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Abstract 

Background The purpose of this study was to develop a Nomogram model to identify the risk of all-cause mortality 
during hospitalization in patients with heart failure (HF).

Methods HF patients who had been registered in the Medical Information Mart for Intensive Care (MIMIC) III 
and IV databases were included. The primary outcome was the occurrence of all-cause mortality during hospitali-
zation. Two Logistic Regression models (LR1 and LR2) were developed to predict in-hospital death for HF patients 
from the MIMIC-IV database. The MIMIC-III database were used for model validation. The area under the receiver oper-
ating characteristic curve (AUC) was used to compare the discrimination of each model. Calibration curve was used 
to assess the fit of each developed models. Decision curve analysis (DCA) was used to estimate the net benefit 
of the predictive model.

Results A total of 16,908 HF patients were finally enrolled through screening, of whom 2,283 (13.5%) presented 
with in-hospital death. Totally, 48 variables were included and analyzed in the univariate and multifactorial regression 
analysis. The AUCs for the LR1 and LR2 models in the test cohort were 0.751 (95% CI: 0.735∼0.767) and 0.766 (95% 
CI: 0.751–0.781), respectively. Both LR models performed well in the calibration curve and DCA process. Nomogram 
and online risk assessment system were used as visualization of predictive models.

Conclusion A new risk prediction tool and an online risk assessment system were developed to predict mortality 
in HF patients, which performed well and might be used to guide clinical practice.
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Introduction
Heart failure (HF), a disorder in which systolic or dias-
tolic dysfunction of the heart is attributed to structural 
or functional abnormalities of the heart [1]. HF will be 
the final stage of development of various heart diseases 
[2]. Approximately 40 million people worldwide suf-
fer from HF [3]. Currently, in Europe, the prevalence of 
HF is approximately 3/1000 person-years (all ages) or 
approximately 5/1000 person-years in adults [4, 5]. In 
the United States, more than 5 million people are living 
with HF, and the number continues to increase at a rate 
of 550,000 cases diagnosed each year [6, 7]. At the same 
time, there are about 8.9 million HF patients in China, 
and the prevalence rate of those over 35 years old is 1.3% 
[8]. The prevalence of HF increases with age: from about 
1% in those < 55  years old to > 10% in those 70  years or 
older [9–11]. HF, as part of cardiovascular disease and 
a major public health problem worldwide, is an impor-
tant cause of rising global mortality [12]. The annual 
direct and indirect costs of HF are estimated at $29 bil-
lion due to its high prevalence, poor prognosis, and high 
readmission rates [13]. In clinical practice, simple yet 
effective tools play a key role in predicting future events, 
especially in making decisions about primary preven-
tion and treatment of HF patients. Therefore, effective 
mortality prediction can help doctors formulate more 
scientific treatment plans to prevent its deterioration, 
thereby improving the quality of life and reducing medi-
cal expenses.

The Nomogram is used as a graphical device that inte-
grates predictors to determine the probability of a clinical 
event occurring in a given patient [14]. The Nomogram is 
based on a logistic regression (LR) model that integrates 
multiple clinical predictors and displays these individual 
predictor contribution scores to accurately predict an 
individual patient’s risk of a clinical event, helping clini-
cians to optimize individualized treatment choices and 
assess treatment outcomes [15–21].

The aim of this study was to develop and validate 
robust risk assessment models to predict all-cause mor-
tality during hospitalization in HF patients. And to 
develop Nomogram and develop an online risk assess-
ment system.

Methods
Data source
HF patient data was obtained from the Medical Infor-
mation Marketplace in Intensive Care (MIMIC) III and 
MIMIC-IV databases. MIMIC-III contains data associ-
ated with 53,423 distinct hospital admissions for adult 
patients (aged 16  years or above) admitted to critical 
care units between 2001 and 2012. In addition, it con-
tains data for 7870 neonates admitted between 2001 and 

2008. The data covers 38,597 distinct adult patients and 
49,785 hospital admissions [22]. The MIMIC-IV database 
covers information on all patients at Beth Israel Deacon-
ess Medical Center who recorded 523,740 admissions 
between 2008 and 2019, of which 76,540 were admitted 
to the ICU for admission [23]. Clinical records includ-
ing demographic data, vital signs, laboratory test results, 
microbiological culture results, imaging data, treatment 
regimens, medication records, and survival information 
are recorded in the MIMIC database. Use of the MIMIC 
database has been approved by the Beth Israel Deaconess 
Medical Center and the MIT Review Board. We received 
permission after applying for and completing the course 
and testing (Record Nos. 44703031 and 44703032). 
Informed consent was not required as all patient infor-
mation in the database is anonymized [24, 25].

