.5, indicating a low level of education 
among our participants. Some researchers considered 
low educational level as a risk factor for the development 
of delirium due to the lack of mental training activities 
and insufficient cognitive reserve [47, 48].



Page 5 of 16Li et al. BMC Cardiovascular Disorders           (2024) 24:56 

The goal of this study is to predict the risk of develop-
ing delirium within 24 h of admission to the CSICU and 
to take preventive measures in the early stages of the dis-
ease. Referring to the diagnostic and treatment practices 
for postoperative admission to the CSICU, the laboratory 
test results of patients are obtained within 24 h of admis-
sion. The earliest results within 24 h are used for machine 
learning and model training purposes. In addition to the 
conventional indicators of postoperative laboratory tests, 
the postoperative use of IABP/ECMO within the delir-
ium assessment period was also included in this study. 

IABP/ECMO is associated with hemodynamic instability 
and internal environmental disturbances, which may lead 
to the development of delirium [49–51]. In this study, we 
included the pain score assessed by the Digital Evaluation 
Scale (NRS) as a predictor of delirium outcome [52].

Model performance
We utilized the following machine learning methods 
to develop prediction models for POD in patients with 
VHD, respectively using full variables and selected vari-
ables as input features: Random Forest Classifier [37], 

Table 1 Patient Characteristics (Preoperative, Intraoperative, and Postoperative)
Patient characteristic Total 

sampl(N = 507)
Full Feature Set (q = 31) Selected Feature Set (q = 31) Units
Training 
data(N = 405)

Test 
data(N = 102)

Training 
data(N = 405)

Test 
data(N = 102)

Delirium ( N (%) ) 141 (28%) 113 (28%) 28(27%) 112 (28%) 29(28%)

Preoperative information
Female Sex ( N (%) ) 300 (59%) 235 (58%) 65(63%) 235 (58%) 65(63%)

Education score (mean (SD)* 0.5 (0.8) 0.5 (0.8) 0.5 (0.7) 0.5 (0.8) 0.5 (0.7) Point

Age (mean (SD)) 55.7 (13.5) 55.4 (13.6) 56.7 (13.0) 55.4 (13.7) 56.7 (13.0) Years

Height (mean (SD)) 157.1 (29.6) 156.9 (29.8) 157.5 (28.8) 157.0 (29.8) 157.5 (28.8) Cm

Weight (mean (SD)) 58.2 (11.3) 58.0 (11.1) 58.7 (11.7) 58.0 (11.1) 58.7 (11.7) Kg

Alcohol abuse ( N (%) ) 29 (6%) 20 (5%) 9(9%) 20 (5%) 9(9%)

Smoke abuse ( N (%) ) 84 (17%) 66 (16%) 18 (18%) 66 (16%) 18 (18%)

Coronary heart disease ( N (%) ) 34 (7%) 29 (7%) 5 (5%)

Cerebral infarction ( N (%) ) 33 (7%) 21(5%) 5(5%)

Diabetes ( N (%) ) 29 (6%) 21 (5%) 8 (8%)

Hypertension ( N (%) ) 87 (17%) 71 (15%) 16 (16%)

LVEF (mean (SD) 58.7 (10.7) 58.8 (11.9) 57.6 (12.8) 58.9 (10.1) 57.6 (12.8) %

Intraoperative information
CPB duration (mean (SD)) 157.3 (73.5) 158.3 (71.0) 153.1 (82.5) 158.3 (71.0) 153.1 (82.5) Min

ACC duration (mean (SD)) 97.9 (44.1) 97.6 (43.0) 96.7 (48.3) 98.2 (43.0) 96.7 (48.3) Min

Anesthesia duration (mean (SD)) 258.6 (100.5) 260.7 (101.6) 250.2 (96.3) Min

Postoperative information
IABP employ ( N (%) ) 66 (13%) 51 (13%) 15 (15%) 51 (13%) 15 (15%)

ECMO employ ( N (%) ) 39 (8%) 30 (7%) 6 (6%)