Patients enrollment and data collection
Data were extracted using SQL (Structured Query Lan-
guage) programming in Navicat Premium (version 
15.0.12). Ninth revision of the International Classifica-
tion of Diseases (ICD-9/10) codes were used to identify 
all patients hospitalized for congestive HF. Exclusion 
criteria: 1) patients younger than 18 years or older than 
90  years; 2) patients with more than 20% missing data 
were excluded from the analysis. When patients are older 
than 90  years, these patients will be assigned an age of 
300 years in MIMIC III and 91 years in MIMIC IV. Their 
actual age is unknown. We assigned the MIMIC-IV data 
to the training cohort for model building in the training 
cohort. The MIMIC-III patient data were used to per-
form the validation function of the model.

After identifying eligible subjects, we collected clinical 
data including demographics, comorbidities, vital signs, 
and laboratory parameters. Comorbidities included 
atrial fibrillation (AF), previous myocardial infarction 
(p-MI), type 2 diabetes mellitus (T2DM), hypertension, 
ventricular arrhythmias (VA), and acute kidney injury 
(AKI). Vital signs were collected from the first recorded 
results at the time of hospitalization and included heart 
rate (HR), respiratory rate (RR), temperature (T), Systolic 
blood pressure (SBP), Diastolic blood pressure (DBP), 
and mean artery pressure (MAP). Post-admission labo-
ratory parameters were also obtained for the first time. 
The indicators studied were red blood cells (RBC), white 
blood cells (WBC), platelets, hemoglobin, hematocrit, 
mean red blood cell volume (MCV), mean red blood cell 
hemoglobin volume (MCH), mean red blood cell hemo-
globin concentration (MCHC), albumin, alanine ami-
notransferase (ALT), aspartate Transaminase (AST), total 
bilirubin (TB), alkaline phosphatase (AP), and blood urea 
nitrogen (BUN), creatinine, glucose, lactate, total car-
bon dioxide (T-CO2), arterial partial pressure of oxygen 
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 (PaO2), arterial carbon dioxide partial pressure,  (PaCO2) 
arterial oxygen saturation  (SaO2), potential of hydrogen 
(pH), anion gap (AG), base excess (BE), bicarbonate, 
potassium, sodium, chloride, total calcium (T-calcium), 
phosphorus, magnesium, activated partial thromboplas-
tin time (APTT), prothrombin time (PT), international 
normalized ratio (INR).

The diagnosis of AKI is based on the latest Interna-
tional Clinical Practice Guidelines for AKI [26]. Any of 
the following three criteria meet the diagnostic criteria. 
(a) increase in creatinine by ≥ 0.3 mg/dl (≥ 26.5 μmol/L) 
within 48  h; (b) increase in creatinine to ≥ 1.5 times 
baseline, which is known or presumed to have occurred 
within the prior 7  days; (c) urine volume < 0.5  ml/kg/h 
for 6 h. Patients with CKD stage 5 will be excluded from 
AKI even if they meet the above criteria. In-hospital AKI 
diagnoses can also be accessed directly through the offi-
cially provided view codes. Hospitalization numbers for 
ICDs documenting paroxysmal ventricular tachycardia, 
ventricular flutter, and ventricular fibrillation will be 
flagged as VA.

Model construction and evaluation
LR models were used for model construction. Nomo-
gram was used to visualize the regression model [27]. 
Calibration curves can be used as one of the evaluation 
indicators of the model to assess the goodness of fit of the 
model [28]. Decision curve analysis (DCA) can demon-
strate the net benefit of an intervention by estimating the 
clinical utility of a predictive model based on a threshold 
probability (the probability of triggering a medical inter-
vention by a physician or patient, corresponding to the 
probability that the harm of a false-positive intervention 
exceeds the harm of a false-negative no intervention) [29, 
30]. Once the model was established, data from the test 
cohort and validation cohort were used to further evalu-
ate the performance of the model. Area and precision-
recall curves under the receiver operating characteristic 
curve (AUC) were used to compare the performance of 
each model. We also calculated the net reclassifica-
tion improvement (NRI) and integrated discrimination 
improvement (IDI) to evaluate the improvement of the 
new models [31, 32].

Study endpoint
The endpoint event is in-hospital all-cause mortality; 
patients whose date of death coincides with the date of 
discharge or is less than 12 h from the date of discharge 
will be defined as having experienced in-hospital death.

Statistical analysis
During the data collection phase, every laboratory test 
result during the patient’s hospitalization will be collected 

and composed in a huge raw table. At this point, all vari-
ables were collated and, to avoid excessive bias. Variables 
with less than 20% missing values are randomly filled 
in using multiple interpolation, which is based on the R 
package “mice”. The missing proportions of all continuous 
variables before filling are displayed in the (Supplementary 
Table 1, Supplementary Figs. 1 and 2). Finally, in chrono-
logical order, only the results of the patient’s first labora-
tory examination were retained for the subsequent study.

Categorical variables were described by frequencies 
and percentages, and differences between groups were 
determined by chi-square test or Fisher’s exact test. Con-
tinuous variables were expressed as mean ± standard 
deviation or median and interquartile range (IQR), and 
groups were compared using Student’s t-test or Mann–
Whitney u-test.

Univariate LR analyses were first performed, and vari-
ables with a probability of inclusion < 0.05 were selected 
for multivariate LR analysis. Those variables that still 
had an independent effect on outcome after multivariate 
correction would be retained. When their P-value is less 
than 0.001 will be used as predictor variables to develop 
the model.

The first LR (LR1) model was developed, which was 
incorporated with all continuous variables whose P-val-
ues remained less than 0.001 after multifactorial adjust-
ment. predictors of the LR1 model included: age, RR, 
 PaO2, platelet count, albumin, TB, AP, lactate, pH, BE, 
and phosphorus.

A second LR model (LR2) was developed by adding 
the variables AKI and VA to the LR1 model. R software 
(version 4.2.1) was used for statistical analysis; Graph-
Pad Prism (version 8.3.0) was used to draw graphs; and 
P < 0.05 was considered statistically significant.

Results
Baseline characteristics
A total of 16,908 patients were included in this study, 
including 7,481 in the MIMIC III cohort and 9,427 in 
the MIMIC IV cohort (Fig.  1). Cumulative in-hospi-
tal deaths were 2283 (13.5%, Supplemental Table  2). 
In-hospital deaths occurred in a total of 1075 (14.4%) 
patients in the MIMIC III cohort; in-hospital deaths 
occurred in a total of 1208 (12.8%) patients in the 
MIMIC IV cohort, a significant difference (P = 0.004, 
Supplemental Table  3). Compared with the surviving 
cohort, those who died had a higher mean age, higher 
mean heart rate, and faster RR; lower arterial systolic, 
diastolic, and mean arterial pressures, and lower median 
body temperature levels (Supplementary Table 2). In the 
MIMIC III cohort, a total of 1075 (14.4%) patients expe-
rienced in-hospital death, with a higher mean age in 
the death group (Table 1). The death group had higher 



Page 4 of 13Cai et al. BMC Cardiovascular Disorders           (2024) 24:16 

HR, RR and temperature, lower blood pressure, lower 
rates of combined hypertension and T2DM, and higher 
rates of combined AKI and VA (Table  1). There were 
no significant differences in other comorbidities. In the 
MIMIC IV cohort, a total of 1208 (12.8%) patients died 
in-hospital, and the mean age of the death group was 
higher than that of the survivor group (Supplementary 
Table 4). Compared with the survivor group, patients in 
the death group had faster HR, RR, higher temperature, 
lower blood pressure, lower rates of comorbid hyper-
tension, and higher rates of AKI and VA. There were 
also no significant differences in other co-morbidities 
(Supplementary Table 4).