WBC (mean (SD)) 14.1 (5.7) 14.2(5.9) 13.7 (5.0) 109/L

NEUT (mean (SD)) 11.7 (5.1) 11.8(5.3) 11.4 (4.5) 109/L

LY (mean (SD)) 1.4 (0.9) 1.4 (1.0) 1.4 (0.9) 1.4 (1.0) 1.4 (0.9) 109/L

BUN (mean (SD)) 8.7 (4.9) 8.6 (5.0) 8.7 (4.2) 8.8 (5.0) 8.7 (4.2) mmol/L

TBLL (mean (SD)) 25.3 (20.9) 24.9 (21.3) 24.0 (19.1) 25.6 (21.2) 24.0 (19.1) mmol/L

Serum creatinine (mean (SD)) 106.4 (92.4) 108.6 (99.9) 97.3 (52.2) 108.6 (99.9) 97.3 (52.2) umol/L

Serum albumin (mean (SD)) 35.4 (22.6) 35.7(25.0) 33.7(6.8) 35.8(25.0) 33.7(6.8) g/L

PH (mean (SD)) 7.3 (0.8) 7.3 (0.7) 7.3 (1.0) 7.3 (0.7) 7.3 (1.0)

PaCO2 (mean (SD)) 38.5 (15.1) 38.5 (16.3) 38.0 (8.6) 38.6 (16.3) 38.0 (8.6) mmHg

PaO2 (mean (SD)) 249.0 (102.9) 249.8 (102.8) 245.5 (103.5) mmHg

Na (mean (SD)) 139.1 (18.9) 139.58 (18.7) 134.4 (20.0) mmol/L

K (mean (SD)) 3.9 (0.7) 3.9 (0.7) 3.9 (0.7) mmol/L

Glu (mean (SD)) 9.1 (3.7) 9.1 (3.6) 8.9 (3.9) mmol/L

Pain score (mean (SD))* 2.2 (0.9) 2.2 (0.9) 2.2 (1.0) 9.1 (3.6) 8.9 (3.9) point
Data are presented as mean and standard deviation (SD) for continuous variables and as percentages for dichotomous variables. LVEF left ventricular ejection 
fraction, CPB Cardiopulmonary Bypass, ACC aortic cross-clamping, IABP Intra-Aortic Balloon Pump, ECMO Extracorporeal Membrane Oxygenation, WBC White 
Blood Cell Count, NEUT Neutrophils Count, LY Lymphocytes Count, BUN Blood Urea Nitrogen, TBLL Total Bilirubin

*Education score, range 0–2. Lower scores indicate lower educational attainment levels

*Pain score, range 0–10. Higher scores indicate greater pain levels
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Logistic Regression [38, 39], SVC [40], K-nearest Neigh-
bors Classifier [41], Gaussian Naive Bayes [42], Gradient 
Boosting Decision Tree [43] and Perceptron [44]. These 
algorithmic models were then validated in the validation 
group to assess their performance.

To gain a better understanding of the performance of 
the models, we plotted the confusion matrices for each 
model on both the training and testing datasets. The 
confusion matrix based on the full feature data is sum-
marized in Fig. 2A, while the confusion matrix based on 
the selected feature data is summarized in Fig. 2B. In the 
confusion matrix, the top-left element represents true 
positives, the top-right element represents false posi-
tives, the bottom-left element represents false negatives, 
and the bottom-right element represents true negatives. 
Based on the computational results, we obtained the 
accuracy (ACC), Precision, Recall, and F1 score for the 
models using both the full feature and selected feature 
datasets. Additionally, we reported the AUC and AP of 
seven machine learning algorithms based on both the full 
feature and selected feature data. We also reported the 
ECE for each algorithm and summarized the above indi-
cators in Table 2. Our model, based on the full feature set, 
performed well. To further assess its performance across 
different populations, we divided the full feature set into 
five additional test subsets: age ≥ 65, BMI ≤ 18.5, body 

mass index > 28, history of stroke, and history of coronary 
heart disease. These subsets were chosen based on the 
impact of old age [28], physical weakness [53], metabolic 
disorders [54], history of Cerebral infarction [55], and 
history of coronary heart disease [56] on the outcome 
of delirium. To evaluate its calibration performance in 
different scenarios, we separately calculated the model’s 
ECE on each subset and summarized it in Table 3.