Feature selection and regression analysis
Data from the MIMIC III and MIMIC IV cohorts will be 
combined for univariate and multivariate LR analyses on 
in-hospital all-cause mortality. After all variables were 
analyzed by univariate binary LR, those variables with 
P-value still less than 0.05 will be included in the multi-
factorial binary LR analysis for adjustment. Ultimately, 
we found that age, albumin, Sodium, bicarbonate, lactate, 
magnesium, phosphate, platelets, AG, T-CO2, MCV, HR, 
 PaO2, AP, BE, RBC, RR, TB, WBC, pH, the occurrence 
of AKI, and the occurrence of VA were independently 

associated with the occurrence of in-hospital mortality 
in HF patients. The dominance ratio odds ratio (OR) and 
95% confidence interval (95% CI) were calculated for the 
predictors of in-hospital all-cause mortality (Supplemen-
tary Table 5). All variables with a P-value less than 0.001 
were selected as predictors for the model (Supplemen-
tary Table  6). In addition, LASSO regression was also 
used for variable screening, the results of which are dis-
played in (Supplementary Fig. 3). When λ takes the value 
of 0.018570, the lasso regression will output 12 variables; 
when λ takes the value of 0.015390, the lasso regression 
will output 15 variables (Supplementary Table 7). As can 
be seen from table, the variables screened by the lasso 
regression are approximately the same as those screened 
by the logistic regression in this study. All predictors will 
be incorporated into the logistic regression model a sec-
ond time, and the resulting β values will be multiplied by 
10 to calculate a score for each variable used to develop 
the model (Supplementary Table 6).

Logistic regression model prediction of in‑hospital 
all‑cause mortality
The receiver operating characteristic curve (ROC) 
of the LR1 model was plotted in the training cohort 
(Fig.  2A), and the area under the receiver operating 

Fig. 1 Flow diagram of the selection process of patients
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Table 1 Baseline characteristics

MIMIC III (N = 7481)

Survival (n = 6406) Dead (n = 1075) P-value

Demographic
 Age (Year) 69.91 (13.05) 73.12 (12.57)  < 0.001

 Male (n%) 3445 (53.8) 558 (51.9) 0.269

Vital signs
 HR (minˉ1) 88.81 (19.31) 93.22 (22.05)  < 0.001

 RR (minˉ1) 18.92 (6.17) 21.26 (6.76)  < 0.001

 SBP (mmHg) 122.47 (23.63) 118.15 (27.74)  < 0.001

 DBP (mmHg) 63.73 (14.97) 62.09 (15.62) 0.001

 MAP (mmHg) 83.31 (15.53) 80.78 (17.05)  < 0.001

 T (°C) 36.60 (0.86) 36.61 (1.02) 0.642

Laboratory results
 RBC (m/uL) 3.90 (0.75) 3.80 (0.75)  < 0.001

 WBC (k/uL) 10.20 [7.50,13.80] 11.30 [7.75,15.65]  < 0.001

 Platelet (k/uL) 219.00 [170.00,273.00] 209.00 [140.00,265.50]  < 0.001

 Hemoglobin (g/dL) 11.64 (2.23) 11.33 (2.13)  < 0.001

 Hematocrit (%) 34.81 (6.41) 34.23 (6.34) 0.006

 MCV (fL) 89.56 (6.61) 90.72 (7.46)  < 0.001

 MCH (pg) 30.00 (2.61) 30.05 (2.92) 0.51

 MCHC (%) 33.50 (1.55) 33.12 (1.64)  < 0.001

 Albumin (mg/dL) 3.16 (0.42) 2.93 (0.55)  < 0.001

 ALT (IU/L) 38.00 [19.00, 88.00] 37.00 [19.00, 88.00] 0.308

 AST (IU/L) 49.00 [25.00, 117.00] 58.00 [27.00, 117.00]  < 0.001

 TB (mg/dL) 0.90 [0.50,1.90] 0.90 [0.50,1.90] 0.024

 AP (IU/L) 107.00 [71.00,130.00] 112.00 [74.00,134.00]  < 0.001

 BUN (mg/dL) 23.00 [16.00,33.00] 31.00 [20.00,48.00]  < 0.001

 Creatinine (mg/dL) 1.30 [1.10,1.50] 1.40 [1.20,1.85]  < 0.001

 Glucose (mg/dL) 133.00 [108.00,173.00] 135.00 [105.00,183.00] 0.746

 Lactate (mg/dL) 2.40 [1.40,2.50] 2.30 [1.50,3.55]  < 0.001

 T-CO2 (mEq/L) 25.00 [25.00,29.00] 25.00 [20.00,28.00]  < 0.001

 pH (units) 7.38 (0.08) 7.34 (0.12)  < 0.001

  PaO2 (mmHg) 105.56 (25.12) 96.02 (25.41)  < 0.001

  SaO2 (%) 95.47 (6.52) 94.40 (7.52)  < 0.001

  PaCO2 (mmHg) 43.15 (10.05) 42.83 (13.73) 0.362

 AG (mEq/L) 15.01 (3.64) 16.42 (4.21)  < 0.001

 BE (mEq/L) 0.00 [0.00,2.00] 0.00 [-5.00,2.00]  < 0.001

 Bicarbonate (mg/dL) 24.86 (5.08) 23.61 (5.73)  < 0.001

 Potassium (mEq/L) 4.33 (0.78) 4.47 (0.87)  < 0.001

 Sodium (mEq/L) 138.02 (4.40) 137.48 (5.63)  < 0.001

 Chloride (mEq/L) 102.31 (5.88) 101.57 (6.56)  < 0.001

 T-Calcium (mEq/L) 8.60 (0.77) 8.46 (0.90)  < 0.001

 Magnesium (mg/dL) 1.97 (0.38) 2.00 (0.42) 0.05

 Phosphate (mg/dL) 3.60 [3.00,4.20] 3.90 [3.10,4.70]  < 0.001

 INR 1.30 [1.10,1.60] 1.40 [1.20,1.90]  < 0.001

 APTT (s) 30.20 [26.20,36.50] 31.50 [26.90,38.85]  < 0.001

 PT (s) 14.10 [13.00,16.30] 14.80 [13.25,18.20]  < 0.001
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Table 1 (continued)

MIMIC III (N = 7481)

Survival (n = 6406) Dead (n = 1075) P-value

Comorbidities (n%)
 AF 2670 (41.7) 478 (44.5) 0.093

  T2DM 1636 (25.5) 220 (20.5)  < 0.001

 Hypertension 3201 (50.0) 427 (39.7)  < 0.001

 p-MI 602 (9.4) 74 (6.9) 0.009

 VA 563 (8.8) 130 (12.1) 0.001

 AKI 2131 (33.3) 597 (55.5)  < 0.001

 CLD 2277 (35.5) 393 (36.6) 0.544

 MT 330 (5.2) 68 (6.3) 0.13

 CKD 4988 (77.9) 818 (76.1) 0.211

 Anemia 2438 (38.1) 414 (38.5) 0.803

Values are mean + SD, n (%), or median (IOR)

HR heart rata, RR Respiratory rate, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, T Temperature; arterial oxygen saturation, 
RBC red blood cell, WBC white blood cell, MCV mean corpuscular volume, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, 
ALT aspartate aminotransferase, AST aspartate aminotransferase, TB Total Bilirubin, AP Alkaline phosphatase, BUN blood urea nitrogen, T-CO2 Total carbon dioxide, pH 
potential of hydrogen, PaO2 arterial partial pressure of oxygen, PaCO2 arterial partial pressure of carbon-dioxide,  SaO2, AG anion gap, BE base excess, INR International 
Normalized Ratio, PT prothrombin time, APTT activated partial prothrombin time, AF atrial fibrillation, T2DM type 2 Diabetes Mellitus, p-MI previous myocardial 
infarction, VA ventricular arrhythmias, AKI acute kidney injury, CLD chronic lung disease, MT malignant tumor, CKD chronic kidney diseases

Fig. 2 ROC curves for LR1 and LR2 model in training and test cohorts. A ROC curves for LR1 model in training and test cohorts; B ROC curves 
for LR2 model in training and test cohorts; C AUC and 95% confidence interval for LR1 and LR2 models in training and test cohorts
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characteristic curve (AUC) was calculated to be 0.753 
(95% CI: 0.738∼0.768) (Fig.  2C). The AUC for the test 
cohort was 0.751 (95% CI: 0.735∼0.767) (Fig. 2C).