AUROC (Area Under the Receiver Operating Charac-
teristic Curve) for prediction models, generated by plot-
ting the true positive rate (TPR) against the false positive 
rate (FPR) at various threshold settings, are shown in 
Fig.  3A (full feature set) and Fig.  3C (selected feature 
set), respectively [57]. The AUC is a metric that ranges 
from 0 to 1, where a value of 1 represents a perfect clas-
sifier and a value of 0.5 suggests random predictions. The 
Random Forest Classifier exhibits excellent performance 
in both feature datasets, with an AUC of 0.92 (95% CI, 
0.91–0.92) for the full feature dataset and an AUC of 
0.86 (95% CI, 0.85–0.88) for the selected feature dataset. 
Similarly, the Gradient Boosting Decision Tree exhibits 
relatively strong predictive performance, with an AUC 
of 0.90 (95% CI, 0.89–0.91) for the full feature dataset 
and an AUC of 0.83 (95% CI, 0.82–0.84) for the selected 
feature dataset. The classical algorithm Logistic Regres-
sion consistently performs well, yielding an AUC of 0.80 

Fig. 2 Comparison of Confusion Matrixs among machine learning models under full feature set (A) and selected feature set (B). The confusion matrix is a 
2 × 2 matrix that contains the following four elements: True Positive (top left of the matrix); False Positive (bottom left of the matrix); True Negative (bottom 
right of the matrix); False Negative (top right of the matrix). Through the analysis of the confusion matrix, we can calculate many performance indicators 
such as accuracy, recall, precision, and F1 score to evaluate the classification performance of the model on different categories
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(95% CI, 0.78–0.82) for the full feature dataset and an 
AUC of 0.76 (95% CI, 0.74–0.77) for the selected feature 
dataset. In contrast, the SVC shows relatively unstable 
performance, with an AUC of 0.83 (95% CI, 0.81–0.84) 
for the full feature dataset and an AUC of 0.64 (95% CI, 
0.62–0.67) for the selected feature dataset. All algorithms 
achieve a higher AUC in the full feature set compared to 
the selected feature set.

The PR-Curve is a graphical representation of the 
precision and recall relationship of a classifier at differ-
ent thresholds, as shown in Fig. 3B (full feature set) and 
Fig.  3D (selected feature set). In the PR-Curve plot, the 
horizontal axis represents the recall, which is the pro-
portion of true positive samples correctly identified by 
the model out of all actual positive samples. The verti-
cal axis represents the precision, which is the proportion 
of true positive samples among the predicted positive 

Table 2 Comparison of Machine Learning Algorithms for Prediction of Delirium in Two Overlapping Feature Sets (Ranking based on 
AUC)
Algorithms Accuracy Precision Recall F1 AUC (95% CI) AP (95% CI) ECE
Full feature set (q = 31)
Random Forest Classifier 0.83 0.80 0.86 0.81 0.92 (0.91–0.92) 0.80 (0.78–0.82) 0.10

Gradient Boosting Deci-
sion Tree

0.84 0.80 0.80 0.80 0.90 (0.89–0.91) 0.79 (0.76–0.81) 0.05

Support Vector Machine 
Classifier

0.83 0.79 0.81 0.80 0.83 (0.81–0.84) 0.68 (0.66–0.71) 0.15

Logistic Regression 0.76 0.71 0.74 0.72 0.80 (0.78–0.82) 0.64 (0.61–0.67) 0.06

Gaussian Naive Bayes 0.76 0.72 0.76 0.73 0.79 (0.77–0.80) 0.57 (0.55–0.59) 0.08

K-nearest Neighbors 
Classifier

0.76 0.74 0.60 0.61 0.78 (0.76–0.80) 0.55 (0.52–0.58) 0.14

Perceptron 0.78 0.73 0.73 0.73 0.77 (0.75–0.78) 0.60 (0.57–0.62) 0.23

Selected feature set 
(q = 19)
Random Forest Classifier 0.78 0.73 0.73 0.73 0.86 (0.85–0.88) 0.73 (0.70–0.75) 0.14