The ROC curves of the LR2 model in the training and 
test cohorts were also plotted (Fig.  2B). The AUCs of 
the training and test cohorts were 0.782 (95% CI: 0.769–
0.796) and 0.766 (95% CI: 0.751–0.781), respectively 
(Fig.  2C). Meanwhile, the 15 variables screened by the 
lasso regression were also used to develop the Nomo-
gram model, which had areas under the AUC of 0.7816 
(0.7677 ~ 0.7955) (P < 0.001, Supplementary Fig.  4A) and 
0.7642 (0.7487 ~ 0.7798) (P < 0.001, Supplementary Fig. 4B) 
for the training and validation sets, respectively. The fea-
ture development model screened by lasso regression did 
not have a significant advantage over logistic regression. 
Finally, to make it easier to assess the risk of in-hospital 
death in patients, these variables used to model LR1 were 
also used to create a Nomogram for estimating the prob-
ability of in-hospital all-cause mortality (Fig. 3).

Calibration and clinical utility of logistic regression
For the LR1 model of in-hospital all-cause mortality, the 
calibration curves for the training and validation cohorts 
are shown in Fig.  4A and B. For the LR2 model of in-
hospital all-cause mortality, the calibration curves for the 
training and validation cohorts are shown in Fig. 4C and 

D. The calibration curves show good agreement between 
the predicted and observed probabilities of in-hospital 
death in both the training and validation cohorts.

At the same time, the decision curve analysis also 
shows that the net benefit of all models exceeds that of 
the reference model over the entire threshold range 
(Fig. 5), suggesting that predictions based on LR models 
will more accurately identify high-risk patients and con-
sider the pros and cons of early intervention.

Comparison of risk predicted by LR1 model and LR2 model
In the training cohort, we calculated the model-assessed 
risk for each patient for the LR1 and LR2 models sepa-
rately, and then compared the risk estimated by the LR1 
model with the risk estimated by LR2. First, the NRI was 
calculated in the training cohort. Referring to reported 
studies [18, 33], we used 10% and 30% as thresholds to 
define risk classes for low-risk (< 10%), intermediate risk 
(10%-30%), and high-risk (> 30%) patients, and compared 
with the LR1 model (< 10% for low risk, 10%-30% for inter-
mediate risk, and 30% for highest risk), the LR2 model pre-
dicted an NRI of 8.92% for in-hospital all-cause mortality 
(Fig. 6A). Of the 1208 patients who experienced in-hospi-
tal deaths, 209 were correctly reclassified to a higher risk 
category by the LR2 model. On the other hand, 142 of the 
1208 patients were incorrectly reclassified to a lower risk 

Fig. 3 Nomogram developed to predict in-hospital all-cause mortality. Nomogram for in-hospital deaths in heart failure patients. First row: point 
allocation of variables; second to twelfth rows: eleven predictors; thirteenth row: total number of points for eleven predictors
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category by the LR1 model. In addition, in the test cohort, 
the LR2 model predicted an NRI of 5.4% for in-hospital all-
cause mortality compared to the LR1 model (Fig. 6B). Of 
the 1075 patients with incident in-hospital mortality, 177 
patients were correctly reclassified by the LR2 model into 
the high-risk category. On the other hand, 154 patients 
out of 1075 were incorrectly reclassified to the low-risk 

category by LR1. The IDI is also shown in (Fig. 6). The IDI 
calculated by the LR2 model compared to LR1 was 2.67% 
(P < 0.001) and 1.8% (P < 0.001) on the training and test 
cohort, respectively. the IDI shows the improved accuracy 
generated by the LR2 model. These results suggest that the 
LR2 model can significantly improve the prediction of HF 
patients compared to the LR1 model.