Gradient Boosting Deci-
sion Tree

0.76 0.74 0.60 0.61 0.83 (0.82–0.84) 0.61 (0.59–0.64) 0.13

Logistic Regression 0.83 0.80 0.86 0.81 0.76 (0.74–0.77) 0.61 (0.58–0.63) 0.13

K-nearest Neighbors 
Classifier

0.83 0.79 0.81 0.80 0.72 (0.70–0.74) 0.50 (0.47–0.53) 0.11

Gaussian Naive Bayes 0.76 0.71 0.74 0.72 0.70 (0.68–0.72) 0.50 (0.48–0.53) 0.12

Perceptron 0.76 0.72 0.76 0.73 0.69 (0.67–0.71) 0.50 (0.47–0.54) 0.31

Support Vector Machine 
Classifier

0.84 0.80 0.80 0.80 0.64 (0.62–0.67) 0.52 (0.49–0.55) 0.14

Accuracy= (TP + TN) / (TP + FP + TN + FN) ; Precision = TP / (TP + FP) ; Recall = TP / (TP + FN) ; F1 Score = 2 * (Precision * Recall) / (Precision + Recall) ; TP = true positive ; 
TN = true negative ; FP = false positive ; FN = false negative

AUC is the area under the receiver operating characteristic curve; AP is the average Precision; ECE is the expected Calibration Error

Table 3  ECE in the test dataset and the 5 specific population subsets
ECE Test dataset

(n = 102)
Age ≥ 65
(n = 131)

BMI ≤ 18.5
(n = 64)

BMI>28
(n = 29)

Cerebral 
infarction
(n = 33)

Coronary 
heart 
disease
(n = 34)

Algorithms
Random Forest Classifier 0.10 0.13 0.16 0.14 0.19 0.21

Gradient Boosting Decision Tree 0.05 0.02 0.01 0.07 0.05 0.08

Support Vector Machine Classifier 0.15 0.28 0.30 0.29 0.32 0.21

Logistic Regression 0.06 0.06 0.11 0.13 0.13 0.04

Gaussian Naive Bayes 0.08 0.14 0.13 0.14 0.08 0.21

K-nearest Neighbors Classifier 0.14 0.06 0.04 0.15 0.21 0.24

Perceptron 0.23 0.20 0.17 0.21 0.24 0.14
The test dataset includes all features (n = 102)

Specific population subset 1: Patients aged ≥ 65 (n = 131); Specific population subset 2: Patients with BMI ≤ 18.5 (n = 64); Specific population subset 3: Patients with 
BMI > 28 (n = 29); Specific population subset 4: Patients with a history of cerebral infarction (n = 33); Specific population subset 5: Patients with a history of coronary 
heart disease (n = 34)
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samples. When the threshold is set to 0, it means that 
the model classifies all samples as positive instances. As 
a result, the recall for this model will be 1 because it can 
correctly identify all true positive instances. However, 
since the model classifies all samples as positive, there 
may be some negative instances (true negatives) that are 
falsely classified as positive (false positives). This leads to 
a decrease in precision, which approaches but does not 
exactly equal 0 [58]. From the graphs, it can be observed 
that the PR-Curve curves of the Random Forest Classifier 
for both full feature datasets are closer to the top-right 
corner compared to other curves. The Random For-
est Classifier also achieves the highest AP, 0.80 (95% CI, 
0.78–0.82) in the full feature dataset and 0.73 (95% CI, 
0.70–0.75) for the selected feature dataset. Although the 
PR-Curve curve of the Gradient Boosting Decision Tree 
is similar to that of the Random Forest Classifier for the 
full feature dataset, it exhibits significant fluctuations 

for the selected feature dataset, resulting in a lower AP 
of 0.61 (95% CI, 0.59–0.64). Overall, all models perform 
better in terms of AP on the full feature dataset com-
pared to the selected feature dataset.

Further evaluation of the best-performing Random 
Forest Classifier was carried out using SHAP (Shapley 
Additive Explanations), which is a method for explain-
ing the predictions of machine learning models. Based 
on the Shapley value concept in cooperative game theory, 
it aims to provide a measure of contribution to the pre-
diction result for each feature. SHAP values for specific 
features exceeding zero represent an increased risk of 
POD development [45]. The importance matrix plot of 
the Random Forest Classifier is shown in Fig. 4F (full fea-
ture set) and Fig. 5A (selected feature set). We have also 
generated SHAP scatter plots for the top five ranked fea-
tures in the full feature dataset (Fig. 4A-E) and selected 

Fig. 3 Comparison of AUROCs among machine learning models under full feature set (A) and selected feature set (C). Comparison of PR-Curves among 
machine learning models under full feature set (B) and selected feature set (D). Random Forest Classifier yielded the greatest AUC and AP in both feature 
set
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Fig. 4 Scatter plot of pain score colored by sex (A). Scatter plot of anesthesia duration colored by CPB duration(B). Scatter plot of PH colored by PaCO2 
(C). Scatter plot of TBLL colored by serum albumin (D). Scatter plot of serum creatinine colored by BUN (E). The SHAP importance matrix plots of Random 
Forest Classifier under full feature set (F)
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feature dataset (Fig.  4B-F), and colored them based on 
their potential correlating factors [59].

To determine the features that have the greatest impact 
on the random forest prediction model, we plotted SHAP 
summary plots for two feature datasets. The top 20 fea-
tures in the full feature set (Fig.  5A) and all features in 
the selected feature set (Fig.  5B) are shown in the plot. 
This figure describes the degree of relative importance 
of feature values in the training dataset concerning the 
SHAP value. The higher the SHAP value of a feature, the 
greater the likelihood of delirium occurrence. We also 
summarized the ECE in Table 2 to quantitatively measure 
the calibration performance of the classification models. 
Except for the SVC, the other prediction models showed 
lower ECE values in the full feature set compared to the 
selected feature set.

DISCUSSION
We developed the first machine learning-based predic-
tion model for POD outcomes in patients with VHD. The 
incidence of delirium in VHD patients after valve surgery 

can reach up to 28% (n = 141), necessitating a method to 
predict POD and aid in clinical prevention. Compared 
to previous predictive models for POD after cardiac sur-
gery, this study explicitly focuses on the POD of VHD 
patients in the ICU, taking advantage of the large number 
of valve surgeries performed annually and the presence of 
the CSICU in our hospital. Furthermore, all participants 
underwent elective valve surgery with cardiopulmonary 
bypass [15]. We mainly set a period of seven days to 
assess delirium to increase the rigor, because POD is an 
acute postoperative syndrome that usually develops 2–5 
days after surgery. This differs from the later delirium, 
which may be seen in longer ICU stays, and is often more 
complex in its causes of morbidity and therefore worthy 
of separate discussion. Many previous studies on predic-
tion models either ignore the setting of a prediction time 
point or have problems with the interval between the 
prediction time point and the outcome [24]. We devel-
oped a POD prediction model for VHD patients admit-
ted to the CSICU with valve surgery. The predictive time 
point is set within 24 h of ICU admission, allowing us to 

Fig. 5 The SHAP importance matrix plots of Random Forest Classifier under selected feature set (A). Scatter plot of PaCO2 colored by PH (B). Scatter plot 
of TBLL colored by serum albumin (C). Scatter plot of CPB duration colored by ACC duration (D). Scatter plot of PH colored by serum creatinine (E). Scatter 
plot of Weight colored by Glu (F)
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Fig. 6 The SHAP summary plots of Random Forest Classifier under full feature set (A) and selected feature set (B). The higher the SHAP value of the 
feature, the higher the probability of delirium after surgery. A point is created for each attribution value of each feature of the model for each patient. 
Therefore, a point is assigned to each row of features for a patient. The points are colored based on the corresponding patient’s feature value and vertically 
accumulated to depict density. Red represents higher feature values, and blue represents lower feature values
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perform risk assessment and outcome prediction based 
on preoperative assessments, intraoperative information, 
and postoperative initial laboratory results. Care plans 
and treatments are then adjusted to address the higher 
risk of delirium.