Fig. 4 Calibration curves for LR1 and LR2 predicting in-hospital all-cause mortality in the training cohort and test cohort. A Calibration curves 
for the LR1 model predicting in-hospital all-cause mortality in the training cohort. B Calibration curves for the LR1 model predicting in-hospital 
all-cause mortality in the test cohort. C Calibration curves for the LR2 model predicting in-hospital all-cause mortality in the training cohort. D 
Calibration curves for the LR2 model predicting in-hospital all-cause mortality in the test cohort
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Online risk assessment system for logistic regression 
model
Ultimately, based on the predictors included in the LR2 
model, 1 online application program (Fig.  7) was devel-
oped to assess the risk of in-hospital death in HF patients. 
The probability of in-hospital death can be calculated for 
each patient after admission and used to alert clinicians 
and identify high-risk patients as early as possible.

Discussion
The main findings of the current study are as follows: 
1) The in-hospital mortality rate of HF patients in the 
MIMIC database was 13.5%; 2) A total of Nomogram 
models was used to assess the risk of in-hospital all-cause 
mortality in HF patients, and we found that Nomogram 
had good predictive efficacy in the early assessment of 
the risk of in-hospital all-cause mortality in HF patients. 
We found that Nomogram had good predictive efficacy 
for early assessment of all-cause mortality risk in hospi-
tals in HF patients, with an AUC of 0.782 in the training 
cohort and 0.766 in the test cohort of the LR2 model; 3) 
We found that age, albumin, sodium, bicarbonate, lactate, 
magnesium, phosphate, platelets, AG, T-CO2, MCV, HR, 
PaO2, AP, BE, RBC, RR, TB, WBC, pH, AKI and VA are 
independent factors influencing in-hospital mortality in 
HF patients.

The risk of in-hospital all-cause mortality in HF 
patients in previous studies was 2.86% to 14.5% [34–38]. 
In contrast, the in-hospital all-cause mortality of heart 
failure patients in this study was high. The possible rea-
sons for this are as follows: (A) first, the median age of 
both MIMIC-III and MIMIC-IV was high (> 65 years) in 
both groups, suggesting that our study population may 
have more underlying disease and also the functional 
state of body organs is poor [39]; (B) secondly, HF as an 
end-stage outcome of cardiac disease is characterized by 
a very poor prognosis, and the mortality rate of our study 
population is naturally higher than that of HF patients in 
general wards because they are from intensive care units 
[40, 41]. Therefore, early identification is very important. 
It helps clinicians to take preventive measures in advance.

In this study, we found markers that are not specific to 
heart disease but are good predictors of patient progno-
sis. Bicarbonate was most often elevated in patients with 
more severe HF [42], warning of a marker of severe HF. 
The study have noted that serum magnesium levels less 
than or equal to 2 mEq/L were associated with increased 
cardiovascular mortality [43]. However, there have also 
been systematic reviews and meta-analyses showing 
that elevated blood magnesium is associated with an 
increased risk of cardiovascular (CV) mortality and all-
cause mortality [44, 45]. The study of Guo W and Nakano 

Fig. 5 Decision curve analysis of the model. x-axis represents the threshold probability of in-hospital death and y-axis represents the net benefit. A 
DCA curves for the LR1 model predicting in-hospital all-cause mortality in the training cohort. B DCA curves of the LR1 model predicting in-hospital 
all-cause mortality in the test cohort. C Calibration curves for the LR2 model predicting in-hospital all-cause mortality in the training cohort. D 
Calibration curves for the LR2 model predicting in-hospital all-cause mortality in the test cohort
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H suggested that abnormalities in BE increase the risk 
of all-cause mortality [46, 47]. Unexpectedly, elevated 
serum phosphorus is associated with increased morbid-
ity and mortality even when renal function is normal [48, 
49]. Could AP abnormalities in HF patients, which are 
associated with significant signs of systemic congestion 
and elevated right-sided filling pressures [50], provide a 
new marker for the diagnosis of HF? Elevated bilirubin 
levels were significantly associated with the risk of death 
in pump failure [51, 52], suggesting that clinicians should 
pay more attention to bilirubin levels in HF patients and 
may take certain therapeutic measures as early as possi-
ble. In conclusion, the results in our clinic are broadly in 
line with all previously reported findings.