The characteristics of our participants were associated 
with the surgical procedure and the pathogenetic features 
of VHD. For example, our participants were predomi-
nantly female (n = 300, 59%; Table 1), and the average age 
(55.7 years, SD 13.5; Table 1) was below 70 years, as VHD 
is more common in females and middle-aged individuals, 
which differs from other models that do not differenti-
ate the primary disease [15]. The average cardiopulmo-
nary bypass (CPB) duration (157.3 min (SD 73.5; Table 1) 
versus 198.34  min), aortic cross-clamping (ACC) dura-
tion (97.9 min (SD 44.1; Table 1) versus 114.86 min), and 
anesthesia duration (258.6 min (SD 100.5; Table 1) versus 
476.91  min) were much shorter in this study compared 
with the previous POD study in patients with type A aor-
tic dissection (AAD) [60]. The average pain score of 2.2 
points (SD 0.9; Table 1) in this study indicates mild pain 
after surgery. Poor pain management caused by inad-
equate analgesia or excessive sedation may trigger delir-
ium after surgery [61].

Interest in using machine learning algorithms for risk 
assessment and clinical outcome prediction has grown 
due to the advancement of artificial intelligence (AI) soft-
ware and the reliability of AI algorithms. In this study, 
machine learning applications are used to create an 
efficient prediction model (Fig.  1). The Random Forest 
Classifier, a common machine learning technique, out-
performs other current algorithms in terms of accuracy 
and produces an internal estimate of its generalization 
error during training [62]. In this retrospective study, the 
Random Forest Classifier with a full feature set achieved 
an AUC of 0.92 (95% CI, 0.91–0.92; Fig.  3A; Table  2), 
indicating excellent performance in delirium predic-
tion. Even with a simpler feature set, the Random Forest 
Classifier achieved an AUC of 0.86 (95% CI, 0.85–0.88; 
Fig.  3C; Table  2), providing a relatively high predictive 
value, allowing it to be used for initial screening in some 
situations. In addition to achieving a high AUC, the Ran-
dom Forest Classifier also achieved the highest AP, with 
an AP of 0.80 (95% CI, 0.78–0.82; Fig. 3C; Table 2) in the 
full feature dataset and an AP of 0.73 (95% CI, 0.70–0.75; 
Fig.  3D; Table  2) in the selected feature dataset. The 
larger the area under the PR curve (i.e., the greater the 
AP value), the better the performance of the classifica-
tion model, indicating that the model can maintain suf-
ficient accuracy while maintaining a high recall rate. In 
practical applications, it’s common for the predicted 
probabilities of a model to not perfectly align with the 
true observed frequencies, necessitating calibration. The 
ECE of the Random Forest Classifier is relatively small as 

well (0.1 for the full feature set and 0.14 for the selected 
feature set; Table 2), which indicates that the model has 
good consistency between its predicted probabilities and 
the observed outcomes, showcasing excellent potential 
for practical applications. The above indicators all point 
out the outstanding predictive ability of the Random For-
est Classifier. Furthermore, when compared to neural 
networks, a widely utilized method known for its excep-
tional information processing capability, the Random 
Forest Classifier yields satisfactory results with a signifi-
cantly smaller sample size [62]. This makes it a potentially 
exciting alternative for the future.

In the test dataset covering all features, the ECE of the 
Random Forest Classifier model is 0.10. The difference 
in ECE compared to the test dataset is relatively small 
in subsets involving populations aged ≥ 65, BMI ≤ 18.5, 
and body mass index > 28. However, in subsets related 
to populations with a history of stroke and a history of 
coronary heart disease, the difference in ECE is relatively 
large, both exceeding 0.15, indicating a decrease in the 
model’s predictive ability in these specific subsets. Given 
the small sample size in these categories, this may lead to 
inaccurate predictions by the model. Increasing the sam-
ple size in future research could enhance the model’s per-
formance in these subsets. Additionally, we observed that 
the ECE of the Gradient Boosting Decision Tree is very 
low in the test dataset covering all features (0.05), and 
similar in most feature subsets. In contrast, the Percep-
tron algorithm exhibits high ECE in both the validation 
set and the 5 specific population subsets, suggesting rela-
tively poor calibration performance. These insights are 
expected to guide algorithm selection in future related 
research.

The prediction models used depend on the primary 
disease, population characteristics, and type of surgery, 
which may help improve the management and preven-
tion of POD. Refining our delirium prediction models 
is an important part of advancing the field. This study 
explored the combination of machine learning and clini-
cal applications, comparing different classifiers to verify 
that the Random Forest Classifier is a reliable approach 
to building prediction models, potentially providing a 
reference for research with a small sample size.

In this study, we utilized SHAP to analyze the predic-
tion results of the Random Forest Classifier. In our SHAP 
Importance matrix plot, we can observe the ranking of 
importance and specific contribution values for all vari-
ables in the two feature datasets. In the full feature data-
set, the top 5 most important variables that affect the 
model are pain score, anesthesia duration, PH, TBLL, 
and serum creatinine (Fig.  4F). For the selected feature 
dataset, the top 5 most important variables that affect the 
model are serum creatinine, PH, serum albumin, TBLL, 
and ACC duration(Fig. 5A). The SHAP value represents 
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the contribution of a feature to the model’s predicted 
output, and it can be either positive or negative. A posi-
tive SHAP value indicates that the corresponding feature 
positively contributes to increasing the predicted value. 
In other words, when the feature takes a higher value, it 
amplifies the model’s prediction for a certain category or 
numerical value. Conversely, a negative SHAP value indi-
cates that the corresponding feature negatively contrib-
utes to decreasing the predicted value.

We separately plotted scatter plots for the top five 
ranked features in the full feature dataset and selected 
feature datasets and colored them based on their poten-
tial correlating factors. For example, in the scatter plot 
of Painscore (Fig. 4A), the horizontal axis represents the 
value of Painscore for each sample, the vertical axis repre-
sents its SHAP value, and the coloring reflects the gender 
of each sample. Similarly, the horizontal axes of the cor-
responding plots in the other four subfigures represent 
the values of anesthesia duration, PH, TBLL, and serum 
creatinine for each sample (Fig.  4B-E), while the verti-
cal axis represents the SHAP value of each feature, and 
the coloring reflects the values of CPB duration, PaCO2, 
serum albumin, and BUN for each sample (Fig. 4B-F). In 
the five subplots of the selected feature dataset, the hori-
zontal axes represent the values of PaCO2, TBLL, CPB 
duration, PH, and weight of each sample (Fig.  5B-F), 
while the vertical axis represents the SHAP value of each 
feature, and the coloring reflects the values of PH, serum 
albumin, ACC duration, serum creatinine, and blood glu-
cose for each sample (Fig. 5B-E).

In the full feature dataset, features such as Painscore, 
anesthesia duration, PH, TBLL, and serum creatinine 
rank high in the SHAP score, indicating that they have a 
great impact on the model’s predictive results. However, 
the overall SHAP values of the samples did not show a 
significant trend in the scatter plot. This suggests that 
each feature may have certain correlations or interactions 
with multiple other features, causing the impact of a sin-
gle feature on the model output to be offset or masked 
by other features. Therefore, although they contribute 
significantly to the model’s predictive results overall, the 
specific values of these features have a relatively small 
impact on the model’s predictive results in individual 
sample analysis. This also confirms to some extent the 
complexity and multifactorial nature of postoperative 
delirium as a disease.

Finally, we summarized the SHAP summary plots 
of the full feature set (Fig.  6A) and the selected feature 
set (Fig.  6B). SHAP summary plots show the average 
SHAP value of each feature across all samples, provid-
ing an intuitive understanding of the overall patterns. 
They allow us to visually assess how each feature influ-
ences the overall prediction while observing the feature’s 
importance. Each row represents a feature, and the x-axis 

represents the SHAP value. Each point represents a sam-
ple, and the color represents the feature value (red indi-
cates high values, and blue indicates low values).