Using the LR model, the risk probability of the 
derived population was categorized into < 10%, 10–30%, 
and > 30%, which were defined as low-, medium-, and 
high-risk categories, respectively. In addition, risk strati-
fication was also presented in the external validation 
dataset. We documented the feasibility of the LR model 

to distinguish risky patients from other populations. By 
using the LR model, the risk probability of each patient 
can inform and support the clinician’s decision making. 
However, there were some deaths in the low-risk stra-
tum and some survivors in the high-risk stratum. We 
suspect that these exceptions may be due to the different 
phenotypes of HF patients in the various risk strata. HF 
involves multiple pathophysiologic mechanisms, which 
may lead to clinically heterogeneous phenotypes [53]. 
For example, unsupervised clustering analysis based on 
machine learning was used to differentiate between dif-
ferent phenotypes of heart failure with preserved ejection 
fraction (HFpEF) patients [54]. Therefore, in future stud-
ies, we may use other methods for further analysis and 
perform experimental validation.

Peng S et  al. developed a clinical prediction model 
for 28-day all-cause in-hospital mortality in critically ill 
patients with heart failure combined with hypertension 
using machine learning, in which Neural Network (NN) 
performed the best, with an AUC of 0.764 [55]. Li J et al. 

Fig. 6 Comparison of LR1 model and LR2 for predicting in-hospital all-cause mortality. A NRI was calculated in the training cohort. we used 10% 
and 30% as thresholds to define low-risk (< 10%), intermediate-risk (10–30%), and high-risk (> 30%) patients. the IDI is also listed above. B Calculation 
of NRI and IDI in the test cohort
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developed several machine learning models, and found 
that XGBoost, LR models performed excellently [56]. 
The logistic regression model was effective in improving 
the accuracy of risk stratification for in-hospital mor-
tality in patients with HF. However, the sample size of 
this study was relatively small and included many vari-
ables, which is not conducive to clinical generalization. 
With the development of concepts such as real-world 
research and precision therapy, there is an increasing 
demand for medical big data processing by researchers. 
Therefore, we tried to explore a predictive model for the 
risk of in-hospital death in heart failure with a larger 
sample size and more robustness from another study.

We tried to develop a new model rather than validate 
the original model. The reason for this is that the vari-
ables included in previously developed models are not 
fully accessible. For example, the H2FPEF and HFA-PEFF 
scores [57] developed by Ouwerkerk W et al. for the diag-
nosis of ejection fraction preserved heart failure, and the 
more commonly used Meta-analysis Global Group in 
Chronic Heart Failure (MAGGIC) score [58]. Both per-
formed well, but the former contains cardiac ultrasound 
data, and the latter contains BMI, NYHA classification, 
and other metrics not available from the MIMIC data-
base. We had to abandon the validation of the developed 
model in favor of developing a new one.

This study used a high quality, large sample size data-
base, MIMIC. there are several advantages to using the 
database. First, it is one of the few critical care data-
bases that is freely accessible. Second, the dataset spans 
more than a decade and contains a wealth of detailed 
information about patient care. Third, once data use 
agreements are accepted, there are no restrictions on 
analysis by researchers, enabling clinical research and 
education around the world. Finally, data can be down-
loaded from multiple sources [22].

There are several limitations in the current study. 
Firstly, although the internal validation of the model 
yielded the best discrimination and excellent calibra-
tion, the data came from public databases. Therefore, 
the generalizability of the column plot still needs to be 
externally validated using other medical centers. Fur-
ther training in prospective studies could significantly 
improve the predictive performance and stability of the 
column plot; Second, although the column chart has 
been widely used in clinical practice to assist in medi-
cal decision making, we would like to further simplify 
the model and expand its usage scenarios. Finally, the 
model can be significantly improved by incorporating 
imaging data, such as cardiac ultrasound, electrocardi-
ogram, and other parameters, or circulating biomarkers 
that are more predictive.

Fig. 7 An example of an application to predict the risk of in-hospital all-cause mortality in HF patients
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Conclusion
A new risk prediction tool and an online risk assess-
ment system were developed to predict mortality in HF 
patients, which performed well and might be used to 
guide clinical practice.
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