Through the overall analysis of the images, among the 
top ten features in the full feature set, Pain score, Anes-
thesia duration, TBLL, Serum creatinine, ACC dura-
tion, Na, and PaCO2 show a positive correlation with the 
predicted value, while PH, LY, and Serum albumin show 
a negative correlation  (Fig.  6A). This is consistent with 
previous research findings that inadequate postopera-
tive pain management [61], prolonged anesthesia dura-
tion [63], electrolyte imbalance, metabolic abnormalities 
[64], abnormal liver and kidney function [3], carbon 
dioxide retention [65], monocyte-to-lymphocyte ratio 
(MLR) [66], and decreased serum albumin [67] can all 
contribute to the occurrence of postoperative delirium. 
By comparing the summary plots of the two feature sets 
and considering the previous outcome indicators, it can 
be observed that despite having only 19 features, the 
selected feature set still has meaningful predictive power 
for the outcome. Given its convenience in data collection, 
it can serve as a simple preliminary screening tool and be 
applied in clinical settings.

While clinical caregivers possess extensive bedside 
experience, their workload is often overwhelming. In the 
current medical environment, there is a critical shortage 
of medical personnel, necessitating urgent measures to 
alleviate their burden and allocate resources effectively. 
AI technology, with its powerful learning and computa-
tional capabilities, can play a significant role in addressing 
these challenges. Although there may be challenges dur-
ing the initial implementation stages, continuous adjust-
ments and optimizations of algorithms can enhance the 
efficiency of clinical work. It’s important to note that 
while AI cannot replace experienced clinical caregiv-
ers, it can augment their abilities by improving clinical 
decision-making and operational efficiency, while still 
preserving the indispensable role of skilled healthcare 
professionals at the bedside. Patients will benefit from 
the application of AI technology as it reduces the risk of 
human error caused by excessive clinical workload. Addi-
tionally, healthcare workers will be able to handle POD 
more easily and efficiently, resulting in improved patient 
care. If a patient is identified by an AI method as having 
a potential for POD, their care approach may differ from 
other patients. Clinicians may need to monitor them 
more closely and consider additional interventions to 
prevent or manage POD. This could involve adjusting the 
patient’s medication regimen or providing extra support 
for their mental and emotional well-being. The use of AI 
methods for identifying at-risk patients with POD has 
the potential to improve the quality of care and outcomes 
for these patients, while also enabling clinicians to make 
more informed decisions based on objective data.
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Our study aims to advance AI healthcare by addressing 
the limitations of existing delirium prediction models. 
The algorithm developed in this study specifically tar-
gets patients undergoing valve surgery and incorporates 
routine data collected after admission to the CSICU. 
By integrating this algorithm into our medical informa-
tion system, we can automatically retrieve patient data 
for analysis and conduct risk assessments based on the 
algorithm results. This enables adjustments to be made 
in medication and treatment decisions for high-risk 
patients. With the development of relevant software 
and the updating of ICU monitoring systems with well-
trained prediction models, automatic alerts for delirium 
can be sent to clinicians in real-time, effectively reducing 
their workload.

There are limitations to this study. The sample size lim-
its our choice of machine learning algorithms, and there 
was no external validation. We are considering increasing 
the sample size in future studies and performing exter-
nal validation. The results and model parameters in this 
study will be helpful in our future research and provide a 
reference for similar studies.

CONCLUSION
We developed the first POD prediction approach for 
CSICU-admitted VHD patients, which may be promising 
for automatically alerting ICU staff in the early stages of 
delirium. The Random Forest Classifier performs an AUC 
of 0.92 for the full feature dataset and an AUC of 0.86 for 
the selected feature dataset. Additionally, it achieves a 
relatively lower ECE and the highest AP, with an AP of 
0.80 for the full feature dataset and an AP of 0.73 for the 
selected feature dataset. SHAP (Shapley Additive Expla-
nations) was used to evaluate the Random Forest Clas-
sifier, and the importance matrix plot, scatter plots, and 
summary plots showcasing excellent potential for practi-
cal applications.
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